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Predicting COVID‑19 severity is difficult, and the biological pathways involved are not fully 
understood. To approach this problem, we measured 4701 circulating human protein abundances in 
two independent cohorts totaling 986 individuals. We then trained prediction models including protein 
abundances and clinical risk factors to predict COVID‑19 severity in 417 subjects and tested these 
models in a separate cohort of 569 individuals. For severe COVID‑19, a baseline model including age 
and sex provided an area under the receiver operator curve (AUC) of 65% in the test cohort. Selecting 
92 proteins from the 4701 unique protein abundances improved the AUC to 88% in the training cohort, 
which remained relatively stable in the testing cohort at 86%, suggesting good generalizability. 
Proteins selected from different COVID‑19 severity were enriched for cytokine and cytokine receptors, 
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but more than half of the enriched pathways were not immune‑related. Taken together, these findings 
suggest that circulating proteins measured at early stages of disease progression are reasonably 
accurate predictors of COVID‑19 severity. Further research is needed to understand how to incorporate 
protein measurement into clinical care.

A remarkable feature of COVID-19 disease is its highly variable clinical course, where some individuals mani-
fest severe disease or death, and others remain asymptomatic. Several clinical and genetic risk factors explain 
a proportion of these  outcomes1–6, yet most of the host biological causes of these adverse COVID-19 outcomes 
remain unknown.

Recent reports have identified some of the biologic pathways influencing risk of adverse COVID-19, such as 
immune  responses7–11, interferon  pathways12–14, and T-cell  dysfunction15,16. However, many such studies have 
focused on narrow sets of pre-selected cytokines. One way to rapidly assess thousands of potential biomark-
ers associated with the severity of COVID-19 is through the measurement of blood circulating proteins. Such 
circulating proteins may be useful because they can help to identify pathways influencing severity of disease. 
They may also identify individuals at high risk of a severe COVID-19 clinical course. Similarly, circulating 
proteomic biomarkers have recently been shown to serve as predictors of other common  diseases17–24 including 
cardiovascular disease. They are also relevant in drug discovery because they are generally more accessible to 
pharmacological manipulation than intracellular  proteins25–29. Thus, understanding the circulating proteins asso-
ciated with COVID-19 severity may be helpful to address major challenges raised by the current  pandemic15,30–41.

We undertook a large-scale study to assess the relationship of thousands of circulating proteins with COVID-
19 severity. To do so, we used machine learning methods to develop a predictive model of COVID-19 severity 
using the circulating blood protein abundances as predictors. Proteins were measured using 4984 nucleic acid 
aptamers  (SOMAmer® reagents)42 targeting 4701 unique circulating human proteins in two cohorts collected from 
two countries, which in total included 986 individuals. The training cohort was comprised of 417 individuals from 
two sites of the Biobanque Québécoise de la COVID-19 (BQC19 cohort). This cohort was used to train a model 
to predict COVID-19 severity. This model was then tested in a separate test cohort from the Mount Sinai Hospital 
in New York City, which was similarly characterized for the same protein measurements and COVID-19 severity.

This large-scale study across two countries and two geographically separated cohorts identified circulating 
proteins associated with COVID-19 severity measured at a large-scale in well-characterized cohorts. These 
findings provide insights into the biological pathways influencing these outcomes and the ability of proteomics 
to predict these outcomes.

Results
Cohorts. To establish a proteomic-based prediction model for COVID-19 severity, we used the BQC19 
cohort, which consisted of samples from two hospitals in Montreal, with proteomic measurements for train-
ing and cross-validation. The final model was tested in an independent cohort from Mount Sinai hospital in 
New York City. Using the same  SomaScan® assay, 4984 SOMAmer reagents measured the levels of 4701 dif-
ferent circulating proteins in both the BQC19 and Mount Sinai cohorts. To train our models, we selected 417 
individuals which included 313 nasal swab SARS-CoV-2 PCR positive patients with baseline samples collected 
within 14 days of symptom onset (mean and median time since symptom onset in COVID-19 patients = 7.0 days 
(SD = 3.96 days)). The BQC19 cohort also included an additional 104 individuals who presented to the same 
hospital sites with symptoms consistent with COVID-19 but had a negative SARS-CoV-2 PCR nasal swab. The 
Mount Sinai cohort consisted of 569 individuals with their earliest samples also collected within 14  days of 
symptom onset. Among them were 472 SARS-CoV-2 positive patients again confirmed by PCR, one patient 
confirmed by chest CT, and 96 SARS-CoV-2 negative individuals (89 with PCR confirmation). If multiple blood 
samples were collected from the same person, we used the samples collected at the time point closest to symptom 
onset. We chose to use samples close to symptom onset to reflect the proteome of acute COVID-19, rather than 
its recovery phase.

The demographic and clinical characteristics of the participants in the training and testing datasets are shown 
in Table 1. In the BQC19 cohort, the mean age across all samples was 65.3 years (SD = 18.4 years), and 52% of 
the cohort were men. In the Mount Sinai cohort, the mean age was 59.6 years (SD: 19.4 years), and 58.2% of the 
cohort were men.

For the definition of COVID-19 severity, we focused on two levels: (1) severe COVID-19 was defined as 
individuals who died or required any form of oxygen supplementation; and (2) critical COVID-19, defined as 
individuals who died or experienced severe respiratory failure (requiring non-invasive ventilation, high flow 
oxygen therapy, intubation, or extracorporeal membrane oxygenation). Detailed definitions of these adverse 
outcomes are described in Methods. The overall study design is shown in Fig. 1, which outlines the training and 
testing stages of the study. Consistent with recent successful large-scale genetic studies, we defined controls as 
all participants not meeting case  criteria1.

A visualization of the distribution of individuals across COVID-19 severity outcomes in the BQC19 and 
Mount Sinai cohorts is provided in Supplementary Fig. 1. In the BQC19 training cohort 175 individuals were 
classified as severe cases and 242 individuals were controls. The controls for severe COVID-19 were comprised 
of 138 SARS-CoV-2 positive individuals not meeting case definition and 104 SARS-CoV-2 negative individuals. 
In the case of critical disease, 93 individuals out of 313 COVID-19 positive patients were classified as critical 
cases and 324 individuals were controls. The controls for critical COVID-19 cases were 220 SARS-CoV-2 posi-
tive individuals not meeting case definition and 104 participants who were SARS-CoV-2 negative. In the Mount 
Sinai testing cohort, 392 individuals were classified as severe cases and 177 individuals were controls while for 
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critical disease 233 individuals were cases and 336 were controls. Generally, severe, or critical COVID-19 cases 
were older than controls in both the training dataset and the testing dataset. Males were also more likely to have 
severe or critical COVID-19 as compared to females (Table 1). The age and sex distribution of the participants 
stratified by case/control status for the two COVID-19 severity groups are shown in Supplementary Fig. 2. The 
distributions suggest that males who develop severe or critical COVID-19 are generally younger than females.

Association of protein abundance with COVID‑19 severity. In order to directly assess if any of the 
measured proteins were associated with COVID-19 severity, we used multivariable logistic regression to test the 
association of each of the 4984 SOMAmer reagents with the two COVID-19 outcomes while adjusting for age, 
sex, sample processing time, and hospital site in the BQC19 cohort. These variables were chosen because they 

Table 1.  Demographic characteristics of the participating cohorts. *Mean (SD). **N (%). When the counts 
of each cell do not sum to the total sample size, this is due to missing data or the patient answering, “I do 
not know”. Severe—Cases individuals who tested positive for COVID-19 and died or required any type of 
respiratory support (including oxygen delivered by nasal prongs). Controls: individuals with COVID-19 
but did not meet severe case criteria or individuals who presented with symptoms of COVID-19 but were 
SARS-CoV-2 PCR negative. Critical—Cases individuals who tested positive for COVID-19 and died or 
required respiratory support (intubation, continuous positive airway pressure, bilevel positive airway pressure, 
continuous external negative pressure, or high flow positive end expiratory pressure oxygen). Controls: 
individuals with COVID-19 but did not meet critical case criteria or individuals who presented with symptoms 
of COVID-19 but were SARS-CoV-2 PCR negative. Sample Processing Time time in hours between sample 
collection and sample freezing. CHUM Samples recruited from the Centre Hospitalier de l’Université de 
Montréal. JGH Samples recruited from the Jewish General Hospital.

Dataset Training cohort (BQC19)

COVID-19 severity

Severe Critical

All samples (n = 417) Cases (n = 175) Controls (n = 242) Cases (n = 93) Controls (n = 324)

Age in years* 65.3 (18.4) 67.6 (17.6) 63.7 (18.8) 66.7 (16.5) 64.9 (18.9)

Female sex** 200 (48.0) 82 (46.9) 118 (48.8) 36 (38.7) 164 (50.6)

Sample processing time (hours)* 9.7 (13.4) 7.5 (6.5) 11.3 (16.5) 7.0 (6.3) 10.4 (14.8)

Hospital site**

   CHUM 105 (25.2) 42 (24.0) 63 (26.0) 32 (34.4) 73 (22.5)

   JGH 312 (74.8) 133 (76.0) 179 (74.0) 61 (65.6) 251 (77.5)

Diabetes**

   No 288 (69.1) 100 (57.1) 188 (77.7) 54 (58.1) 234 (72.2)

   Yes 127 (30.5) 75 (42.9) 52 (21.5) 39 (41.9) 88 (27.2)

Chronic obstructive pulmonary disease**

   No 358 (85.9) 145 (82.9) 213 (88.0) 77 (82.8) 281 (86.7)

   Yes 57 (13.7) 30 (17.1) 27 (11.2) 16 (17.2) 41 (12.7)

Chronic kidney disease**

   No 363 (87.1) 151 (86.3) 212 (87.6) 77 (82.8) 286 (88.3)

   Yes 52 (12.5) 24 (13.7) 28 (11.6) 16 (17.2) 36 (11.1)

Congestive heart failure**

   No 355 (85.1) 152 (86.9) 203 (83.9) 80 (86.0) 275 (84.9)

   Yes 60 (14.4) 23 (13.1) 37 (15.3) 13 (14.0) 47 (14.5)

Hypertension**

   No 179 (42.9) 67 (38.3) 112 (46.3) 31 (33.3) 148 (45.7)

   Yes 235 (56.4) 107 (61.1) 128 (52.9) 61 (65.6) 174 (53.7)

Liver disease**

   No 403 (96.6) 172 (98.3) 231 (95.5) 91 (97.8) 312 (96.3)

   Yes 12 (2.9) 3 (1.7) 9 (3.7) 2 (2.2) 10 (3.1)

Smoking status**

   Current smoker 13 (3.1) 6 (3.4) 7 (2.9) 5 (5.4) 8 (2.5)

   Ex-smoker 47 (11.3) 21 (12.0) 26 (10.7) 11 (11.8) 36 (11.1)

   Never smoker 233 (55.9) 98 (56.0) 135 (55.8) 40 (43.0) 193 (59.6)

Dataset Testing cohort (Mount Sinai)

COVID-19 severity

Severe Critical

All samples (n = 569) Cases (n = 392) Controls (n = 177) Cases (n = 233) Controls (n = 336)

Age in years* 59.6 (19.4) 63.0 (17.1) 52.1 (22.1) 63.7 (16.7) 56.8 (20.6)

Female sex** 238 (41.8) 154 (39.3) 84 (47.5) 87 (37.3) 151 (44.9)
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are readily available in the course of clinical care, representing the minimum set of variables to predict severity. 
Logistic regression identified 1531 SOMAmer reagents to be associated with severe COVID-19 (Supplementary 
Table 1) and 1592 SOMAmer reagents (Supplementary Table 2) to be associated with critical COVID-19 when 
using a Benjamini–Hochberg corrected p value of 0.01 (Supplementary Fig. 3).

Model selection and performance using LASSO. One reason why many circulating proteins were 
associated with COVID-19 severity is that most of the protein levels were highly correlated with each other. 
Therefore, we used L1 regularized multivariable logistic regression models (LASSO)43 to select uncorrelated 
proteins that best predicted COVID-19 severity in the BQC19 training cohort. We did so for three reasons: (1) 
LASSO performs well when the number of features is greater than the number of samples (as was the case in our 
experiment); (2) LASSO forces many correlated features to have a zero coefficient by randomly selecting one of 
the features (sometimes more than one) from a group of correlated features thereby preventing collinearity; (3) 
LASSO mitigates the possibility of  overfitting43.

We first defined a baseline model which included only the four covariates in the logistic regression model: 
age, sex, sample processing time, and hospital site to predict COVID-19 severity. We then evaluated whether 
the addition of proteins would aid in identifying which patients developed severe COVID-19 by adding 4984 
SOMAmer reagents to the baseline model. This model, which included baseline covariates and protein levels, 
is termed the “protein model”. To train both the baseline and the protein models, we performed 10 repeats of 
stratified fivefold cross-validation using LASSO logistic regression in the BQC19 cohort on both the severe and 
critical groups. We tuned the penalty parameter “lambda” across each of the 50 cross-validations and selected 
the lambda value corresponding to the model with the highest area under the receiver operator characteristic 
curve (AUC), which was averaged over the 50 cross-validation results. Results from the lambda parameter search 
are shown in Supplementary Fig. 4A, B.

For the best performing model predicting severe COVID-19, we selected a  log10 lambda value of − 1.5 which 
generated an average training AUC of 59% for the baseline model. We next selected a  log10 lambda value of 
1.0, which generated an average AUC of 88% for the protein model. For the best performing model predicting 
critical COVID-19, we selected  log10 lambda values of − 2.0 and 1.0 corresponding to average cross-validation 
training AUC scores of 59% and 89% for the baseline and protein model, respectively (Fig. 2a, b). We then used 
these chosen lambda hyperparameters to build baseline and protein models for severe and critical COVID-19 
using the entire BQC19 cohort and evaluated their performance in the independent external test cohort from 
Mount Sinai. Elastic net regularized logistic regression models were also trained on the BQC19 cohort but not 
tested on the Mount Sinai cohort due to negligible differences in training performance (Supplementary Note).

When testing the prediction of severe COVID-19 in the independent Mount Sinai cohort, AUC performance 
of the baseline model improved from 59% in the BQC19 training cohort to 65% in the Mount Sinai testing cohort. 
The AUC of the protein model decreased slightly between training and testing (88% vs. 86%).

The AUC of the protein model for predicting critical COVID-19 also decreased from a training score of 
89% to 80% in the test set. In contrast, prediction of critical COVID-19 using the baseline model was consistent 

Figure 1.  Overall Study design. Schematic of training and testing stages of this study. Severe COVID-19 is 
defined as death or use of any form of oxygen supplementation. Critical COVID-19 is defined as death or severe 
respiratory failure (non-invasive ventilation, high flow oxygen therapy, intubation, or extracorporeal membrane 
oxygenation).



5

Vol.:(0123456789)

Scientific Reports |         (2023) 13:6236  | https://doi.org/10.1038/s41598-023-31850-y

www.nature.com/scientificreports/

a b

c

Figure 2.  AUC score results. (a) L1 regularized logistic regression training and testing results for severe 
COVID-19 and (b) critical COVID-19. Blue and red are used to represent the protein model and baseline 
model, respectively, while solid and dotted lines represent the testing and training performance, respectively. 
Shaded areas denote the 95% confidence intervals for the training cohort. (c) Two-by-two contingency table 
results from the test set are shown for predicting severe (top left, bottom left) and critical COVID-19 (top right, 
bottom right) using the protein model (blue) and baseline model (red). The threshold for predicting cases was 
determined during training using Youden’s J statistic which selects a threshold that maximizes the sum of the 
sensitivity and specificity score. PPV positive predictive value, NPV negative predictive value.
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between training and test performance (AUC: 59%). The stability of these AUC estimates in the test cohort sug-
gested that both protein models were robust.

The classification performance of the baseline and protein models in the Mount Sinai cohort is shown as 
two-by-two contingency tables in Fig. 2c. The baseline and protein models used thresholds of 0.417 and 0.486 to 
predict severe COVID-19, respectively. These thresholds were selected by computing Youden’s J statistic during 
training and determine the threshold that maximized the sum of the sensitivity and specificity scores during 
training. The thresholds selected were roughly consistent with the case to control ratio in the BQC19 cohort 
used for training (175 cases, 242 controls). The protein model achieved a sensitivity of 73.2% compared to 61.0% 
for the baseline model, and a specificity of 79.7% compared to 60.5% for the baseline model, when predicting 
severe COVID-19 (Fig. 2c).

When predicting critical COVID-19 using the baseline and protein models, thresholds of 0.202 and 0.255 
were used to predict cases, respectively, using the same method. The low threshold for predicting critical COVID-
19 cases is consistent with the case to control ratio in training which was 93–324 samples. The baseline model 
achieved a sensitivity/specificity score of 50.2%/57.4% while the protein model achieved 74.3%/69.6%, suggest-
ing that the protein model trained to predict critical COVID-19 had decent power to classify true positives and 
true negatives (Fig. 2c).

Furthermore, both the baseline and protein models demonstrated higher positive predictive values than 
negative predictive values when predicting severe COVID-19, compared to critical COVID-19. In contrast, 
these models produced higher negative predictive values than positive predictive values when predicting criti-
cal COVID-19.

Overall, these results suggest that the protein models predicting severe and critical COVID-19 both per-
form reasonably well in terms of the trade-off between sensitivity and specificity. The protein model is sensitive 
(73.2%) at identifying severe COVID-19 cases and similarly sensitive (74.3%) at identifying critical COVID-19 
cases. Further, the positive predictive value for severe COVID-19 was high at 88.9%, while the negative predic-
tive value was 57.3% (Fig. 2c). These results suggest that a protein model could predict severe COVID-19 with 
relatively high confidence.

Proteins prioritized by LASSO to predict COVID‑19 severity. To predict severe COVID-19, the best 
performing protein model selected 92 proteins along with age and sample processing time (Fig. 3, Supplemen-
tary Table 3). Assessing the correlation of all 92 proteins, we found that, as expected, most of the proteins did not 
correlate with each other (mean absolute Spearman’s ρ = 0.17) (Supplementary Fig. 5A). Of 8464 total correla-
tions (92 × 92), 8372 correlations (98.9%) had Spearman’s absolute ρ < 0.8.

Next, when predicting critical COVID-19, the best performing protein model retained age, sample process-
ing time, and 67 proteins (Fig. 3, Supplementary Table 4). The absolute effect estimates of these proteins were 
generally larger than the severe COVID-19 model proteins (mean: 0.081 vs. 0.077). As expected, the 67 selected 
proteins also showed low levels of correlation (mean absolute Spearman’s ρ = 0.15) (Supplementary Fig. 5B). 
Of 4489 total correlations (67 × 67), 4422 correlations (98.5%) had Spearman’s absolute ρ < 0.8. The correlation 
between the 92 and 67 proteins selected to best predict severe and critical COVID-19 is shown in Fig. 3. Out of 
6164 total correlations (92 × 67), 6150 correlations (99.8%) had Spearman’s absolute ρ < 0.8. In general, proteins 
selected for predicting severe versus critical COVID-19 were not highly correlated (mean absolute Spearman’s 
ρ = 0.15). A hierarchically clustered heatmap after removal of the 14 common proteins in severe and critical 
COVID-19 showed that the proteins selected in predicting both outcomes were also generally uncorrelated with 
one another where 99.2% of the correlations had Spearman’s absolute ρ < 0.8 (Supplementary Fig. 5C).

The percent of selected proteins for the prediction of severe and critical COVID-19 that were cytokines or 
chemokines was only 5.4% and 4.5%, respectively. Cytokine IFNA7, as well as chemokines CXCL13, CXCL10, 
CCL7, and CCL8 were present in the proteins selected for predicting severe COVID-19. Three chemokines, 
CXCL13, CXCL10, and CCL7 were selected for predicting critical COVID-19. Importantly, among the 14 over-
lapping proteins, those three chemokines, CXCL13, CXCL10, and CCL7 were selected for predicting both severe 
and critical COVID-19. In addition, SFTPD, a surfactant protein highly specific to the lung tissue was also among 
the overlapped proteins in predicting both COVID-19 severity groups.

Figure 3.  Feature importance and correlation of SOMAmers selected in the protein model to predict 
severe and critical COVID-19. (Left) Coefficient values of the 92 nonzero SOMAmer reagents in the final 
trained L1 regularized logistic regression protein model fitted to predict severe COVID-19. The original data 
contained 4984 SOMAmer reagents and 4 other variables: age, sex, sample processing time, and hospital site. 
92 SOMAmer reagents remained within the model along with age and sample processing time which are not 
shown. The model was trained on the entire BQC19 cohort using lambda = 10.0  (log10 lambda = 1.0) which was 
the best lambda value found from the hyperparameter search. (Bottom) Coefficient values of the 67 nonzero 
SOMAmer reagents of the final trained L1 regularized logistic regression protein model fitted to predict critical 
COVID-19. The original data contained 4984 SOMAmer reagents and 4 variables age, sex, sample processing 
time, and hospital site. 67 SOMAmer reagents remained within the model along with age and sample processing 
time which are not shown. The model was trained on the entire BQC19 cohort using lambda = 10.0  (log10 
lambda = 1.0) which was the best lambda value found from the hyperparameter search. (Right) Spearman’s 
rank correlations between the 92 proteins associated with severe COVID-19 and the 67 proteins associated 
with critical COVID-19. These results suggest that while there were 14 overlapping proteins (SFTPD, CXCL10, 
RAB3A, NAGPA, CDH5, IFNA7, ZNRF3, CBS, CCL7, SETMAR, TNXB, CDHR1, CXCL13, and CBLN1), in 
general, the protein levels were uncorrelated with one another. Out of 6164 total correlations (92 × 67), 6150 
correlations (99.8%) had a Spearman’s absolute ρ < 0.8.

◂
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In addition, we clustered the 4984 SOMAmer reagents using uniform manifold approximation and projection 
(UMAP) to reduce the feature space to a 2-dimensional space and highlighted the position of the model-selected 
proteins predictive of either severe or critical COVID-19. Our results suggested that LASSO selected proteins 
were sparsely distributed across the clusters (Supplementary Fig. 6). This provides further evidence that: (1) few 
of the selected proteins are closely clustered with one another in UMAP space and (2) the proteins selected from 
the severe protein model and critical protein model were also quite distant from each other in UMAP space. 
Finally, we performed pathway analysis on common proteins with non-zero effect estimates that were included 
in the best predictive models of severe and critical COVID-19. Since LASSO is designed to pick one protein 
from a group of correlated proteins regardless of their biological relevance, we also included proteins highly 
correlated (Spearman’s absolute ρ > 0.75) with the proteins selected by LASSO for the enrichment analysis. As a 
result, 171 proteins were included in the severe group (92 LASSO selected proteins and 79 correlated proteins, 
Supplementary Table 5); and 96 proteins were included in the critical group (67 LASSO selected proteins and 
29 correlated proteins, Supplementary Table 6). Among which, 32 proteins were common between the severe 
and critical groups.

We found that these 32 proteins were enriched in 35 pathways (g:SCS adjusted P value < 0.05), among which 
15 were directly related to immune responses (Supplementary Fig. 7, Supplementary Table 7). Prominent path-
ways included viral protein interaction with cytokines, cytokine and cytokine receptors (IL22RA1, TNFRSF10B, 
CCL7, CXCL10, CXCL13, adjusted P = 0.0008) and cytokine-cytokine receptor interactions (CD4, IL22RA1, 
TNFRSF10B, CCL7, CXCL10, CXCL13, IFNA7, adjusted P = 0.002).

Interestingly, more than half of enriched pathways were not related to immune response (e.g., signaling 
receptor binding, cell activation). This suggests that other non-immune response pathways influence COVID-
19 severity. In addition, some of these pathways included protein phosphorylation (CTSG, PRKCZ, PECAM1, 
CD4, CLEC7A, NPPA, TNFRSF10B, PRDX4, EPHA4, TNXB, CXCL10, IFNA7, CDH5) and glycosaminoglycan 
binding (CTSG, CCL7, TNXB, CXCL10, CXCL13), suggesting potential avenues to explore for drug development.

Using clinical risk factors to predict COVID‑19 severity. In order to contrast the prediction capa-
bilities of protein levels with established clinical risk factors, we performed two sensitivity analyses with results 
shown in Table  2. In the first analysis, we added six clinical risk factors to the baseline and protein models 
described in the main analyses. These clinical risk factors were diabetes, chronic obstructive pulmonary disease 
(COPD), chronic kidney disease, congestive heart failure, hypertension, and liver disease. The prevalence of 
these risk factors is shown in Table 1.

Addition of these six clinical features to the baseline model improved the training AUC to 64% (from 59%) 
when predicting severe COVID-19 and to 61% (from 59%) when predicting critical COVID-19. However, add-
ing these clinical risk factors to the protein model resulted in no change in the training AUC performance when 
predicting severe COVID-19 (AUC = 88% vs. 88%) and critical COVID-19 (AUC = 89% vs. 89%) (Table 2, Sup-
plementary Fig. 8). 95 and 69 features with non-zero beta coefficient effect estimates were selected for the protein 
models predicting severe and critical COVID-19, respectively, in this sensitivity analysis (Supplementary Fig. 8). 
Comparing proteins selected by the protein model in this sensitivity analysis, only one protein, KIT, was added to 
the 94 features selected in the main analysis. For critical COVID-19, the 69 features selected remained the same.

For the second sensitivity analysis, we augmented the first sensitivity analysis with an extra covariate for smok-
ing status. Due to missing smoking information from the CHUM hospital site in the BQC19 cohort, only 312 
samples were used in model training for the second sensitivity analysis. The results suggested that the addition of 
smoking and 6 clinical risk factors into the original baseline model composed of age, sex, sample processing time, 
and hospital site also slightly improved the training performance when predicting severe COVID-19 (AUC = 66% 
vs. 59%) and critical COVID-19 (AUC = 61% vs. 59%) (Table 2, Supplementary Fig. 9). When adding smoking 
and these 6 clinical risk factors to the protein model, we found that training performance actually decreased 
for severe COVID-19 (AUC = 85% vs. 88%) and critical COVID-19 (AUC = 85% vs. 89%). The non-zero beta 
coefficients of the proteins for severe and critical COVID-19 are shown in Supplementary Fig. 9 with a total of 
79 and 51 features being selected, respectively. Comparing the 79 features selected by the protein model in this 
sensitivity analysis to the original 94 features selected previously when predicting severe COVID-19, we observed 
that only 48 features overlapped. Similarly, the 51 features selected by the protein model in this sensitivity analysis 
only had 28 features overlapping with the 69 features selected previously. The observed decrease in AUC and 

Table 2.  Training AUC comparison. Main Analysis: Baseline model age, sex, sample processing time, and 
hospital site, Protein model baseline model and 4984 SOMAmer reagents. Main Analysis plus 6 clinical risk 
factors (CRFs): Baseline model + 6 CRFs age, sex, sample processing time, hospital site, and 6 comorbidities, 
Protein model + 6 CRFs baseline model + 6 CRFs and 4984 SOMAmer reagents. Main Analysis plus 7 clinical 
risk factors: Baseline model + 7 CRFs age, sex, sample processing time, hospital site, 6 comorbidities and 
smoking status, Protein model + 7 CRFs baseline model + 7 CRFs and 4984 SOMAmer reagents.

Main analysis (n = 417)
Main analysis plus 6 clinical risk 
factors (n = 417)

Main analysis plus 7 clinical risk 
factors (n = 312)

Baseline model Protein model
Baseline model + 6 
CRFs

Protein model + 6 
CRFs

Baseline model + 7 
CRFs

Protein model + 7 
CRFs

Severe COVID-19 0.590 0.880 0.636 0.880 0.657 0.848

Critical COVID-19 0.591 0.890 0.607 0.890 0.606 0.848
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fewer number of overlapping proteins when comparing main analyses and sensitivity analyses may be due to 
the reduction in sample size used for training.

The results from these sensitivity analyses suggest that the protein measurements are likely able to act as 
partial proxies of the tested clinical risk factors. The addition of the clinical risk factors that we assessed may 
improve the predictive performance for both COVID-19 severity groups when only demographic and sample 
processing parameters are available. However, when protein measurements are available, adding these extra 
clinical risk factors may add little for improving predictions.

Discussion
In this large-scale study testing the association of 4701 circulating proteins with severe and critical COVID-19, 
we found that a subset of these proteins were strong predictors of COVID-19 severity. Specifically, developing 
a model in 417 individuals and testing its performance in 569 separate samples from an independent external 
cohort, we demonstrated that a proteomic model was able to predict severe COVID-19, defined as requiring the 
use of oxygen, with an AUC of 86% and a positive predictive value of 89%. The addition of several commonly 
used clinical risk factors for COVID-19 severity did not improve the performance of this model. The identified 
proteins were strongly enriched for cytokine signaling and immune pathways, but also highlighted non-immune 
pathways. Importantly, sampling was performed on presentation, but the severity outcome is the worst the patient 
has been at any point and not the clinical status on presentation. Hence, this is in fact a true representation of 
the patients’ final outcomes, and our study predicts their clinical trajectory based on their protein status on 
presentation. Taken together, these findings demonstrate that circulating protein abundances are able to predict 
COVID-19 severity with reasonable accuracy.

By including an independent cohort in this study, we implemented best practices for model development and 
 validation44. An important aspect of any prediction model is the testing of the model in a cohort separate from 
the training cohort. Therefore, a strength of this study was that our samples were recruited from three separate 
hospitals, across two separate health care systems in two different countries. In this study, we used the same 
clinical risk factors and the exact same proteomic measurement procedure to both train and test the models. 
This increases the probability that the results presented are generalizable and not overfitted to the training  data45. 
Differences in age and sex distributions in the training and testing cohorts were handled using 10 repeats of 
stratified five-fold cross validation to mitigate their effects on the generalizability of the model. Indeed, for severe 
COVID-19, there was little change in the AUC when comparing the training and test cohorts (88% vs. 86%).

Further, most studies that have tested the association between protein levels and COVID-19 severity have 
focused on circulating cytokines and  chemokines15,46–52. While this is a reasonable approach given the nature 
of the disease, we are unaware of any other studies that have tested the association of 4701 circulating proteins 
with COVID-19 severity. A recent study assessing thousands of proteins and their associations with COVID-19 
severity achieved an AUC of 85%, but this was not tested in an independent  cohort41.

Interestingly only 5 of the 14 proteins selected in the final model of both severe and critical COVID-19 were 
cytokines or chemokines. There were also proteins selected that were not specific to immune pathway proteins, 
such as glycosaminoglycan binding—a favourable set of targets for drug development. The lung-specific protein 
SFTPD was also selected and could potentially indicate the correlation of severity with lung tissue destruction. 
This suggests that many of the biological pathways that influence severity of COVID-19 may act distinctly from 
known cytokine and chemokine proteins.

A major clinical challenge within the pandemic has been the triaging of patients to identify those most likely 
to require admission for  hospitalization53. A common reason for hospitalization is the need for oxygen support. 
Currently, treating physicians are required to assess the need for admission using models with poor predictive 
performance. A model generated in China early in the pandemic to predict COVID-19 severity requires a medical 
history, chest X-ray, and extensive blood  testing54. Further, the 4C Mortality Score was able to predict in-hospital 
mortality, but achieved an AUC of only 77%55. Approximately half of the patients enrolled in our study have 
developed severe or critical COVID-19 after their baseline proteomic measurement which were used as predic-
tors in this study. This suggests circulating protein measurements could be considered for predicting COVID-19 
severity, but this requires further study, including more sampling at the onset of symptoms.

There are differences in genetic ancestry between the training and testing cohorts. The training cohort consists 
of individuals from two hospital sites in Montreal and may have different allele frequencies at loci related to 
the identified proteins compared to individuals from the testing cohort in New York. While Ashkenazi Jews are 
present in both Montreal and New York, major differences include the larger French-Canadian population in 
Montreal and larger percentage of African genetic ancestry individuals in New  York56. However, this difference 
is not expected to affect the validity of the results, as even with this genetic diversity, our model replicated well.

This study has important limitations. While the model was tested in a separate cohort, and generalized 
well, it should be tested in additional cohorts, especially in cohorts of diverse ancestry. The control population 
included individuals who were SARS-CoV-2 positive and had mild disease, in addition to individuals who were 
suspected to have COVID-19 but were SARS-CoV-2 negative. This means that the developed models provide 
insight into prediction of individuals who develop severe COVID-19 compared to mild COVID-19 and other 
acute diseases having symptoms consistent with COVID-19. Such control definitions reduce the potential for 
collider bias, but do not allow direct prediction of COVID-19 severity amongst only COVID-19  patients57. While 
critical COVID-19 case criteria allows the identification of biomarkers involved in critical illness, the specificity 
of the criteria limits the available cases for study, which limits statistical power, and requires consideration of the 
sensitivity–specificity trade-off. Hence, we defined severe COVID-19 which encompasses critical COVID-19 
individuals and increased the available cases for model training. Deaths were included in both severe and critical 
COVID-19 case criteria to account for the effects of competing risk. The cause of death for individuals in both 
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severe and critical COVID-19 groups is unknown. However, cause of death is generally hard to ascertain, dif-
ficult to assess, and is an inherent limitation of the data collection process. When including clinical risk factors, 
smoking status was categorized as current, ex-, and never smokers instead of grouping current and ex-smokers 
together due to studies showing differences in risk for these two  subgroups58,59. It may, however, be valuable 
to group current and ex-smokers together for sensitivity analysis in the future. We used LASSO for biomarker 
selection and while there are other approaches available for finding the best protein in each of the LASSO sets 
of proteins, this would require a different study design. For the purpose of external validation, this is not neces-
sary. However, we recognize that other researchers may be interested in which proteins are associated with the 
ones selected by our models. Thus, we provide a list of highly correlated proteins with those selected by severe 
and critical COVID-19 in Supplementary Table 5 and 6, respectively. Last, the clinical translation of this study 
is hindered by the cost involved in measuring 4701 circulating proteins but could be improved by developing a 
specific assay to the selected proteins.

In summary, circulating protein levels are strongly associated with COVID-19 severity and able to predict 
the need for oxygen supplementation or death with reasonable accuracy. Measured protein levels were superior 
to predicting COVID-19 severity when compared to nearly all clinical risk factors tested. Further research is 
needed to assess whether this proteomic approach can be applied in a clinical setting to assist in triaging patients 
for admission to hospital.

Methods
Cohorts. The Biobanque Québécoise de la COVID-19 (BQC19) is a Québec-wide biobank which was 
launched to enable research into the causes and consequences of COVID-19 disease (see bqc19.ca)60. For this 
study, we used results from 417 patients (313 SARS-CoV-2 nasal swab PCR positive patients and 104 individuals 
who presented with symptoms consistent with COVID-19 but had negative SARS-CoV-2 PCR nasal swabs) with 
available proteomic data from the SomaScan SomaLogic assay. The subjects were recruited at the Jewish General 
Hospital (JGH) and Centre Hospitalier de l’Université de Montréal (CHUM) in Montréal, Québec, Canada, 
both of which are university affiliated hospitals. For each individual, blood samples drawn at the earliest time 
point were used for training when an individual had multiple blood draws. Selecting the blood sample at the 
earliest time point reflects the protein measurements during the acute phase of COVID-19 disease. The demo-
graphic characteristics of the participants in the BQC19 cohort who underwent SomaScan assays is detailed in 
Table 1. The demographic characteristics were obtained by medical chart review or patient interview performed 
by trained clinicians or trained research coordinators.

The Mount Sinai cohort used in this study was composed of results from 569 patients made up of 472 SARS-
CoV-2 positive patients and 89 SARS-CoV-2 negative patients confirmed through PCR tests, one COVID-19 
positive patient diagnosed by a chest CT while the remaining 7 individuals were COVID-19 negative and did 
not have COVID-19 symptoms during specimen collection but may have had a history of exposure. The samples 
donated by the patients in the Mount Sinai cohort underwent the same proteomic data collection and profiling 
performed as in the BQC19 cohort. The subjects were recruited at the Mount Sinai Hospital in New York City 
which is affiliated with the Icahn School of Medicine. Table 1 lists the demographic and sample processing param-
eters of participants in the Mount Sinai cohort that underwent SomaScan assays. Demographic characteristics 
were obtained similarly to that of the BQC19 cohort.

Demographic, sample processing, and clinical variable definitions. Age and sex from the BQC19 
and Mount Sinai cohorts were collected. Sample processing time and hospital site were collected for BQC19 
samples with the former being a continuous variable that quantifies the time in hours between sample collection 
and sample freezing.

The clinical variables were collected for the BQC19 cohort only. Clinical variables included smoking status 
and six different comorbidities: diabetes, COPD, chronic kidney disease, congestive heart failure, hypertension, 
and liver disease. All seven variables were collected as categorical values with the six comorbidities having three 
options (0 No, 1 Yes, and − 1 Don’t know) while smoking status contained 4 categories (0 Current Smoker, 1 
Ex-smoker, 2 Never smoked, and − 1 Don’t know).

Proteomic measurement using the SomaScan platform. Blood samples from both the BQC19 
and Mount Sinai cohorts were collected using acid citrate dextrose (ACD) tubes. Proteomic measurement was 
performed at SomaLogic using the SomaScan v4.0 platform. In the BQC19 cohort, a total 1038 samples col-
lected at different time points from 503 individuals were sent to SomaLogic for proteomic profiling as previously 
 described2, while the Mount Sinai cohort contained 1200 samples collected at different time points from 592 
individuals that were sent to SomaLogic for proteomic profiling.

SomaLogic uses the SomaScan proteomic platform which provides measurements on 4701 unique human 
circulating proteins using 4987 Slow Off-Rate Modified Aptamers (SOMAmer reagents) and quantifies protein 
levels in the form of relative fluorescence units (RFUs). Normalization and calibration steps were performed by 
SomaLogic to remove any systematic biases stemming from raw assays or samples. The normalization procedure 
involved three steps performed in a non-consecutive fashion: hybridization control normalization, intraplate 
median signal normalization, as well as plate scaling and calibration. More details on SomaLogic normalization 
can be found in their Technical  Note61.

Data preprocessing. A per-sample normalization process involved using a scale factor for a set of SOMA-
mer reagents to compute against a reference value generated from the median of all calibrated, unnormalized 
samples, and then aggregating the results within a dilution. This was done because using a normal population 
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reference generated from EDTA plasma tubes would have been inappropriate for normalization, since samples 
in this study were from ACD plasma tubes. Due to the nature of the samples that were collected from patients 
during acute infection, we did not apply the recommended scale [0.4–2.5] to remove samples. The raw data-
set composed of 5284 SOMAmer reagents was first processed with SomaLogic package SomaDataIO v3.1.0. 
We removed any SOMAmer reagents that represented non-human proteins or controls (NoneX, NonHuman, 
Spuriomer, HybControlElution, NonBiotin, NonCleavable) and retained 4984 unique SOMAmer reagents for 
analysis.

Curation of samples from the longitudinal dataset. To investigate our primary study question, we 
focused on samples collected during the acute infection stage. Samples from the acute infection stage were 
defined as samples collected from SARS-CoV-2 PCR positive patients within 14 days of symptom onset. When 
an individual provided multiple samples collected within 14 days of symptom onset, the sample collected at the 
earliest timepoint was retained for analyses. Both the BQC19 and Mount Sinai samples adhered to this rule.

COVID‑19 severity definitions. We defined two sets of severity groups for COVID-19: severe COVID-19 
and critical COVID-19. Positive SARS-CoV-2 results were confirmed by SARS-CoV-2 viral nucleic acid ampli-
fication tests (NAAT) from relevant biologic fluids. Cases for severe COVID-19 were defined as individuals who 
tested positive for COVID-19 and died or required any type of respiratory support (including oxygen delivered 
by nasal prongs) at any timepoint. Controls for severe COVID-19 were defined as individuals who did not meet 
these severe case criteria; thus, controls were individuals with COVID-19 but did not meet severe case criteria 
or were individuals who presented with symptoms of COVID-19 but were SARS-CoV-2 PCR negative. Cases for 
critical COVID-19 were defined as individuals who tested positive for COVID-19 and died or required invasive 
respiratory support (intubation, continuous positive airway pressure, bilevel positive airway pressure, continu-
ous external negative pressure, or high flow positive end expiratory pressure oxygen) at any timepoint. Controls 
for critical COVID-19 were individuals with COVID-19 but did not meet critical case criteria or were individu-
als who presented with symptoms of COVID-19 but were SARS-CoV-2 PCR negative.

Multivariable logistic regression. Multivariable logistic regression models were used to test the asso-
ciations of either severe or critical COVID-19 on four covariates along with each SOMAmer reagent: age, sex, 
sample processing time, and hospital site. We used R package “glm” to perform 4984 logistic regression models 
in the BQC19 cohort. We first applied a false discovery rate of P < 0.01 (corrected P values were determined using 
the Benjamini–Hochberg  procedure62, p.adjust with method set to “BH” in R) to select a subset of proteins asso-
ciated with severe or critical COVID-19. Volcano plots measuring the uncorrected −  log10 P values as a function 
of the effect size estimates of each SOMAmer reagent were generated using the bioinfokit version 2.0.4 package 
in Python 3.7.

Regularized logistic regression models. We defined two model types differing in the covariates used 
to train the model. The first model type is a “baseline model” which was trained using age, sex, sample process-
ing time, and hospital site. The second model type is a “protein model” which is trained using age, sex, sample 
processing time, hospital site, and 4984 SOMAmer reagents. We used the baseline model in our analyses as a 
performance benchmark to compare the results of the protein model which we expected to perform better.

To predict the two COVID-19 severity groups defined above, we used LASSO regression and elastic nets. 
Elastic net models were only trained in the BQC19 cohort and not tested in the Mount Sinai cohort (Supple-
mentary Note). Specifically, for LASSO regression we used L1 Regularized Logistic Regression (Sparse Logistic 
Regression) as implemented in the “LogisticRegression” module from Sci-kit learn version 0.24.1, a machine 
learning library, with the penalty set to “L1”. The L1 norm penalty adds a constraint to the effect estimates of 
the regression model by setting many variables to have a null effect or a coefficient of 0. This in turn allows a 
form of feature selection to occur and also prevents overfitting to the training dataset by forcing the model to be 
less complex. In addition, when multiple variables are correlated with one another such as in the case of highly 
correlated proteins, the penalty term from LASSO may select a single variable from the group, thus allowing a 
subset of uncorrelated proteins to be selected. It is important to note that although LASSO tends to select a single 
variable from a group of highly correlated variables, this property is not a certainty. LASSO may occasionally 
select more than one variable depending on the size of the dataset and the value of the penalty term. To train this 
model, the hyperparameter “lambda”, which controls the amount of L1 regularization to add to the model, was 
first tuned through cross-validation (details are described in the next section). A larger value of lambda increases 
the amount of L1 regularization and forces more of the variables to have a null effect. On the other hand, training 
the model on a smaller lambda value will result in a model with more nonzero coefficients.

Cross‑validation and hyperparameter tuning. Due to the relatively small size of our training data-
set from BQC19, we used 10 repeats of five-fold cross-validation to tune the hyperparameter, lambda, over 
17 different lambdas  (log10 values of lambda from − 2 to 2, incremented by 0.25). Each repeat of the five-fold 
cross-validation process involved splitting the dataset into five folds: training on four folds and validating the 
trained model on the final fold and performing the process five times to cover each validation fold. We used a 
stratified cross-validation approach, meaning that the train and validation folds maintained the same percentage 
of samples of each class (case/control) as the original data. This is important because of the unbalanced case/
control samples for critical COVID-19 (93 cases/324 controls). A standard five-fold cross-validation split may 
result in train and validation folds with varying proportions of cases and controls. Since classification algorithms 
tend to weight each sample equally, the class that is overrepresented, such as the controls in critical COVID-19, 
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will receive more weight and thus bias the results. The stratified cross-validation step was performed using the 
RepeatedStratifiedKFold function in Sci-kit learn. Due to the relatively small sample size of our training set 
(n = 417), we performed 10 repeats of this cross-validation process to stabilize the results from training. Each 
repeat first shuffled the entire training set then split the data into five folds which created more variability in the 
data used for training.

During training on the four folds, we standardized only the protein levels using the population standard 
deviation (i.e., dividing by the number of samples n) and use this mean and standard deviation to standardize 
the protein levels in the validation fold prior to validating. This prevents information leakage which can occur if 
standardization of protein levels was performed on the entire dataset rather than just the training folds. Age and 
sample processing time were treated as continuous variables, whereas sex and hospital site were treated using 
dummy variables (sex [0: Female, 1: Male], and hospital site [0: CHUM, 1: JGH]).

We used the AUC to determine the model performance during cross-validation. To select the best value for 
the hyperparameter lambda, we compared the average AUC score (computed from 50 validation fold results) for 
all lambda values and selected the lambda value corresponding to the highest average AUC. Youden’s J statistic 
was calculated for each receiver operator characteristic (ROC) curve during training. This performance metric 
can be calculated by subtracting the false positive rate from the true positive rate for each data point on a ROC 
curve and taking the maximum value. The threshold which corresponds to this maximum Youden’s J statistic 
is the threshold that maximizes the sum of the sensitivity and specificity for that particular ROC curve. We 
computed the threshold corresponding to the maximum Youden’s J statistic for each of the 50 ROC curves and 
averaged the 50 thresholds to get a single threshold value. This averaged threshold value was computed for each 
of the baseline and protein models predicting severe and critical COVID-19 and used to produce two-by-two 
contingency tables and therefore sensitivity and specificity values in the Mount Sinai cohort during model testing.

Model testing. We checked the generalizability of the baseline and protein models by testing them in an 
external, independent dataset from Mount Sinai. Protein measurements in the test dataset were first natural log 
transformed then standardized using the mean and standard deviation of the corresponding protein in the train-
ing set. Similarly, age was not standardized and kept in years. Since samples were only from a single hospital, the 
hospital site parameter was left as is and did not need to be dummy encoded. The variable sample processing 
time, however, was absent from the testing set. For this reason, we imputed the sample processing time variable 
in the test cohort using the mean value of the sample processing time variable in the BQC19 training cohort.

Protein correlations. Spearman’s Rank Order Correlation was used to determine the correlations between 
individual proteins in the BQC19 cohort. Heatmaps show magnitudes of correlation coefficients between values 
of − 1 and 1. Correlation heatmaps showing collected clusters such as in Supplementary Fig. 5 were generated 
using the ggcorrplot function in R with the parameter hc.order set to TRUE to perform hierarchical clustering. 
Moreover, we reduced the dimension of the correlation matrix of 4984 SOMAmer reagents to a 2-dimensional 
space using uniform manifold approximation and projection (UMAP) from the umap-learn 0.5.1 package using 
default parameters. We annotated the SOMAmer reagents selected from the protein model that were associated 
with severe COVID-19 and critical COVID-19 as well as the proteins that overlapped between the two severity 
groups.

Pathway enrichment analyses. We used the web-based tool g:Profiler (https:// biit. cs. ut. ee/ gprofi ler/ 
gost) to investigate the possible pathways of the selected proteins as good predictors for both critical and severe 
COVID-19 identified by LASSO. The g:SCS algorithm was used to estimate the threshold for enrichment against 
all annotated genes. We selected pathways and interaction databases including Gene Ontology,  KEGG63,64, Reac-
tome; TRANSFAC, miRTarBase, Human Protein Atlas, and CORUM.

Sensitivity analyses. We tested the effect of six established clinical risk factors which included: diabetes, 
COPD, chronic kidney disease, congestive heart failure, hypertension, and liver disease in the BQC19 cohort to 
determine whether addition of comorbidities could improve prediction of COVID-19 severity. We added these 
six additional covariates, with characteristics shown in Table 1, to the baseline and protein models to perform 
LASSO regression analysis. A total of 417 samples from the BQC19 cohort were used for training.

We performed a second sensitivity analysis by adding smoking status along with these six established clini-
cal variables to the baseline and protein models for LASSO regression analyses. Therefore, the baseline model 
contained covariates age, sex, sample processing time, hospital site, and seven clinical variables while the protein 
model contained all the baseline variables along with 4984 SOMAmer reagents. Since smoking status was not 
available from the CHUM hospital site, this sensitivity analysis only involved 312 samples from the BQC19 
cohort that were collected at the JGH site.

Due to missing data, we imputed the values of samples: we first converted all six comorbidity features to binary 
values. Any value other than a “Yes” was converted to a “No” which may include missing values being converted 
to a “No”. For smoking status, we grouped all values into three categories: 0—Current Smoker, 1—Ex-smoker, 
and anything else (including missing values and − 1) was set as 2—Never smoked. Smoking status was dummy 
encoded and had one of the encoded variables dropped to prevent collinearity. For both sensitivity analyses, 
training of the L1 regularized logistic regression models used 10 repeats of stratified five-fold cross-validation 
as in the primary analysis.

Ethics declarations. All contributing cohorts to the present analyses received ethics approval from their 
respective research ethics review boards. The Biobanque Québécoise de la COVID-19 (BQC19) received ethi-

https://biit.cs.ut.ee/gprofiler/gost
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cal approval from the institutional review board (IRB) of the JGH and the CHUM. This research was reviewed 
and approved by the Icahn School of Medicine at Mount Sinai Program for the Protection of Human Subjects 
(PPHS) under study number 20-00341. The Mount Sinai PPHS is an accredited IRB. This research was consid-
ered minimal risk Human Subjects Research. All research was performed in accordance with relevant guide-
lines/regulations and informed consent was obtained from all subjects and/or their legal guardians from which 
blood samples were taken. All methods used in this study were performed in accordance with the Declaration 
of Helsinki.

Data availability
Code used in this analysis is available at https:// github. com/ cheny angsu/ somal ogic with additional informa-
tion available upon request. The BQC19 is an Open Science Biobank. Instructions on how to access data for 
individuals from the BQC19 at the Jewish General Hospital site is available at https:// www. mcgill. ca/ genepi/ 
mcg- covid- 19- bioba nk. Instructions on how to access data from other sites of the BQC19 is available at https:// 
www. bqc19. ca/ en/ access- data- sampl es. The proteomics data analyzed during the current study is available for 
download at https:// drive. google. com/ drive/ folde rs/ 1xTMz gKJhk ArL6X mqgcU aU3LW 4kyxr Bjv? usp= shari ng. 
All datasets are available for Open Access for qualified researchers working in academia or industry through the 
BQC19 (bqc19.ca) and require ethical permission from a Research Ethics Board for use of the data.
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