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Lack of significant advancements in early detection and treatment of heart failure
have precipitated the need for discovery of novel biomarkers and therapeutic
targets. Over the past decade, circulating sphingolipids have elicited promising
results as biomarkers that premonish adverse cardiac events. Additionally,
compelling evidence directly ties sphingolipids to these events in patients with
incident heart failure. This review aims to summarize the current literature on
circulating sphingolipids in both human cohorts and animal models of heart failure.
The goal is to provide direction and focus for future mechanistic studies in heart
failure, as well as pave the way for the development of new sphingolipid biomarkers.
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Introduction

Heart failure (HF) is a debilitating medical condition where the heart is unable to meet

the metabolic demands of the body. It is a widespread clinical syndrome affecting at least

64 million people globally, and this number is expected to rise (1, 2). HF poses a

significant economic and clinical burden and dramatically impacts patients’ quality of life

(3). Different classifications of HF exist, with the most widely accepted based on the

percentage of blood volume ejected by the left ventricle (LV) during systole, i.e., heart

failure with reduced ejection fraction (HFrEF, LVEF ≤40%), heart failure with preserved

ejection fraction (HFpEF, LVEF ≥50%), and as of 2016, heart failure with borderline/

mildly reduced ejection fraction (HFbEF/HFmrEF, LVEF 41%–49%) (4–6). Though, there

is some controversy related to the cut-off points in this HF classification. Currently, no

human studies link HFbEF/HFmrEF with sphingolipids and will not be discussed further

in this review.

Advances in medicine over the past decade have improved the quality of life and

outcomes for patients with HFrEF. These include pharmacotherapies such as Aldosterone/

Mineralocorticoid Receptor Antagonists (ARA/MRA, e.g., spironolactone), Angiotensin

Receptor-Neprilysin Inhibitor (ARNI, e.g., Sacubitril-valsartan), ventricular assist devices

(VAD), cardiac resynchronization therapy (CRT), and implantable cardioverter-

defibrillator (ICDs) (4, 7–10). However, HFpEF has now become the most prevalent form

of HF, and clinical trials of HFpEF pharmacotherapies, such as Sodium-GLucose

co-Transporter 2 (SGLT2) inhibitors (e.g., empagliflozin), ARNI, and ARA/MRA, and

novel device therapies like InterAtrial Shunt Devices (IASD), have demonstrated only

modest reductions in the risk of hospitalization (4, 9, 11–16). This is likely due to the

highly heterogenous nature of the HFpEF population with respect to pathogenesis,
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pathophysiology, and non-cardiac comorbidities. Despite these

advancements, the median 5-year mortality rates upon clinical

diagnosis of HFrEF and HFpEF are 75.3% and 75.7%,

respectively (17).

Sphingolipids are a class of lipids, conserved across all eukaryotic

organisms, characterized by an amino alcohol headgroup and fatty

acid carbon chain. Though sphingolipids serve essential structural

roles in membranes, many sphingolipid metabolites are considered

bioactive lipids and play a central roles in inflammation,

autophagy, apoptosis, immune cell trafficking, cell survival,

metabolism, mitochondrial function, and many other critical cell

processes (18, 19). Disrupted sphingolipid metabolism has been

implicated in HF pathophysiology, and thus, enzymes involved in

sphingolipid metabolism (or the protein signaling effectors) have

become potential therapeutic targets. Consequently, over the past

15 years, there has been a surge of interest in the study of

sphingolipid metabolism in HF (19). Sphingolipids are synthesized

de novo in the endoplasmic reticulum via condensation of an

amino acid, typically serine, and a fatty acid, catalyzed by serine

palmitoyltransferase (SPT) (20). This pathway is depicted in

Figure 1. This reaction produces a sphingoid base, the molecular

scaffold on which all sphingolipids are constructed. SPT exists as a

heterooligomeric enzyme consisting of a dimer of tetramers, with

SPTLC1 being essential, and SPTLC2 or 3 required for catalytic

activity. Two small subunits, SPTssa and SPTssb, differentially

regulate Acyl-CoA chain length utilization by SPT1 and 2/3 (21).

A fourth subunit, ORMDL, acts as three isoforms (ORMDLs 1–3)

to sense membrane sphingolipids to attenuate sphingolipid

synthesis in the presence of high membrane ceramide (Cer) (22).

Differences between these three isoforms, ORMDL 1, 2, and 3, are

very poorly understood at present. Nonetheless, the composition

of the SPT complex determines Acyl-CoA selectivity and thus

determines the catalytic product. For example, when the subunits

SPTLC1/SPTLC2/SPTssa are present in SPT, then palmitoyl-CoA

is condensed with an amino acid to synthesize all downstream
FIGURE 1

Overview of sphingolipid metabolism. SPT, serine palmitoyltransferase; KDSR,
GCase, glucocerebrosidase; GluCerS; glucosylceramide synthase; LacCerS, la
sphingomyelinase; SMS, sphingomyelin synthase; CerS, ceramide synthase;
phosphate phosphatase; SphK, sphingosine kinase; S1PL, sphingosine-1-phos
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sphingolipid species with an 18-carbon sphingoid backbone, i.e.,

d18 (23). This generates the canonical sphingoid bases that have

been studied for over 150 years. Alternatively, SPTLC3 can

substitute for SPTLC2, and SPTssb can substitute for SPTssa,

leading to production of sphingolipid species with alternative

carbon sphingoid backbones (e.g., d16, and d20) (24–26). The

complexity of SPT and the variety of sphingoid bases has only

recently become appreciated (largely driven by the discovery of

SPTLC3 and the small subunits). Recent research has shown that

the SPT enzyme and the sphingoid bases it produces are crucial

components of cardiovascular health, with several studies

supporting their relevance (27–30). For example, we previously

demonstrated in mice hearts where SPTLC3 is expressed, the SPT

complex can generate a d16-derived sphingolipid from myristoyl-

CoA, which was shown to stimulate cardiomyocyte apoptosis (25).

The first detectable sphingolipid to be synthesized is the

sphingoid base, dihydrosphingosine (DHS), which is then

N-acetylated by one of 6 isoforms of (dihydro) ceramide

synthase (CerS), with different chain length fatty acids to

synthesize dihydroceramides (DHC) (31). CerS1 typically adds

18-carbon acyl chain length (C18:0, and C18:1); CerS2 adds

C22:0, C24:0, C24:1, C26:0 and C26:1; CerS3 adds C22:0 to

C36:0; CerS4 adds C18:0 to C22:0; CerS5 adds C14:0 to C18:0;

and CerS6 adds C14:0 to C18:0 (Figure 2). The acyl chain length

ranges from medium MCFA (C12–14), long LCFA (C16–20),

very long VLCFA (C22–26), and ultra-long chain fatty acids

ULCFA (>C26) (32–38). DHC desaturase then converts DHC to

Cer, the backbone of all complex sphingolipids (39). Acid or

alkaline ceramidase enzymes (AC or ACER 1–3) can then

hydrolyze Cer to yield sphingosine (Sph), which can be

phosphorylated by Sph kinase (SphK) 1 or 2 to generate

sphingosine-1-phosphate (S1P) or dihydrosphingosine-1-

phosphate (DHS1P) (Figure 1). S1P is a potent signaling

molecule that can bind to one of its five G protein-coupled

receptors (S1PR 1–5) to elicit downstream effector cell activity or
3-keto-dihydrosphingosine reductase; DES, dihydroceramide desaturase;
ctosylceramide synthase; GalCerS, galactosylceramide synthase; SMase,
C1PP, ceramide-1-phosphate phosphatase; CERK,; S1PP, sphingosine-1-
phate lyase.
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FIGURE 2

Ceramide synthase (CerS) substrate selectivity.
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be exported extracellularly by Spinster 2 (Spns2). Sph can also be

“salvaged” and re-incorporated into Cer through the action of

CerS enzymes. This mechanism allows cells to “remodel” Cer

pools. If Cer is not hydrolyzed, it can be further metabolized into

sphingomyelin (SM) or glycosphingolipids (GSL) through the

addition of various headgroups. SM can then be hydrolyzed by

acid or neutral sphingomyelinase (aSMase, nSMase) to yield Cer.

GSLs containing Cer and glucose are the predominant precursors

of globosides and gangliosides, while those with Cer and

galactose synthesize downstream sulfatides. To exit the

sphingolipid de novo pathway, S1P lyase (S1PL) catabolizes S1P

or DHS1P in lysosomes and plasma membranes to yield a fatty

aldehyde and phosphoethanolamine (40). The heart requires a

constant supply of energy to maintain its contractile function,

which is primarily provided through fatty acid oxidation (41).

Studies have shown that disruptions in sphingolipid metabolism

contribute to impaired fatty acid oxidation, with the Cer-S1P

rheostat playing a particularly important role (42). The dogma

being Cer accumulation is harmful, while S1P accumulation is
Frontiers in Cardiovascular Medicine 03
beneficial (42–45). Therefore, interconversion between these

sphingolipid species is a highly regulated process, and any small

deviation in anabolism, catabolism or substrate availability can

lead to abnormal accumulation of one or more sphingolipid

species, resulting in dysregulated fatty acid supply in the heart

(46). As such, alterations in sphingolipid content and profiles

have become a key area of investigation in HF research.

In this review, we examine the relationship between

sphingolipids and HF in both human study cohorts and animal

models. We analyze the current literature to identify potential

biomarkers and druggable targets for the detection and treatment

of HF.
Sphingolipids in heart failure

Many studies, such as the Framingham Heart Study (FHS),

have been ongoing for decades and have analyzed traditional risk

factors like obesity, smoking status, and LDL-cholesterol from
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these patient cohorts. However, only in recent years have

investigators started to address circulating sphingolipids in

subjects from these studies through post hoc analyses. This

involves mass spectrometry to identify and quantify sphingolipids

in blood serum, blood plasma, or myocardial tissue. This method

yields measurements for numerous sphingolipids, which can then

be correlated to disease and other clinical parameters to gain a

better understanding of their relationship. Current literature on

sphingolipid associations with HF can broadly be divided into

two types: sphingolipid associations in patients with incident HF

(summarized in Table 1), and secondary endpoints in patients

with prevalent HF (summarized in Table 2).

Sphingolipids associated with incident heart failure are

discussed in this section. Meta-analysis of PREDIMED and

EPIC-Potsdam cohorts showed that Cer C16:0 was significantly

increased but also ranked as one of the topmost lipid cluster

networks associated with HF (50). A 2012 study by Knapp et al.,

found no significant association of plasma S1P, DHS1P or total

Cer in HFrEF and HFpEF patients (51). However, the plasma of

both HFpEF and HFrEF patients was characterized by

significantly lower levels of free Sph and DHS, but stable S1P

levels. This observation suggests that diminished action of S1P

does not contribute to cardiac dysfunction in patients with

chronic HF (51). A small yet more recent study by Pérez-Carrillo

et al., showed that myocardial tissue from HFrEF and HFpEF

patients had double S1P and triple total Cer levels compared to

controls (52). After mRNA-sequencing, 12 sphingolipid-specific

genes were differentially expressed. SPTssa, SPTssb, SPTLC1, and

SPTLC3 genes were downregulated suggesting de novo

sphingolipid synthesis is reduced. However, CerS1, which can act

both de novo and in the salvage pathway, was upregulated,

potentially explaining the increased Cer. Additionally, S1P

phosphatase (S1PP), the enzyme converting S1P to Sph, and

S1PR3 were downregulated in HF patients. Though this should

result in decreased S1P in myocardial tissue and not the

observed increase in levels (52). While this data is interesting and

suggests S1P levels are not indicative of HF status, they do not

provide the full picture of sphingolipid de novo synthesis

dynamics and leave us with more questions instead of answers.

A 2019 study, using the Cardiovascular Health Study (CHS)

cohort, identified higher levels of SM C16:0, and Cer C16:0

associated with higher risk and SM C20:0, C22:0, C24:0, and Cer

C22:0 with lower risk of developing HF, independently.

Interestingly, these species had similar associations regardless of

whether the patient had HFpEF or HFrEF (48).

In contrast to studies that assessed the correlation of individual

sphingolipid species level with HF, some more recent studies have

analyzed ratios between specific sphingolipids. Analysis of

sphingolipid ratios may not only be more effective in predicting

incident HF, but also adverse cardiac events. This sphingolipid

ratio score is more reliable as it removes complications that arise

from altered sphingolipid concentrations postprandially and/or

with hyperlipidemia. Newly developed high throughput assays to

quantify ratios of VLCFA/LCFA Cer or vice versa in the plasma

were applied to the FHS and SHIP (Study of Health in

Pomerania) studies. These assays were able to show a higher
Frontiers in Cardiovascular Medicine 04
ratio in plasma Cer(C24:0/C16:0) was inversely associated with

incident HF (47). Outcomes from these studies paved the way

for the launch of the MI-Heart Ceramide Risk Score (CERAM)

blood test used by Mayo Clinic to predict unfavorable

cardiovascular events in patients (57). The test measures

concentrations of plasma Cer C16:0, C18:0, C24:1 and the

plasma ratios Cer(C16:0/24:0), Cer(18:0/24:0), and Cer(24:1/24:0).

The risks conferred by Cer ratios are independent of sex, age,

gender, LDL and other traditional factors, and continually

outperform cholesterol testing.

Sphingolipids associated with secondary endpoints in patients

with prevalent HF such as major adverse cardiac event(s),

Ventricle Assist Device (VAD) placement or replacement, death,

or heart failure admission (DHFA), and HF-related mortality are

described in this section. A 2015 study by Yu et al., concluded

that plasma from patients with HF who died had total Cer

>6.05 ng/ml, and HF patients that survived (at least up to the 4

years during the study) had circulating total Cer <6.05 ng/ml

(56). There has been no follow-up study to verify whether this or

another total Cer threshold can predict survival in HF patients.

A 2017 study from Christian Schulze’s lab revealed that hearts

from advanced HF patients showed significantly increased total

Cer driven by increased Cer C16:0, C16:1 and C24:1 and

increased SPTLC2 protein expression (irreconcilably no change

in CerS1, CerS2 or CerS5 expression was noted) undergoing

placement of VAD (53). Interestingly, there was no significant

change in circulating total Cer, but significant increases in

circulating Cer C16:0, C18:0, C20:1, C20:0, C22:1, C24:1, and

C24:0. Though, after VAD implantation, these changes showed

partial reversibility in myocardial tissue but not circulating Cer

(53). A study by Javaheri et al., linked increased serum

sphingolipids Cer C16:0 and C18:0 with death or HF admission

(DHFA) in a TOPCAT study of 433 HFpEF patients (54). In a

study with Italian HF patients, associated increased plasma ratios

of Cer(C16:0/C24:0), Cer(C18:0/C24:0), Cer(C18:0/C24:0), Cer

(C22:0/C24:0), and Cer(C24:1/C24:0), along with higher Cer

C16:0, C18:0, C20:0, C22:0, and Cer C24:1 individually with

increased cardiovascular mortality in ambulatory patients with

chronic HF. However, these Cer to HF associations became non-

significant after adjustment for established cardiovascular risk

factors, medication use, and plasma N-terminal pro b-type

natriuretic peptide (NT-proBNP) concentrations (55). Though

not a study of secondary outcomes in patients with prevalent HF,

A subset of the major findings in the 2018 study using the

community-based cohorts, FHS and SHIP, also showed that Cer

C16:0 is inversely correlated while Cer C24:0, Cer(C22:0/C16:0),

and Cer(C24:0/C16:0) were positively correlated with predictive

information about CVD and all-cause mortality in the general

population 6 years before the actual onset of disease (47).

Similar approaches have been used not in incident HF

populations but in populations presenting with pre-HF etiologies

such as type two diabetes (T2D), obesity or incident coronary

heart disease (CHD), including but not limited to myocardial

infarction (MI), atrial fibrillation, coronary insufficiency, adverse

cardiac remodeling, and angina pectoris. The SHS (Strong Heart

Study) and SHFS (Strong Heart Family Study) fare population-
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based longitudinal studies addressed cardiovascular disease (CVD)

in several American Indian communities in Arizona, North and

South Dakota, and Oklahoma. It is interesting to note that

increased Cer C16:0, though not significant, correlated with

increased CVD risk after diabetes onset, while the inverse was

true of increased SM C22:0, C24:1, C24:0, C26:1, and SM C26:0

(49). A study by Fretts et al., using the SHS and SHFS plasma

samples, showed that higher Cer C18:0, C20:0, and Cer C22:0

were associated with higher risk of diabetes (58). Mikhalkova

et al., sought to determine whether there were changes in

circulating Cer and circulating SM species in women with obesity

and HFpEF before and after bariatric surgery. After the surgery-

induced weight loss the patients showed improved symptoms,

reverse cardiac and remodeling and improved relaxation. Though

the weight loss was associated with reduced plasma SM C23:1,

cardiac function improvement was not associated with

sphingolipidomic changes, which may have been due to the

relatively small sample size (N = 12) (59). Another study,

determined that Cer C18:0, but not Cer C16:0, C24:0, or C24:1

were associated with incident of major adverse cardiovascular

events (MACE), and showed stronger correlation for recurrent

and fatal events than for first events (60). In contrast to the

MACE study, plasma concentrations of 74 ischemic heart disease

patients showed no association of Cer C16:0 Cer with LVEF.

However, total SM and S1P were significantly lower in patients

with HFrEF compared to patients with HFpEF (61). The

LUdwigshafen RIsk and Cardiovascular Health (LURIC) study

established well defined phenotypes for CVD, metabolic

disorders, and their progression to cardiovascular complications

including HF (62). Independent of traditional risk factors, SM

C23:0, and SM C24:0 were the most protective sphingolipid

species, intermediate protection conferred by Cer C23:0, Cer

C24:0, SM C16:0, and SM C24:1, while Cer C16:0, and Cer

C24:1 had the strongest positive association with CVD and

mortality (63). Another study put diabetic patients on diets rich

with either LCFA or MCFA. Patients on the MCFA diet showed

improved systolic function with concomitant decrease of

circulating sphingolipids, while subjects on the LCFA diet

showed reduced stroke volume, cardiac output, and no change in

systolic function which was associated with increased SM C15:0,

and SM C22:1 (64). Newly developed high throughput assays to

quantify ratios of VLCFA/LCFA Cer in the plasma were applied

to the Framingham Heart Study and the SHIP (Study of Health

in Pomerania). These assays were able to show a higher ratio in

plasma Cer(C24:0/C16:0) was inversely associated with incident

HF (47). A more recent study of the FHS cohort associated

higher plasma Cer(C16:0/C24:0) with detrimental cardiac

structural and functional changes that can lead to HF (65). A

2020 study analyzing the CHS cohort, determined that Cer

C20:0, Cer C22:0, and Cer C24:0 were associated with reduced

atrial fibrillation risk (66).

Taken together, these studies suggest the dogma implicating

total Cer accumulation in HF and HF-related outcomes, holds

true. Though these results are from vastly different studies, they

consistently show inverse association of the LCFA Cer C16:0,

synthesized by CerS5 or CerS6, and the unsaturated VLCFA Cer
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C24:1, synthesized by CerS2, to HF, regardless of HF classification

and population ethnicity. While the saturated VLCFA Cer C24:0

and in some studies the SM C24:0 is positively correlated with

HF. Though, ratios of sphingolipid LCFA/VLCFA seem to be

better prognostic markers of adverse cardiac events, HF and

prediction of HF-mortality up to 5 years.
Insights from Mendelian
randomization analysis studies

Developing new pharmacotherapies is a costly and time-

consuming process, and drug companies are incentivized to

speed up the path to market approval due to the time-limits on

drug patents. However, testing agents that may augment a

specific disease biomarker without fully understanding their

potential mechanistic roles has led to failed clinical trials. To

increase the likelihood of identifying causal biomarker-disease

associations, researchers have started to employ Mendelian

randomization (MR). This approach involves a genome-wide

association study (GWAS) analysis to identify candidate

genetic variants associated with variations in the biomarker,

which are then compared to those associated with differences in

the population. When a biomarker is identified and a causal

effect is confirmed by MR, the probability of clinical trial

success for interventions targeting that biomarker increases

significantly (67).

Although MR analyses have not been reported in the literature

for the association between circulating sphingolipids and HF, a

GWAS analysis has been conducted for circulating sphingolipids

associated with a reduction in HF events. MR analyses for

sphingolipids linked to incident coronary heart disease (CHD)

have also been reported, which is relevant since CHD and HF

can coexist in the same patient, and patients with CHD are at

increased risk for development of HF (4, 68, 69). Inclusion of

these investigations in this focused review is justified given the

robustness of the MR methodology, the lack of direct evidence

reported in the literature for HF and sphingolipids tested with

the MR methodology and the proximity of CHD to HF across

the landscape of cardiovascular disease.

VLCFA Cer measured in the plasma, has been shown to be

prognostic for incident HF events (relative risk of 0.75 for every

3 unit increase in plasma Cer C24:0 for HF) despite traditionally

being implicated in the etiology of T2DM (30). Analyses of

patient samples obtained from the FHS identified 19 genetic

variants associated with lower levels of Cer C22:0 and 9 variants

associated with lower levels of Cer C24:0. These 28 variants were

located on chromosome 20, near the SPTLC3 encoding gene.

The identified lead variant (rs4814175) was associated with 3%

lower Cer C22:0 and 10% lower Cer C24:0 concentrations,

though, MR analysis for this variant was not conducted (30).

The findings from another GWAS utilizing data from two

different large epidemiologic datasets (N = 1,094 and N = 4,034),

were congruent with the FHS findings. Variants near SPTLC3

were confirmed to be contributing factors in the variations of

circulating Cer linked to CVD and T2DM (70). However, after
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MR analysis was performed, the lead SNP (rs680379) tested was

different than what was previously identified. The new variant

was used to assess the risk for incident T2DM and the resulting

change in risk for incident CVD for individuals that carried the

SNP. The investigators also linked circulating Cer C16:0 and

DHC C22:2 with an increased risk of incident CVD in these

separate patient populations. However, subsequent GWAS and

MR analysis for the assessment of the association with CVD or

HF events was not completed for these Cer. Reported in 2014,

investigators from Sweden pooled samples and clinical data from

three longitudinal registry trials (N = 3,668). SM C28:1, one of

the biomarkers identified, showed an inverse relationship with

incidence of CHD, but was not found to have a causal

relationship by MR analysis (68).

However, definitive evidence for a causal role of circulating

sphingolipids in HF, when assessed by MR analysis, remains

elusive in the published literature. Possibly due to the

contribution of the gut microbiome to circulating lipids and

metabolites (71). Therefore, to identify causal factors by MR

analysis, deeper genotyping that includes additional procedures

for characterizing the microbiome may be required.
Sphingolipids in animal models of
heart failure

Animal models play a crucial role in studying HF and

developing novel treatment strategies. Small animal models

generally utilize pharmacological, surgical, and genetic

modifications either alone or in combination while large animal

models rely on surgical or pharmacological methods (Figure 3)

(72, 73). A comprehensive list of animal models of HF with the

respective sphingolipid alterations in blood serum, blood plasma,

and/or myocardial tissue can be found in Table 3.
Heart failure with preserved ejection
fraction

HFpEF is a complex condition that only a few animal models

have been able to replicate successfully. Animal models of

HFpEF are typically pressure overload models as 55%–86% of

patients with HFpEF have hypertension. The Dahl salt-sensitive

(Dahl/SS) rat is the most popular HFpEF model and is

characterized by hypersensitivity to sodium intake. Other popular

models include animals with transverse aortic constriction

(TAC), and gene knockout (KO), or overexpression (OE) that

develop left ventricular hypertrophy (LVH).

A 2019 study observed an increase of the following

sphingolipids prior to HF in Dahl/SS rats—1.27× N-palmitoyl-

Sph C16:0, 1.67× glycosyl-N-stearoyl-Sph C18:0, 1.34× DHS,

1.72× N-palmitoyl-DHS C16:0, 1.24× palmitoyl SM C16:0, 1.28×

stearoyl SM C18:0, 1.21× SM (d18:1/C17:0, d17:1/C18:0, d19:1/

C16:0), 1.44× SM (d18:1/C18:1, d18:2/C18:0), and 1.32× Sph

(96). Another study analyzed the myocardial sphingolipids at

multiple timepoints in post-TAC mice compared to sham mice
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FIGURE 3

Sphingolipids in animal models of heart failure.
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(74). Erythro-sphingosylphosphorylcholine was 1.04 at 1 day, 0.68

at 1 week and 0.69 at 8 weeks post-TAC. Sph and stearoyl SM levels

decreased by half 8 weeks post-TAC. While DHS sharply increased

at 1 day, then stayed relatively the same up to 8 weeks post-TAC

(74). Another study determined that mice with HF could not

adapt to excessive fatty acid supply vs. mice with LVH, both

cohorts having angiotensin II (ANG II) OE (93). The hearts

from HF mice on high fat diet (HFD), accumulated 50% more

total Cer, aggravating contractile dysfunction, whereas the LVH

mice on HFD showed a similar phenotype as the WT and no

accumulation of total Cer, suggesting that impaired fatty acid
Frontiers in Cardiovascular Medicine 10
oxidation in this model is associated with Cer lipotoxicity (93).

CPT1b controls uptake of LCFAs in mitochondrial β-oxidation.

Hearts from heterozygous CPT1b knockout (CPT1b+/−) mice

subjected to TAC-induced pressure overload, showed

substantially elevated total Cer levels driven by the Cer C16:0,

C18:0, and C24:0 species, while sham WT and CPT1b+/− mice

showed no differences with respect to Cer content (83). While

we cannot conclude that pressure overload is the sole driver of

Cer accumulation, we can assume accumulated Cer in this model

further aggravates the pressure overload induced hypertrophy

caused by CPT1b deficiency.
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TABLE 3 Sphingolipids associated with animal models of heart failure.

Type Animal Model Sphingolipid Level(s)

Ischemia LAD Ligation with or without genetic
modification

Mouse
• ↑Myocardial tissue total stearoyl-SM two weeks post-LAD compared to sham (74)
• ↑Serum total Cer, C16:0, C18:0, C24:1, C24:0, and Cer C26:1 two weeks post-LAD; ↑Tissue total Cer,
C14:0, C18:0, C20:0, C20:1, and Cer C22:1 two weeks post-LAD compared to sham (53)

• =Serum total Cer 10 weeks post-LAD; ↑Myocardial tissue total Cer, C16:0, C24:1, and Cer C24:0 10
weeks post-LAD; ↓Myocardial tissue total Cer, C18:1, C18:0, C22:1, C22:0, and Cer C24:0 in
cardiomyocyte-specific SPTLC2 KO mice 10 weeks post-LAD compared to sham and WT TAC (53)

• ↑Myocardial tissue SM(OH)C14:1, SM C16:0, SM C16:1, SM C24:0, SM C24:1, and SM C26:0 in 12/
15-LOX KO mice one-day post-LAD; ↓SM(OH) C24:1, SM C20:2, SM C26:0 in 12/15-LOX KO mice
8 weeks post-LAD compared to sham (75)

• ↑S1P, =Sph, =DHS, =DHS1P in plasma and cardiac tissue; ↑Cer C16:0, C22:0, C24:0, and Cer C24:1,
↑C1P C18:0, C18:1, and C1P C22:0 from plasma in chronic serelaxin-treated mice 28 days post-LAD
mice compared to vehicle (76)

Rat
• ↑Myocardial tissue Cer C16:0 post-LAD (77, 78)
• =Myocardial mitochondria total Cer and total SM 4 weeks post-LAD (79)
• ↑Myocardial mitochondria total Cer, =total SM in obese rats on HFD 4 weeks post-LAD (79)
• ↑Myocardial tissue Cer d18:1/C24:0, SM d18:1/C16:0, SM d18:1/C24:1, SM d18:1/C24:2, SM d18:2/
C16:0 one hour, one day and 10 days post-LAD compared to respective shams (80)

Microembolization/Renal wrapping Dog
• ↑Myocardial tissue total Sph in the posterior wall of 8 h post-surgery compared to sham (81)

Pressure Overload Aortic banding (AB) Rabbit
• ↓Myocardial tissue total Sph in AB neonatal rabbits treated with the ceramidase inhibitor N-oleoyl
ethanolamine compared to AB untreated rabbits (82)

Transverse aortic constriction (TAC) with or
without genetic modification

Mouse
• =Tissue total erythro-sphingosylphosphorylcholine, Sph, Stearoyl SM, and total DHS 1 day post-TAC
compared to sham (74)

• ↓Myocardial tissue total erythro-sphingosylphosphorylcholine, Sph, Stearoyl SM, and total DHS 1 week
and 8 weeks post-TAC compared to respective sham (74)

• ↑Myocardial tissue total Cer, C16:0, C18:0, and Cer C24:0; =Cer C20:0, and Cer C22:0 in CPT1b KO
heterozygous mice 2 weeks after TAC, =total Cer and acyl chain Cers in WT TAC mice compared to
sham 2 weeks post-TAC (83)

• ↓Myocardial tissue total SM in TAC mice on HFD diet compared to TAC mice on CD 8 weeks post-
TAC (84)

• ↑Myocardial tissue Asah1, Galc, and SGPP1 genes; ↓myocardial tissue UGCG, SMS1, Acer2 genes in
cardiomyocyte-specific Pparα KO mice 2 weeks post-TAC compared to sham (85)

• ↑S1P in coronary vascular perfusate from heart tissue in the Nogo-A/B KO mice 3 days post-TAC
compared to sham (86)

• ↑Myocardial tissue total Cer, C16:0, C24:1, and Cer C24:0; =Cer C18:1, C18:0, C20:0, and Cer C22:0
14 weeks post-TAC compared to sham (87)

• ↑Tissue Cer C20:0, C22:0, C24:1, and Cer C24:0; =Cer C16:0, C18:1, and Cer C18:0 in ACSL1 OE
mice 14 weeks post-TAC compared to sham (87)

• ↑Tissue Cer C20:0, and Cer C22:0 Cer; ↓Cer C16:0; =Cer C18:1, C18:0, C24:1 and Cer C24:0 in
cardiomyocyte-specific ACSL1 OE mice 14 weeks post-TAC compared to TAC (87)

• ↓Myocardial tissue Cer C20:0, and Cer C22:0; =Cer C16:0, C18:1, C18:0, C24:1, and Cer C24:0 in
cardiomyocyte-specific ACSL1 OE mice 14 weeks post-TAC compared to sham ACSL1 OE mice (88).

Rat
• ↓Myocardial tissue total Sph in mice on hypaconitine and glycyrrhetinic acid 5 weeks post-TAC acid
compared to mice on CD 5 weeks post-TAC (89)

Aortic constriction (AC) with or without HFD Rabbit
• ↓Myocardial tissue total Cer, C18:0, C20:0, C22:0, C24:0, and Cer C24:1; =Cer C16:0 21 days post AC
compared to sham (90)

• ↓Myocardial tissue total Cer, C18:0, C20:0, C22:0, C24:0, and Cer C24:1; =Cer C16:0 in rabbits given
losartan 21 days post AC compared to sham (90)

Rat
• =Myocardial tissue Cer C16:0, C18:0, C20:0, and Cer C24:0 after 9 weeks of AC compared to control;
↓total Cer when compared to rats treated with DOX on HFD for 2 weeks (91)

Cytotoxic Doxorubicin Rat
• ↑Myocardial tissue Cer C16:0 and C18:0 in rats treated with DOX on HFD for 2 weeks compared to
control on western diet (91)

Atrial Fibrillation
(AF)

Mouse
• ↑Atrial tissue Cer C16:0 and GM3 C16:0 in 4 month aged mice with HF + AF (92)

Hypertension Angiotensin II stimulation Mouse
• =Myocardial tissue total Cer levels in WT and non-HF cardiomyocyte-specific ANGII OE hearts and
not modified by the 8 weeks of HFD; Similarly, =myocardial tissue total Cer in ANGII OE mice on
CD; However, ↑myocardial tissue total Cer in ANGII OE mice with HF on HFD for 8 weeks
compared with all other control groups (93)

• ↑Myocardial tissue Cer d18:1/C20:0, d16:1/C23:0, d18:1/C19:0, d18:1/C22:0, d18:2/C18:1, and Cer
d18:2/C20:1 in response to ANG II in both WT and cardiomyocyte specific DGAT1 OE mice. Basally,
=Cer d18:1/C20:0, d16:1/C23:0, d18:1/C19:0, d18:1/C22:0, d18:2/C18:1, and Cer d18:2/C20:1 between
the two mouse lines (92, 94)

(continued)
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TABLE 3 Continued

Type Animal Model Sphingolipid Level(s)

Dahl/SS Mouse
• =Myocardial tissue total Cer levels in WT and non-failing cardiomyocyte-specific ANGII OE mice
hearts and not modified by 8 weeks on HFD; Similarly, =myocardial tissue total Cer in ANGII OE
mice with HF on CD; However, ↑myocardial tissue total Cer in ANGII OE mice with HF on HFD for
8 weeks compared with all other control groups (93)

Rat
• =Myocardial tissue Cer C16:0 with rats on HFD and salt compared to rats on CD with salt (95)

Spontaneously hypertensive Rat (SHR) Rat
• ↑Myocardial tissue Sph d18:1/C16:0, Sph d18:1/C18:0, Sph d18:0/C16:0, SM d18:1/C16:0, SM d18:1/
C18:0, SM d18:1/C17:0, SM d17:1/C18:0, SM d19:1/C16:0, SM d18:1/C18:1, SM d18:2/C18:0, and
DHS in SHR compared to control (96)

• ↑Myocardial tissue Cer C16:0 in SHR at 12 weeks on HFD and high salt diet compared to rats at 12
weeks on low fat and salt, low fat and high salt, and in rats on low fat and high salt diets. Furthermore,
↑Myocardial tissue Cer C16:0 was observed in rats treated with the CPT1 inhibitor oxfenicine 12
weeks on low fat and high salt, and on HFD and salt diets (97)

T1D Akita Mouse
• ↑Myocardial tissue total Cer in non-obese 3-month-old Akita mice compared to WT; ↓total Cer to
WT levels when Akita mice were given insulin (98)

• ↑Myocardial tissue total Cer in both WT and ATGL KO heterozygous 13- to 15-week-old mice after
the induction of diabetes via high-dose 165 mg/kg STZ injections; Basally, total Cer was =in both sets
of pre-diabetic mice (99)

• ↓Myocardial tissue total Cer in cardiomyocyte-specific ATGL OE mice with and without high-dose
165 mg/kg STZ compared to control mice (99)

T2D Db/db Mouse
• ↑Myocardial tissue total Cer at 12 weeks compared to WT; but ↓Myocardial total Cer at 15 weeks
compared to WT (100)

HFD Mouse
• ↑Myocardial tissue Cer d18:1/C14:0 in mice at 8 and 16-weeks on MFBD with cardiac hypertrophy
compared to mice on lard-fat based diet and CD (101)

• ↑Myocardial tissue d18 total Cer, d18:1/C18:0, d18:1/C18:1, d18:1/C22:0, and Cer d18:1/C24:0;
↑Myocardial tissue d16 total Cer, d16:1/C18:0, d16:1/C20:0, d16:1/C22:0, and Cer d16:1/C24:0 at 18
weeks on MFBD compared to mice on CD. ↓Cer species as above in mice on MFBD treated with
myriocin compared to mice on MFBD alone (102)

• =Myocardial tissue total Cer in mice on HFD and CD at 3 and 10 weeks (103)
Rat
• ↑Myocardial tissue Cer d18:1/C16:0 8 weeks on saturated HFD compared to rats 8 weeks on
unsaturated HFD (104)

Genetic
Modification

Genetic Modification Mouse
• ↑serum SM d18:1/C23:0, Cer d18:1/C22:0, Cer d18:1/C24:1, and Cer d18:1/C22:1 in 1 year aged
GENA348 mice compared to WT (105)

Overexpression Mouse
• ↑Myocardial tissue total Cer in mice with cardiomyocyte-specific OE of LPLGPI compared to WT
(106)

• ↓Myocardial tissue total Cer in cardiomyocyte-specific OE of DGAT1 in mice after 2 weeks of
intensive exercise compared to sedentary transgenic mice. ↓Myocardial tissue total Cer in mice with
cardiomyocyte-specific OE of ACSL1 and DGAT1 compared to ACSL1 OE mice (107)

• ↑Myocardial tissue total Cer in 4 months aged cardiomyocyte-specific PPARγ OE mice compared to
WT (108)

• ↓Myocardial tissue total Cer, Cer C14:0, C16:0, C18:0, C18:1, C20:1, C24:0, and Cer C26:1 in mice
with cardiomyocyte-specific OE of DGAT1 and PPARγ compared to mice only with cardiomyocyte-
specific OE of PPARγ; =WT (109)

• ↑Myocardial tissue total Cer in 18 day-old mice with cardiomyocyte specific OE of ACSL1 compared
to control mice (110)

Ablation/Knockdown Mouse
• ↑Myocardial tissue total Cer, C16:0, C18:0, C20:0, C20:1, C22:1, and Cer C24:1 with cardiomyocyte-
specific DGAT1 KO compared to WT. DGAT1 dKO in heart and intestines showed ↓total Cer, C16:0,
C18:0, C24:0, and Cer C24:1 compared to WT (111)

• =Myocardial tissue total Cer in mice with whole body heterozygous Sptlc1 KO and with LpLGPI

transgenic mice compared to WT (106)
• ↓Myocardial tissue total Cer, C18:0, C20:0, C24:0, and Cer C24:1, DHC, DHS, and Sph, but =S1P, SM
C14:0, and Cer C16:0 in cardiomyocyte-specific Sptlc2 KO mice compared to WT (112)

• ↑Myocardial tissue total Cer in heterozygous LCAD KO mice with 1 day fasting compared to 1 day
fasted WT (113)

LAD, left anterior descending (of the coronary artery); Cer, Ceramide; Sph, Sphingosine; SM, Sphingomyelin; S1P, Sphingosine-1-phosphate; DHC, Dihydroceramide; DHS,

Dihydrosphingosine; KO, knockout; OE, overexpression; CD, control diet; HFD, high fat diet; MFBD, milk-fat based diet; STZ, streptozotocin; ACSL1, acyl-CoA synthetase

long chain family member 1; SPTLC2, serine palmitoyltransferase long chain base subunit 2; 12/15-LOX, arachidonate 15-lipoxygenase; Cpt1b, carnitine

palmitoyltransferase 1B; Asah1, N-acylsphingosine amidohydrolase (acid ceramidase) 1; Galc, galactosylceramidase; and SGPP1, sphingosine-1-phosphate phosphatase

1; UGCG, UDP-glucose ceramide glucosyltransferase; SMS1, sphingomyelin Synthase 1; Acer2, alkaline ceramidase 2; PPAR, peroxisome proliferator activated receptor;

ACSL1, long-chain acyl-CoA synthetase 1; DGAT1, diacylglycerol acyltransferase 1; LpLGPI, GPI-anchored lipoprotein lipase; d refers to 1,3 dihydroxy and is followed by

C the number of carbons in each of the acyl side chains, The number of double bonds present is noted after the colon.
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Obesity and diabetes markedly increase the risk of HF, and

alteration of sphingolipid metabolism contributes either directly or

indirectly to metabolic stress in diabetes leading to diabetic

cardiomyopathy and eventually HF (114–116). Diacylglycerol

acyltransferase 1 (DGAT1) converts diacylglycerol (DAG) to

triglyceride. Failing human hearts have severely reduced DGAT1

levels with concomitant accumulation of Cer and DAGs (117).

Ablation of Dgat in mice led to no known cardiac dysfunction,

and these mice express normal levels of circulating Cer. However,

half of the cardiomyocyte-specific DGAT1 KO mice died within 9

months and their hearts showed an 85% and 95% increase in total

Cer and DAGs, respectively, compared to littermate controls (111).

Further studies are needed to delineate the role accumulated Cer,

and accumulated DAGs play in causing HF followed by mortality

in the cardiomyocyte-specific deletion of DGAT1. Another study

found that decreased Cer d18:1/C20:0, increased Cer d16:1/C23:0,

d18:1/C19:0, d18:1/C22:0, and d18:2/C20:1, were observed between

control and DGAT1 OE animals, whereas 3% were responsive to

ANG II administration. ANG II treatment in the OE mice

resulted in a marked increase in heart size, systolic dysfunction,

and cardiac fibrosis, with major reduction of the above-mentioned

Cer, compared with control littermates (94). This could suggest

Cer reduction renders cardiomyocytes more vulnerable to other

pathological stresses.

HFD are the most popular metabolic-disease induced-HF model,

generally considered beneficial in the setting of non-ischemic HF (97).

Different types of HFD can be generated for rodents that mimic

human diets with respect to the content of carbohydrate, protein,

and saturated and unsaturated fatty acids, with relative ease and

economical cost. Most HF patients in the human trials discussed

above present with a form of diabetes and or obesity, making this

model even more illuminating. A few studies from our lab showed

that mice fed on a 60% milk-fat based diet (MFBD) as opposed to

a 60% lard (oleate)-fat based diet and control diet (CD), had much

higher levels of CerS2 derived Cer C:20 to C:26 in earlier stages of

diabetes and diabetic cardiomyopathy. Further along the diet, the

mice now presented with LV hypertrophy and CerS5 derived Cer

C14:0 was significantly higher (101, 102). Thus, these diets give us

the ability to identify specific sphingolipid species over the course

of the events leading up to HF and in incident HF of animals. A

new model of HFpEF uses metabolic and hypertensive stress

elicited by HFD coupled with NOS inhibition and showed

differentially methylated RNAs were enriched in sphingolipid

metabolism (118, 119).

Akita mice (Ins2Akita+/−) have a mutation in the Insulin2 gene

and are a good non-obese type 1 diabetes mellitus (T1DM) model.

At adulthood, the hearts of these mice had accumulated Cer C18:0

and exhibited preserved systolic function, reduced diastolic

function, and increased inflammation. This lipotoxic

cardiomyopathy phenotype was reversed with insulin

replacement therapy (98). GENA348 mice, develop LVH and HF

around 6 months of age (120). In 12-month GENA348 mice

with systolic, diastolic dysfunction and LVH the following fold-

change increases in serum samples were also observed—2.65× of

SM C23:0, and a 2.26×, 1.80× and 1.45× of Cer C22:0, C24:1,

and C22:1, respectively, compared to control mice (105).
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A mouse model of atrial fibrillation (AF)-induced HF (cardiac-

specific dnPI3K-Mst1 KO) showed significant increases of Cer

C16:0 and the most abundant mammalian ganglioside, GM3

C16:0, in atria of AF + HF mice compared to control (92). These

changes were also associated with increased atrial mass, though,

treatment with the small molecule, a hydroximic acid derivative

named BGP-15, reduced atrial mass and was positively correlated

with reduced GM3 C16:0. Furthermore, BGP-15 treatment

concomitantly increased insulin-like growth factor 1 binding to

caveolins, a cardioprotective signaling pathway, thought to be

inhibited by GM3 (92). This study suggests GM3 C16:0 may

contribute to atrial pathology in the context of HF.
Heart failure with reduced ejection fraction

Most HF animal models are used in research to study HFrEF

due to the clear clinical diagnostic criteria, and parameters. The

two main animal models for HFrEF are ischemia/infarction and

pacing models (72). Other less common models include

surgically induced mitral regurgitation, arteriovenous fistula

creation, and administration of doxorubicin (72, 121).

In the ischemia/infarction, microsphere beads are injected

intracoronarily down selected arteries under fluoroscopy or there

is temporary or permanent occlusion of the left anterior

descending (LAD) coronary artery. A study on this model found

that stearoyl-SM was reduced by less than 50% in heart tissue 5

days post permanent-LAD ligation in mice compared to mice

with sham surgery (74). Rats with HF induced via permanent

LAD ligation showed higher Cer C16:0 in the heart tissue

compared to sham-operated mice (77). 8 weeks post MI, these

rats went on a 45% kcal saturated and unsaturated combination

HFD but showed no further exacerbation of LVH and no further

increase in tissue total Cer. Thus, suggesting Cer myocardial

content is not dependent on availability of fatty acids in the

context of the failing heart. Another study also showed a similar

increase in total Cer content after MI, interestingly, once the rats

were placed on a 60% kcal high-saturated fat diet, unlike the

previous study, the myocardial total Cer content increased,

though there was no further progression of HF (78, 122).

Isolated hearts from male rats subject to ischemia led to 14.1%

increase in myocardial total Cer, 48.4% increase with ischemic

reperfusion (IR), and partial reversal with ischemic

preconditioning. The most significant being that of Cer C16:0,

C18:0, C18:1, C18:2, C20:4, C22:5, and Cer C22:6 (123). These

studies have shown that increased release of MCFA, LCFA, and

VLCFA of Cer into circulation and found within cardiac tissue

are often associated with negative effects on cardiac function.

Although it is essential to develop pharmacological inhibitors of

specific CerS, there have been multiple roadblocks in this process.
Conclusions

Great strides have been made in understanding the

sphingolipidome in patients with HF. The Mayo Clinic’s CERAM
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panel’s ratios of the VLCFA to MCFA Cer are becoming

increasingly popular for assessing the risk of HF development

and progression. Evidence suggests these novel Cer biomarkers

will continue be more successful than conventional risk factors in

predicting adverse cardiac events and the onset of HF, especially

when applied on a larger scale. However, there is still no clear

evidence to show mechanistically how Cer C24:0 is linked to

beneficial pathways or Cer C16:0 to adverse pathways in HF.

More studies are needed to determine how Cer (and other

sphingolipids) with different acyl chain lengths regulate various

signaling pathways. Despite these developments, prognosis for

HFrEF and HFpEF patients remain poor. Thus, when

considering future studies in humans and animal models of HF

some points should be considered.

The first point to consider: different results can be obtained

from different materials analyzed, and while tissue sphingolipid

levels are useful in patients receiving non-pharmacological

intervention such as LVAD, it is of more clinical benefit to

discover potent biomarkers in circulation, i.e., serum or plasma.

This is due to ease of accessibility, and ability to collect samples

more frequently in follow-up appointments. Nonetheless, tissue

sphingolipid levels are important In fact, tissue from HF patients

prior to LVAD showed induction of SPTLC3 at the protein level,

a follow-up showed reduced SPTLC3 levels post-VAD (53).

Which leads to the second point for consideration, it is

becoming more apparent that the de novo sphingolipid synthesis

pathway can make very diverse sphingolipids in turn triggering

unique signaling cascades. While d18 backbone sphingolipids are

the most abundant and well-studied, there is mounting evidence

to suggest substrate availability is the major determinant for the

type of sphingolipids synthesized. For example, variable amino

acid substitutes for serine, such as alanine or glycine, result in loss

of the hydroxyl group at the alpha carbon to produce

deoxysphingolipids. Deoxysphingolipids have been shown to play

important roles in pathogenesis of both T1 and T2D. SPTLC3 can

use isoleucine, a branched chain amino acid, to create methyl-

branched long chain based sphingolipids, the implications of these

in HF have yet to be elucidated (124). Though, it was recently

revealed that transgenic mice with pressure-overload induced

HFrEF showed impaired catabolism of myocardial branched-chain

amino acids, upon which restoration of these amino acids reversed

the dysfunction in this HFrEF animal model (125). Another way

substrate availability can determine which sphingolipids to

synthesize is availability of myristoyl- or stearoyl-CoA over

palmitoyl-CoA. SPTLC3 can readily use myristoyl-CoA in place of

palmitoyl CoA (25). Thus, more recent evidence points towards

less abundant sphingolipid species with d16, d19 and d20

backbones associated with events leading up to and in HF (27,

30). A few animal studies highlighted in this review observed

significant differences of SPTLC3-derived sphingolipid species.

This could provide a new avenue of research in developing specific

inhibitors of CerS and SMS.

The third point to consider: Which sphingolipidomic analyses

technique to use. The omics field has seen a rapid increase in both

the number of studies and the size of datasets. In parallel, liquid
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chromatography coupled with mass spectrometry (LC-MS)

approaches have advanced yielding thousands of distinct MS

peaks representing individual sphingolipid species and their

metabolites (126, 127). Targeted LC-MS measurements are more

sensitive, accurate, and quantitative than untargeted ones.

However, most studies on human cohorts only focus on d18 Cer

or SM species, and it would be of more beneficial consequence

to include targeted LC-MS runs for d16, d19 and d20 backboned

sphingolipids with acyl chains ranging from C14 to C26, as well

as other species such as Sph, S1P, DHS1P,

monohexosylceramides (MHC), and the glucosylceramides.

While using targeted LC-MS may overlook associations with

many known and unknown species in HF, untargeted mass

spectrometric techniques can detect species that were not

considered in targeted runs and associate them with HF (128).

Though untargeted techniques are still being fine-tuned and

require more starting sample per run. It is likely that multiple

sphingolipids unique to each HF group (HFrEF, HFpEF, and

HFbEF/HFmrEF) are involved in different pathogenesis, and

these sphingolipid signatures could provide more concise cut-off

values for classifying patients.
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