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Abstract

Isolation and analysis of cancer cells from body fluids have significant implications in diagnosis 

and therapeutic treatment of cancers. Circulating tumor cells (CTCs) are cancer cells circulating in 

the peripheral blood or spreading iatrogenically into blood vessels, which is an early step in the 

cascade of events leading to cancer metastasis. Therefore, CTCs can be used for diagnosing for 

therapeutic treatment, prognosing a given anticancer intervention, and estimating the risk of 

metastatic relapse. However, isolation of CTCs is a significant technological challenge due to their 

rarity and low recovery rate using traditional purification techniques. Recently microfluidic 

devices represent a promising platform for isolating cancer cells with high efficiency in processing 

complex cellular fluids, with simplicity, sensitivity, and throughput. This review summarizes 

recent methods of CTC isolation and analysis, as well as their applications in clinical studies.

1. INTRODUCTION

1.1 CTCs as Liquid Biopsy

Rare cell capture from body fluids has significant implications in diagnosis and therapeutic 

treatment of many diseases [1,2]. Circulating tumor cells (CTCs) were first discovered in 

1869, when Ashworth described cells in the blood that appeared similar to those observed in 

the tumor at autopsy [3]. Since then, isolation and characterization of CTCs in patients 

suffering from a variety of cancers have been a topic of scientific investigations [4]. There 

were many claims that CTCs as determined by cytology were commonly seen in cancer 

patients. However, further studies indicated that hematopoietic cells were responsible for 

almost all of these results [5]. It had shown that the presence of cancer cells in peripheral 

blood of 17 patients was related to their clinical progress, and researchers have found cancer 

cells in venous blood draining the tumor as well as in peripheral blood [6,7]. CTCs have 

been shown to provide predictive and prognostic information in terms of disease relapse, 

overall survival, and tumor response to therapy in patients with metastatic colorectal [8–10], 

breast [11,12], prostate [13,14], lung [1], and ovarian cancers [15]. Research has showed that 

CTCs are cancer cells spontaneously circulating in the peripheral blood or spreading 

iatrogenic into blood vessels, which is an early step in the cascade of events leading to 

metastasis [16]. Since CTCs are cancer cells shed from the primary tumor into the peripheral 

blood circulatory system, they could spread to distant organs where they may reside and 

ultimately begin to form metastasis [17–20].
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Biopsy is the current gold standard of cancer diagnosis for measuring the presence and 

extent of tumor. However, the process is invasive and prevents patients from being tested in 

an ongoing or repetitive basis. Besides, the spread of malignant cells can result from the 

tumor biopsy procedure due to the lack of cohesion of malignant cells and the ease of 

detachment of cancer cells from tumor. On the other hand, CTC examination in peripheral 

blood is much less invasive, and it can be regarded as “liquid biopsy” or “live biopsy” in 

effectively monitoring the progression of the disease and in determining the use of different 

treatments [20,21]. CTC monitoring enables noninvasive cancer diagnosis and rapid 

monitoring of therapeutic response with only 5–10 mL of patient blood needed. The number 

of CTCs present in patients can be a promising predictor in terms of their survival rates and 

the outcomes of their treatments. However, isolation of these rare cells is a significant 

technological challenge [2,22–25]. Technologies to exploit the biological characterization of 

CTCs have been challenged by the low abundance of CTCs (a few to hundreds per mL of 

whole blood) among a large number of erythrocytes (~109 per mL of whole blood) and 

leukocytes (~106 per mL of whole blood) [26–28] and the difficulty of separating CTCs 

among the background population of other hematopoietic components in the bloodstream. 

The fact that CTCs occur in low abundance has impeded the understanding of cancer 

evolution.

In more recent studies, CTCs isolated from blood samples potentially provide an accessible 

source for detection, characterization, and monitoring of cancer. Recently microfluidics-

based devices offer a promising platform for capturing cancer cells from complex cellular 

fluids with high efficiency, sensitivity, and throughput.

1.2 Microfluidics Technology

Microfluidics, commonly associated with the term “lab-on-a-chip,” is a multidisciplinary 

field that studies the behaviors of fluids in the microscale and is derived from miniaturized 

total analysis systems (μTAS). The term μTAS, which refers to miniaturized devices that are 

integrated with all necessary components for analysis of a sample, was proposed and became 

popular in 1990s [29]. Developed from the field of miniaturization and microelectronics 

[30–32], μTAS was envisioned as a new concept for chemical sensing, characterized by its 

possibility to create a complete analytical microsystem by integrating different functional 

components to a single device [33,34]. μTAS has been known for its low consumption of 

reagents and samples [33], and it has been widely used in chemical and biomedical 

engineering [35,36], miniaturized polymerase chain reactions (PCRs) [37,38], and 

immunoassay [39–41].

The manipulation of fluids in channels with dimensions in tens of micrometers has emerged 

as a new field. Microfluidics, as an important part of microtechnology, is defined as the 

science and technology of systems that process or manipulate small (10–9 to 10−18 L) 

amounts of fluids, using channels with dimensions of tens to hundreds of micrometers; the 

technology has been used in different fields, especially for life science and chemistry [42]. 

Much of the original motivation for microfluidics calls for the ability to manipulate fluids on 

the cellular length scale, the desire to provide cheap and efficient diagnostic tools [29].
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The first applications of microfluidic technologies have been in chemical analysis, for which 

they offer a number of useful capabilities: the ability to use very small quantities of samples 

and reagents, and to carry out separation and detection with high resolution and sensitivity; 

low cost; short time for analysis; and small footprints for the analytical devices [43]. 

Microfluidic devices are fabricated using techniques developed in the semiconductor 

industry and are often referred to as microfluidic chips. These microfluidic chips of the 

stamp size are often made of silicon, glass, or polymers, with the component of 

microsensors, micropumps, and microvalves. In addition to the materials mentioned above, 

polydimethylsiloxane (PDMS) was widely used in micro-fluidic device fabrication, and 

more complicated device could combine different microfluidic components. The well-

developed PDMS devices were fabricated using soft lithography [44]. Microfluidic systems 

have now been improved to the state where they are commercially available for 

biomolecular separations and emerging as promising tools for high-throughput discovery 

and screening studies in chemistry and materials science [45,46].

Recently microfluidic devices immobilized with capture agents, including antibodies and 

nucleic acid aptamers, represent a promising approach to isolate cancer cells by processing 

complex cellular fluids with great simplicity, sensitivity, and throughput [47–55]. 

Microfluidic devices have many advantages over conventional bench-top systems to capture 

tumor cells. These advantages include reduced size of operating systems, flexibility in 

design, less reagent consumption, reduced production of wastes, decreased requirements for 

power, increased speed of analyses, and portability. The confined space and shorter diffusion 

distance in a microdevice result in high capture efficiency and cell purity. Microfluidic 

devices have been widely recognized as a powerful technology that will play an important 

role in future medical analysis to meet the large-scale and high-throughput requirements. 

These lead to the recent development of new methodologies for microfluidics-enabled CTC 

analysis.

2. METHODS OF ISOLATION AND ANALYSIS

2.1 Isolation Methods

Methods for CTC isolation have been developed to obtain greater efficiency using different 

principles (Table 1). The CTC isolation methods are based either on the biological properties 

of tumor cells or on their physical properties.

The most widely used method is immunomagnetic separation. In this method, CTCs can be 

positively or negatively enriched based on the expression of surface proteins. This approach 

utilizes capture agent-labeled magnetic beads for either positive selection [56–58,11,59] of 

CTCs using cell-surface markers, or negative enrichment that depletes white blood cells 

(WBCs) using anti-CD45, which is widely expressed on WBCs [60,61]. Based on the 

positive selection mechanism, CellSearch assay [11,59] is the only platform, up to now, 

approved by the Food and Drug Administration (FDA) for CTC enumeration. This method 

enriches CTCs by using ferrofluid particles coated with antibodies against epithelial cell 

adhesion molecule (EpCAM), which is widely expressed on the surface of epithelial cells 

and epithelial-derived tumor cells [62]. In the past decades, along with novel CTC detection 

methods, magnetic-activated cell sorter [63] and Cel-lSearch [64] are commercially 
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available for CTC detection in the clinical setting. But, CellSearch assay is challenged by its 

limited sensitivity [65].

The microfluidic devices have been applied for CTC detection since a “CTC-chip” was 

developed, which captured CTCs as blood flowed past EpCAM-coated microposts in 2007 

[66]. More recently, several EpCAM-based microfluidic devices with improved features 

have been reported for highly efficient capture of CTCs [50–53,47,55,49,54]. Furthermore, 

devices were designed based on the difference in size and dielectric properties of CTCs, and 

they showed an ability to capture a significant percentage of rare cells. Microfluidics-based 

technologies have been developed for CTC isolation and detection [54,66–69], enabling 

efficient processing of complex cellular fluids, with minimal damage to sensitive cell 

populations and minimal blood volume; the low volume requirement could become 

important for some applications such as pediatric clinical care and small animal studies.

The advantages of microfluidics include its capacity for automatic programming, flexibility 

in performing a large number of samples, and the capacity for further molecular analysis. 

However, currently available technologies still suffer from low purity of the captured cells. 

Recent progress has been made in the development of various microfluidic devices to enrich 

CTCs, but some of them depend on the discovery and validation of new CTC markers.

Current CTC isolation technologies could be classified according to cells’ biology properties 

or physical properties, or the combination of properties, such as in the “CTC-iChip” reported 

in 2014 [61]. Other CTC detection methods have also been developed by incorporating 

multiple principles to achieve optimal cell isolation, such as processing whole blood by 

density gradient centrifugation and immunomagnetic isolation in parallel with the use of a 

microfluidic device to sort cells of interest [53,70–72].

2.1.1 Isolation Based on Physical Properties—CTCs can also be positively or 

negatively enriched on the basis of physical properties, including size, density, 

deformability, or electric charges. Those methods consist of centrifugation, membrane- or 

filtration-based systems, and dielectrophoresis (DEP). Each of these methods is briefly 

discussed as follows.

2.1.1.1 Gradient Centrifugation: Gradient centrifugation to isolate CTCs from other 

hematopoietic components is based on density differences. The mononuclear cells and CTCs 

have a density <1.077 g/mL, while the other blood cells and granulocytes have a density 

>1.077 g/mL [73]. This process generates a layered separation of different cell types based 

on their cellular density. Density gradient solutions, such as Ficoll (Amersham) and 

Lymphoprep (Nycomed), have been used for cell separation.

The advantage of this method is that it offers a quick and simple way to isolate CTCs. But 

the drawback of this technique is its poor sensitivity, due to the loss of some CTCs migrating 

to the plasma layer, or the formation of CTC aggregates settling to the bottom of the 

gradient.

The Ficoll solution separates whole blood into heavier particles (which includes erythrocytes 

and neutrophils) and lighter particles (which contains mononuclear cells, CTCs, and plasma) 
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[74]. However, whole blood tends to mix with the density gradient, if the sample was not 

centrifuged immediately. This will result in high contamination with WBCs and potential 

loss of CTCs. To address the problem, OncoQuick developed layered separation by adding a 

porous barrier above the density gradient to prevent its mix with whole blood [75,76]. 

Consequently, density gradient centrifugation with OncoQuick can achieve higher CTC 

isolation efficiency than Ficoll density gradient centrifugation. The method would simplify 

the further immunocytochemical CTC detection, offering a method for the detection of 

CTCs in blood of cancer patients.

2.1.1.2 Microfluidic Inertial Focusing: Microfluidic inertial focusing achieves cell 

separation with a microfluidic device utilizing the centrifugal, Coriolis, and Euler force to 

transport and manipulate liquids through their interaction with microstructures. Micro-

fluidic flows with dominant viscous drag forces (low Reynolds number, Re) are responsible 

for laminar flow profiles, entraining suspended particles and cells along streamlines. 

Separation of CTCs in spiral microfluidic channels has been developed to separate CTCs 

based on their size differences under the influence of Dean drag forces. The smaller blood 

cells, including red blood cells and leukocytes, migrate along the Dean vortices toward the 

inner wall and then back to the outer wall again, while the larger CTCs experience additional 

strong inertial lift forces and focus along the microchannel inner wall. The term, inertial 

focusing, refers to migration of cells across streamlines into equilibrium positions within the 

flow cross-section (after balancing all forces acting on them) as they travel downstream in a 

microchannel.

The advantage of the spiral microfluidic system is that it can have high-throughput, label-

free isolation of CTCs, and unbiased detection of CTCs from all types of cancer, including 

both epithelial and mesenchymal cell types. However, the use of inertial focusing 

microfluidics for CTC separation in blood samples is greatly limited by the large number of 

RBCs and WBCs as well as heterogeneity in the size of CTCs. Also, cell–cell interactions 

can severely affect the cell-focusing behavior, decreasing the separation efficiency.

Warkiani et al. reported a spiral microfluidic device with a trapezoidal cross-section for 

isolation of CTCs from clinically relevant blood samples [77]. By using a trapezoidal cross-

section, instead of a traditional rectangular cross-section, the position of the Dean vortex 

core was altered to achieve separation, resulting more than 80% cell capture efficiency of the 

tested cancer cells.

2.1.1.3 Microfabricated Filters: Because the majority of blood cells are smaller than CTCs, 

using filters to separate CTCs from whole blood can remove the majority of peripheral blood 

cells [78–82]. The parylene-based membrane microfilter device utilizes two parylene 

membrane layers and a photolithography-defined gap to minimize stress, yielding viable 

cells for further molecular analysis with high efficiency [79].

The advantage of this technology lies in its label-free isolation of CTCs, unbiased detection 

of CTCs from all types of cancer. However, the greatest limitation of this technology is its 

sensitivity to size. Questions have been raised regarding the loss of CTCs smaller than the 

filter’s pores, since the size of CTCs is extremely variable.
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2.1.1.4 Dielectrophoresis: Dielectrophoresis (DEP) refers to the movement of a neutral but 

polarizable particle when it is subjected to a nonuniform electric field due to the interaction 

of the particle’s dipole and spatial gradient of the electric field. Since biological cells have 

diverse dielectric properties, DEP can be used to manipulate, transport, separate, and sort 

different types of cells.

DEP separation techniques can achieve a single-cell-level purification. However, the process 

could be slow (because low fluid velocity compatible with the DEP force is required), 

resulting in low sample throughput. The commercially available DEPArray™ technology 

combines synergistically the power of microelectronics with the precision of microfluidics 

in an automatic platform to identify and isolate individual cells with high accuracy and 

precision. The core of this technology is a disposable microsystem that integrates a 

microelectronic chip with microfluidic chambers and valves. With this method, the exposure 

of CTCs to strong electric fields and temperature gradients around the electrode can be 

avoided.

Fabbri et al. demonstrated the use of the DEPArray™ platform to isolate CTCs in patient 

blood with colon cancer in 2013 [83]. Further, Peeters et al. demonstrated successful 

molecular characterization of breast cancer tumor cells using the DEPArray™ system to 

perform predictive biomarker analysis and heterogeneity analysis [84].

2.1.1.5 Other Physical-Property-Based Methods: Various methods have been developed 

based on physical properties of cells. One of them is acoustophoresis, which has been used 

to separate tumor cells from healthy blood cells by using acoustic standing wave forces [85]. 

In this method, CTCs were isolated by subjecting them into free-flow acoustophoresis in a 

microfluidic device. CTCs were focused in the center of the microchannel and further 

collected in central outlet, while the non-targeted cells were randomly distributed along the 

channel.

2.1.2 Isolation Based on Biological Properties—CTCs can be distinguished from 

other blood components by utilizing their biological properties, such as surface antigens, 

cytoplasmic protein expression, and invasion capacity.

2.1.2.1 Immunomagnetic Separation: This approach utilizes capture agent-labeled 

magnetic beads for either positive selection of CTCs using cell-surface markers [11,56–59] 

or negative depletion of WBCs using anti-CD45 [61,86,87]. The leading example of the 

methods is the FDA-approved CellSearch™ assay. Through the clinical practices, however, 

oncologists have come to the conclusion that the use of CellSearch™ assay is challenged by 

its limited sensitivity [65]. As a result, several sophisticated systems, including VerIFAST 

[56], magnetic sifter [57], MagSweeper [88], and IsoFlux [89], have been developed to 

further improve the detection speed and efficiency.

2.1.2.2 Microfluidics-Enabled Immunoseparation: Microfluidics-based devices have been 

developed to advance CTC detection and isolation [66,68,67,69,90–93]. Microfluidics-based 

CTC devices using capturing agents, either antibodies [66,67,54] or nucleic acid aptamers 

[94,95], offer a promising platform to isolate cancer cells from complex cellular fluids with 
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high efficiency, sensitivity, and throughput [48,50–53,47,54]. The advantages of this 

technology include its capacity for automatic programming, flexibility in performing a large 

number of samples, and possibility for further molecular analysis. The downside of this 

technology is that the most of the research efforts relied on the assessment of microscopy 

imaging for CTC confirmation after isolation.

We have developed a microfluidic system that is capable of efficiently isolating cancer cells 

from whole blood with either aptamers or antibodies. Cell-affinity microstructures were built 

inside the channel, which was able to selectively capture suspended cancer cells from a 

heterogeneous cell solution through binding with immobilized high-affinity capture agents 

[69,94–98]. In our study, avidin was first immobilized onto the channel surfaces by physical 

adsorption. Aptamers or antibodies were then conjugated onto the device surfaces using 

biotin–avidin chemistry (Fig. 1).

We have developed an aptamer-enabled method to isolate cancer cells [94,95,97]. Further, 

microfluidic devices consisted of arrays of micropillars inside microchannels, enhancing the 

surface areas and interactions between aptamers and target cancer cells [95]. The cell 

capture efficiency was about 95% with a cell purity of ~81% at a flow rate of 600 nL/s. The 

capture efficiency was defined as the ratio of the number of target cells captured to the 

number of target cells initially introduced. The capture purity was defined as the ratio of the 

number of target cells captured to the number of cells captured totally including the target 

cells and nontarget cells. We used the device for isolating colorectal tumor cells from 

unprocessed whole blood. Ten tumor cells were captured from 1 mL of whole blood in 28 

min. We found that about 93% of the captured cells were viable, making them possible for 

subsequent molecular and cellular studies. We have also demonstrated that we can perform 

cell release and subsequent cell analysis after the cell capture. These results indicate that the 

microfluidic cell isolation system has many advantages including high efficiency, rapid 

analysis, no pre-treatment of blood samples, and low detection limit.

Further, we have developed a geometrically enhanced mixing chip for high-efficiency and 

high-purity tumor cell capture [69] (Fig. 2A). We have successfully demonstrated the 

isolation of CTCs from pancreatic cancer patients, as well as the release and culture of the 

captured tumor cells. The high performance of the device is based on its geometrically 

optimized micromixer structures, which enhance the transverse flow and flow folding, 

maximizing the interaction between cells and antibody-coated surfaces (Fig. 2B).

To improve cell capture efficiency at a higher flow rate, we have also developed a system 

that combines antibodies with aptamers to form a multivalent affinity surface for tumor cell 

isolation [96]. As shown in Fig. 2C, an ensemble of antibodies and aptamers could bind to 

cell-surface receptors in a cooperative manner due to their differences in the size. Due to the 

morphology of a cell and its surface structure with nanoscale microvilli and filopodia [99], 

the aptamer–antibody ensemble can increase the accessibility of receptors on cell surfaces 

and the frequency of interactions between receptors and ligands, permitting efficient cell 

capture. The advantages of enhanced binding avidity through the multivalent effect can 

generate enhanced local topographic interactions between the substrate and nano-scale 

cellular surface components [99,100], significantly improving the isolation of tumor cells. 
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We have achieved >90% capture efficiency of human acute lymphoblastic leukemia cells 

(CCRF-CEM) at a flow rate of 2.0 μL/s.

Also, we have developed a system that utilized multivalent DNA nanospheres to isolate 

cancer cells in microfluidic devices [98]. In this study, gold nanoparticles immobilized with 

a number of aptamers were used as efficient capture reagents for high-efficiency cancer cell 

isolation. Under the optimized condition, the system showed cell capture efficiency of 92% 

of CCRF-CEM cells at a flow rate of 1.2 μL/s.

2.1.2.3 Other Biological-Property-Based Methods: Most of the current CTC isolation 

technologies are based on EpCAM expression. However, an epithelial-to-mesenchymal 

transition (EMT) may occur, in particular during tumor cell dissemination, some emerging 

technologies have focused on capturing EpCAM-negative CTCs. For example, Satelli et al. 
explored using cell-surface vimentin as a marker for detecting mesenchymal CTCs from 

sarcoma tumors [101].

The EPISPOT (EPithelial Immuno SPOT) assay and invasion assay can also achieve CTC 

enumeration. These assays are normally combined with other methods to partially enrich 

CTCs first, such as depletion of WBCs. Details of these two assays are discussed in Sections 

2.2.2.2 and 2.2.2.3.

An in vivo CTC isolation method has been developed by GILUPI in Germany [102]. In the 

study, EpCAM-positive CTCs were successfully enriched from over 90% of patients with 

breast cancer or non-small cell lung cancer. The GILUPI method overcomes the limitation of 

a certain blood sample volume—which is encountered with most CTC isolation methods—

by inserting their CellCollector™ directly into the peripheral blood stream of a patient. After 

30 min of in vivo application in an arm vein, the GILUPI CellCollector™ have been in 

contact with a large volume of the patient’s blood, with a potential to collect rare CTCs.

2.2 CTC Analysis

Beside enumeration, further genetic and phenotypic studies of CTCs would provide 

important information to define the nature of individual tumor cells and study cancer 

metastasis. As a result, the number of studies that focus on the characterization of CTCs has 

increased during the past few years. Some of these technologies are listed in Table 2.

2.2.1 Genetic Analysis of CTCs

2.2.1.1 Quantitative Real-Time Polymerase Chain Reaction: The methods of analyzing 

nucleic acids have been used to quantify and characterize CTCs. The methods utilize 

primers designed to target the specific gene of interest [103,104]. Researches have been 

conducted to investigate the transcriptional landscape of CTCs from different types of 

cancers using high-throughput quantitative reverse transcription polymerase chain reaction 

(qRT-PCR) and transcriptomic analysis [105–109]. The characterization of gene expression 

of CTCs has identified several important signatures of regulatory networks and biomarkers 

for CTCs derived from breast, pancreatic, prostate cancer, and melanoma. However, the 

limitations of such technologies include lack of stability and reproducibility due to sample 
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contamination, leading to possible false analysis. Besides, they are usually unable to 

distinguish between viable and apoptotic cells [110].

Stott et al. used a microvortex-generating herringbone-chip to capture CTCs from patients 

with metastatic prostate cancer. Then, tumor-specific TMPRSS2-ERG translocation was 

identified by RT-PCR analysis [68]. A study on prostate cancer CTCs using microfluidic 

qRT-PCR showed that EMT-related genes are overexpressed in castration-resistant CTCs 

compared to castration-sensitive CTCs [106]. Studies also indicate that EMT and the 

formation of CTCs and metastasis are closely associated [111,112].

2.2.1.2 Fluorescent In Situ Hybridization: Fluorescence in situ hybridization (FISH) is a 

cytogenetic technique to detect the locus presence of specific DNA or RNA sequences on 

chromosomes in individual cells in a heterogeneous population [113]. Labeled DNA or RNA 

sequences are used as probes to specifically bind to the parts of the chromosome with high 

degree of sequence complementarity. Because of their greater safety, stability, and ease of 

detection, the technology allows studying more biomarkers of captured CTCs at the same 

time in a non-time-consuming way and providing a way to better understand CTCs.

FISH has been successfully applied to analyze CTCs isolated from cancer patients’ blood 

[114,115]. Specific genes were identified in captured cells to further conform that the cells 

isolated were CTCs. Recently, a quantifiable, dual-colorimetric RNA-in situ hybridization 

(ISH) assay was established to characterized EMT in CTCs from breast cancer patients 

[108]. They have used seven pooled epithelial transcripts (keratin 5, 7, 8, 18, and 19; 

EpCAM; and cadherin 1) and three mesenchymal transcripts (fibronectin 1, cadherin 2, and 

serpin peptidase inhibitor, clade E) to examine the expression in tumor cells. In their study, 

they have demonstrated the evidence of EMT in human breast cancer, showing an 

association of mesenchymal CTCs with disease progression. They also provided potential 

biomarkers of therapeutic resistance and potential drug targets of breast cancer.

2.2.1.3 Comparative Genomic Hybridization: Comparative genomic hybridization (CGH) 

allows the assessment of structural rearrangements in the cell, without the need for culturing 

cells. Briefly, differentially labeled tumor and genomic DNA are cohybridized to normal 

human metaphase chromosomes. Each DNA sample was labeled with different fluorescent 

molecules of different colors. Differences in the fluorescence ratios are used to evaluate the 

DNA copy number along the chromosome. Therefore, CGH can only detect unbalanced 

chromosomal changes.

In conjunction with the use of DNA array analysis, the more specific form ACGH (array 

comparative genomic hybridization) has been developed, allowing for increased resolution 

for gene analysis. By ACGH analysis, Heitzer et al. demonstrated the feasibility of copy 

number analysis and mutation screening in CTCs from patients diagnosed with metastatic 

colorectal cancer patients [116]. Their results showed copy number aberrations in CTCs. 

ACGH profiles also revealed different aberrations among single CTC.
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2.2.2 Protein and Functional Assays of CTCs

2.2.2.1 Immunostaining: In the FDA-approved CellSearch method, captured CTCs are 

verified and characterized using immunostaining of cytokeratin (CK) 7/8 and CD45 in 

addition to 4′,6-diamidino-2-phenylindole (DAPI) for nucleus staining. In our study of 

pancreatic cancer patients, CTCs were also defined as DAPI positive, CK positive, and 

CD45 negative (Fig. 3) [69]. In addition to EpCAM and CK, more biomarkers have been 

used for identification of CTCs for specific type of cancer, such as prostate-specific antigen 

(PSA) for prostate cancer cells and human epidermal receptor 2 (HER2) for breast tumor 

cells. This immunostaining method is somewhat limited by the availability and specificity of 

antibodies.

2.2.2.2 EPISPOT Assay: The EPISPOT assay was developed to detect tumor-specific 

proteins released by CTCs. First, nitrocellulose membranes of the EPISPOT plates were 

coated with an antibody against a specific protein marker (eg, cytokeratin). Then, cells are 

seeded and cultured for 24–48 h. During this incubation step, the specific secreted proteins 

are directly captured on the antibody-coated membranes. Next, cells are washed off and the 

specific protein marker is detected by a secondary antibody conjugated with a fluorophore; 

the number of immunospots is counted. In this way, one immunospot corresponds to the 

fingerprint of one viable marker-secreting cell, thus the number of CTCs can be counted. 

EPISPOT can detect living CTCs from cancer patients since it is based on the detection of 

proteins secreted by these cells [117–119].

By using this assay, researchers showed that full-length CK-19 is released by viable 

epithelial tumor cells, and CK-19 secreting cells might constitute a biologically active subset 

of breast cancer cells with high metastatic properties [120]. Also, CTCs have been detected 

by EPISPOT assay in the peripheral and mesenteric blood of colorectal cancer patients, 

which are lower than in other cancer types [121]. In this study, CTCs were enriched first 

with an EpCAM-independent enrichment method. Then, the researchers performed CTC 

enumeration by EPISPOT assay that detected only viable CK19-releasing CTCs.

2.2.2.3 Invasion Assay: The invasion assay method is based on the ability of CTC to digest 

a fluorescently labeled cell adhesion matrix. This method can evaluate the invasion ability of 

CTCs.

Fan et al. examined the invasive growth of CTCs for the propagation of cancer metastasis 

[15]. They used invasion assay to evaluate the association of invasive CTCs with disease 

stage. They have found that invasive CTCs can be detected in a majority of epithelial ovarian 

cancer patients, and they proved that late-stage patients had more invasive CTCs.

2.2.3 Other Methods for CTC Analysis—A variety of other methods have been 

developed for analyzing CTCs. For instance, CTCs with stem cell properties can give rise to 

tumor growth in an immunodeficient mouse host [122]. This technology allows analyzing 

CTCs in vivo. The results of these experiments depend on the experimental conditions and 

mouse strains. Also, the lack of interaction of these circulating cells with a functional 

immune system may affect its results, and therefore cannot direct the study of human CTCs. 
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Table 3 summarized the advantages and disadvantages of various methods for CTC analysis 

and characterization.

3. MODELING FOR CTC STUDIES

When a microfluidic device is developed for CTC isolation, simulation is often used to 

optimize the device design as well as to analyze the device properties. Since the Reynolds 

number in the microfluidic device is normally less than one, the fluid flow in microchannels 

is laminar flow. For flow field simulation, a common simplification is that blood cells or 

CTCs have negligible effect on the flow. A Newtonian flow is thus used in most cases, 

though whole blood flow is non-Newtonian.

Simulation of CTC isolation is usually based on fluid dynamic models, thermodynamic 

models, or biophysical models. Compared with experimental methods, simulation is usually 

less time consuming and of less cost. Although theoretical models still need to be improved 

(with better assumption and simplification), the currently available models can give a good 

description of the physics behind. CTC isolation-related simulations are mainly of two 

categories: device design simulation and CTC–device interaction simulation.

3.1 Device Design Simulation

To enhance the device performance, simulation may be used to optimize microfluidic device 

geometry, flow field, and other physical properties as discussed below.

Simulation is widely used for optimizing the microfluidic device geometry, such as 

microstructure arrays. Nagrath et al. optimized the hydrodynamic efficiency of a micropost-

based CTC-Chip by comparing different arrangement of post arrays with computational 

analysis to optimize the device geometry [66]. Dickson et al. used computational fluid 

dynamic to optimize the alignment of microposts in the fluid channel, suggesting that 

randomization of different rows of microposts is more efficient than the staggering 

arrangement [123]. They established a formula to describe the CTC adhesion probability in 

different section of a microchannel. They considered not only the fluid parameters such as 

velocity field, shear force, and vorticity but also the encounter probability between CTCs 

and microposts. In addition, the “stickiness” of the microposts for CTCs was explored, 

indicating that it affected the capture efficiency of different sections in the micro-channel 

under different flow rates.

The flow field simulation is of great importance for microfluidic CTC analysis. Murlidhar et 
al. applied COMSOL to analyze the flow field in a radial flow microfluidic device, called 

OncoBean chip [124]. The velocity field and shear rate field were simulated. By using the 

Particle Tracing model, they were able to predict the CTC encounter probability with bean-

shaped microposts in the device. Using the commercially available software, the velocity 

and shear limit of the device were tested, helping to optimize the design of the device. Shear 

forces added on CTCs not only affect the capture efficiency but also alter the captured cells’ 

viability. By using the Particle Tracing model, they predicted the encounter probability 

between CTCs and bean posts. However, the predicted result is a rough estimation because 
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cell–post interaction due to biological properties is not considered, and only streamlines are 

illustrated.

Another important parameter in flow field simulation is flow rates. Shim et al. optimized the 

slot design for dielectrophoretic field-flow fractionation (DEP-FFF) using COMSOL 

MUTIPHYSICS models [125]. In the DEP-FFF device, CTCs were first separated from 

other blood cells in the dielectrophoretic field along the main channel, then withdrew from 

the main channel and entered a slot. Through controlling the slot dimension in the 

simulation, the fractional output flow rate was revised and the CTC isolation efficiency as 

well as purity was optimized.

Hydrodynamic effect is also critical for device design. Hyun et al. evaluated the velocity 

field fluctuations in the branch channels to optimize the design of a parallel multi-orifice 

flow fractionation (p-MOFF) device [126]. In their simulation, fluidic resistance was 

adjusted to achieve similar flow rates in different channels. Besides of fluidic parameters, 

other physical properties, such as acoustic properties and magnetic properties, are also of 

interests. For example, Kang et al. simulated magnetic density around permanent magnets 

using finite element method and calculated magnetic field-induced velocity of magnetic-

bead-bound CTCs [127].

3.2 CTC–Device Interaction Models

As discussed in Section 3.1, parameters such as flow field, magnetic field, electrical field, 

can play an important role in CTC isolation using micro-fluidic system. However, modeling 

of those parameters themselves are not enough. The interactions between microfluidic 

devices and cells inside are of prominent consideration.

For affinity-based CTC isolation, enhancing the interactions between CTCs and the 

microfluidic device is critical for improving cell capture efficiency. Different modeling 

methods have been proposed to achieve this goal. Smith et al. applied a theoretical model to 

describe the cell capture mechanism in microfluidic devices [128]. They showed the 

collision frequency variation between CTCs and obstacles under different arrangements of 

obstacles, based on which the device pattern could be optimized.

CTCs are often modeled as rigid spheres with receptors distributed on the surface, while 

device substrate was modeled as a two-dimensional surface containing ligands (ie, capture 

agents). The model was discussed in detail by Decuzzi et al. [129]. By combining the shear 

force, receptor density, ligands density, and affinity constant, they gave an expression of 

probability of cell adhesion. The combined formula offered a simple mathematical 

expression of adhesion probability for the particle–substrate interaction. In this modeling, 

they simplified the problem by ignoring the convection and thermal diffusion of particles. 

Also, receptors and ligands were considered as the properties of the particle and the 

substrate, respectively. In this study, the single receptor–ligand bond was not modeled.

A more detailed model that described CTC adhesion to a device substrate was reported by 

Zheng et al. [130]. In this study, CTCs were introduced into a flat microchannel. When a 

CTC flow went over a flat surface, Langevin equation was applied to depict the motion of 
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the cells [131,132]. The receptors were modeled as strings randomly distributed on cell 

surfaces as shown in Fig. 4. There was a capture zone for each receptor, within which a 

ligand–receptor bond can be formed. The velocity of the cell was altered by shear force as 

well as bond force caused by ligand–receptor bonds.

To determine formation of every single receptor–ligand bond, adhesive dynamics was 

introduced [133]. The ligand–receptor bonds were considered as springs, which made the 

bond force calculation much easier. This model not only showed how a CTC moved in a 

microchannel but also illustrated the reactions between the receptors on a CTC and the 

ligands on the device surface. The theoretical model actually zoomed in the CTC–substrate 

interaction and showed more physical insights for the CTC capture process. However, a 

more complicated model could require a lot of computation power and time and would be 

difficult to be applied for CTC isolation.

4. CTCs IN CLINICAL APPLICATIONS

The detection of CTC in peripheral blood has been demonstrated to provide useful 

information for clinical study, such as cancer prognostication, treatment monitoring, and 

drug development. Since CTC is continuously released by primary or metastatic tumor, it 

has a great potential to be an independent biomarker for clinical applications.

4.1 CTCs as Biomarkers

CTCs have been used as biomarkers in a number of clinical trials. During the past decades, 

CTCs have received enormous attention as new biomarkers and are one of the hot subjects of 

basic cancer research. However, their clinical utility is still under investigation.

4.1.1 Definition of Biomarkers—A biomarker is defined as “a characteristic that is 

objectively measured and evaluated as an indicator of normal biologic processes, pathogenic 

processes, or biologic responses to a therapeutic intervention” [134]. Bio-markers are 

categorized based on clinically utility as diagnostic, prognostic, predictive, 

pharmacodynamic, or as a surrogate for clinical endpoints. The use of biomarkers has 

clearly helped to improve cancer survival and the overall morbidity, but there are significant 

limitations to the application of current biomarkers in clinical practice. Most of blood 

biomarkers are organ specific rather than disease specific. Therefore, they may not be 

completely representative of the status of cancer disease. Additionally, biopsy has been the 

current gold standard for cancer diagnosis [135], which is invasive, preventing patients from 

being tested in an ongoing or repetitive basis. CTC has received enormous attention as a new 

cancer bio-marker, because its detection is much less invasive. CTCs can be regarded as 

“liquid biopsy” and considered to be more effective in monitoring the progression of the 

disease and choosing different treatments, which allows for real-time monitoring [20,21]. 

Besides, CTC, originated from the primary tumor, has a potential to guild the development 

of personalized treatment to optimize the selection of targeted therapies and to monitor the 

responses.

4.1.2 Clinical Studies—In 2004, Cristofanilli et al. have showed CTCs presented as an 

independent prognosticator for metastatic breast cancer. They have showed that patients with 
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a cut-off of 5 CTCs/7.5 mL in blood had highly predictive differences of treatment therapy 

[11]. In a comprehensive meta-analysis of the reported work on the prognostic relevance of 

CTCs in patients with breast cancer, 6825 patients were included [136]. This analysis has 

showed CTC can be an accurate prognostic factor in patients with early stage and metastatic 

breast cancer.

In 2008, Bono et al. have showed that the number of CTCs can accurately and independently 

predict the overall survival (OS) for castration-resistant prostate cancer [137]. Patients were 

grouped into Favorable (<5 CTC/7.5 mL) or Unfavorable (≥5 CTC/7.5 mL) according to 

CTC number. For Favorable group, OS was improved. For Unfavorable group, shorter OS 

was observed both before treatment and after treatment. Additionally, the transition from 

Unfavorable group before treatment to Favorable group after treatment has associated with 

improved OS. On the other hand, the transition from Favorable group to Unfavorable group 

post treatment has associated with poorer survival. Besides, the CTC number has been 

shown to be a better prognosticator than PSA decrement in prostate cancer [137–139].

Also, the studies of using CTCs as a diagnostic factor in various cancers were performed 

[140–143]. However, as CTCs were undergoing EMT, the current isolation methods are not 

able to identify this subtype of CTCs. Further developments in new technologies for the 

detection and characterization of CTCs are needed to verify CTCs as new biomarkers, such 

as CTC subpopulation analysis. Yu et al. monitored the changes of epithelial and 

mesenchymal markers in CTCs from breast cancer patients. The mesenchymal cells have 

been showed to associate with disease progression [108].

4.2 CTC Detection for Treatment Monitoring

Current biomarkers and imaging assessments for treatment monitoring are not able to 

optimally manage individual patient due to deficient specificity to clinical outcomes. For 

neoadjuvant chemotherapy, systemic responses to the treatment seem to be irrelevant to 

clinic-pathological features. Therefore, the CTC levels during treatments can better define 

the effect of therapy [144]. Besides, molecular analyses of CTCs have showed a potential to 

realize real-time monitoring disease aggressiveness and treatment response [145,146].

In one of our recent studies, we tested the potential utility of capture and enumeration of 

CTCs with a microfluidic device for monitoring the response to anticancer drug treatment in 

pancreatic cancer patients [69]. We have evaluated the correlation between the CTC number 

and tumor size in patients undergoing chemotherapy. As shown in Fig. 5, three patients with 

stage IV metastatic pancreatic cancer were included in the study. In general, the CTC 

number decreased with continuation of treatment, and the result modeled the computed 

tomography (CT) results. Fig. 5D and e showed that the tumor size decreased as treatment 

progressed for patient #3, which was in agreement with the trend of CTC number in Fig. 5C. 

The results indicate that CTC enumeration has a potential to become a tool for monitoring 

early response or failure to cancer treatment.

4.3 Potential Applications in Drug Discovery

The cost of cancer drug development can reach billions and the process typically takes 8–10 

years from discovery to registration [147]. The study of CTC under treatment responses in 
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real time can be applied to the clinic drug development. The patients’ CTC can predict 

treatment failure faster and more accurately than current modalities. Thus, it can indicate 

drug’s curative effect and predict early success or failure for anticancer drugs [148]. The 

biological studies on CTC can lead to new drug targets and anticancer therapies. In addition, 

the clinical trials were established to use CTCs to determine maximal tolerate dose [149]. 

Studies have also utilized CTC analysis to guild the selection of optimal dose for anticancer 

drugs [150].

5. CONCLUSION

Since the first identification of CTCs in the blood stream of a patient with metastatic cancer 

in 1869, significant advancement has been made in the isolation and analysis of CTCs. With 

these advancement and development, CTCs have been used to predict cancer metastasis and 

disease progress, to monitor clinical treatment in patients undergoing therapy, and to track 

disease progression along with treatment efficacy and outcome prediction. This allows 

individualized therapy (personalized medicine) to identify drug targets and better drug dose, 

and study the nature of cancer metastasis.

However, the current technologies have been challenged by specificity and sensitivity, 

compromising cell viability for further CTC studies. Progresses have been made in several 

directions. The technologies reviewed in this paper represent the potential advances of CTC 

studies in cancer research. With the development of micro- and nanotechnology, CTC 

isolation and follow-up analysis can be realized to achieve high capture efficiency, with 

accuracy and sensitivity.
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Fig. 1. 
Scheme of capturing cancer cells in a microfluidic device. Avidin is immobilized on the 

surface of microchannels via physical adsorption, followed by conjugation with biotinylated 

aptamers through biotin–avidin chemistry. Target cancer cells are then captured via the 

interaction between the aptamers and the receptors on cell surfaces. W. Sheng, et al., 
Aptamer-enabled efficient isolation of cancer cells from whole blood using a microfluidic 
device. Anal. Chem. 84(9) (2012) 4199–4206. Reproduced with a permission of The 
American Chemical Society.
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Fig. 2. 
(A) Picture of the device. The size of the device is 1 in. ×3 in., the same size of a microscope 

slide. (B) Image of the geometrically optimized micromixer structures inside microchannels. 

(C) Scheme of using an ensemble of aptamers and antibodies as capture reagents inside 

microchannels. W. Sheng, et al., Capture, release and culture of circulating tumor cells from 
pancreatic cancer patients using an enhanced mixing chip. Lab Chip 14(1) (2014) 89–98; J. 
Zhang, W. Sheng, Z.H. Fan, An ensemble of aptamers and antibodies for multivalent capture 
of cancer cells. Chem. Commun. 50(51) (2014) 6722–6725. Reproduced with a permission 
of The Royal Society of Chemistry.
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Fig. 3. 
Fluorescence microscope images of CTCs captured from patient bloods: (A) a representative 

image of CTCs, with DAPI+, cytokeratin+, and CD45−; (B) typical image of white blood 

cells (WBCs), with DAPI+, CK−, and CD45+. Scale bar=10 μm. W. Sheng, et al., Capture, 
release and culture of circulating tumor cells from pancreatic cancer patients using an 
enhanced mixing chip. Lab Chip 14(1) (2014) 89–98. Reproduced with a permission of The 
Royal Society of Chemistry.
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Fig. 4. 
CTC–substrate interaction model. The CTC is modeled as a rigid sphere. Receptors are 

modeled as strings randomly distributed on the surface of the CTC. Each receptor has a 

length of r0, forming a capture zone with a radius of r0. When ligands, which are modeled as 

an array of points on the device surface, are located within the capture zone, it is possible 

that a ligand–receptor is formulated. The ligand–receptor bond is considered as a spring. 
C.B., Korn, U.S. Schwarz, Dynamic states of cells adhering in shear flow: from slipping to 
rolling. Phys. Rev. E 77(4) (2008) 041904. Reproduced with a permission of American 
Physical Society.
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Fig. 5. 
(A–C) The number of CTCs per mL of blood from pancreatic cancer patients at different 

treatment cycles for three patients: (A) patient #1; (B) patient #2; (C) patient #3. (D and E) 

CT scan image of patient #3 at (D) the beginning of the treatment (cycle 1); (E) the latter 

stage of treatment (cycle 11); the red (dark gray in the print version) arrows indicate the 

regression of the primary pancreatic cancer. Each treatment cycle is 14 days. W. Sheng, et 
al., Capture, release and culture of circulating tumor cells from pancreatic cancer patients 
using an enhanced mixing chip. Lab Chip 14(1) (2014) 89–98. Reproduced with a 
permission of The Royal Society of Chemistry.
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Table 1

Isolation Methods for Circulating Tumor Cells (CTCs)

Isolation methods based on physical properties Size

Deformability

Density

Electric charge

Other physical properties

Isolation methods based on biological properties Immunoseparation

EPISPOT assay

Invasion assay

Other biological properties
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Table 2

Analysis Approaches for CTCs

Genetic analysis qRT-PCR

FISH

CGH

Other genetic/genomic methods

Protein analysis Immunoseparation

EPISPOT assay

Invasion assay

Other proteomic methods

Note: qRT-PCR, quantitative reverse transcription polymerase chain reaction; FISH, fluorescent in situ hybridization; CGH, comparative genomic 
hybridization; EPISPOT, epithelial immunospot.
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Table 3

Comparison of the Methods for CTC Analysis and Characterization

Analytical Methods Advantages Disadvantages

Immunocytochemistry Allow CTC morphological analysis; labeling of specific 
ligands; quantification; and identification

Time-consuming; sometimes subjective evaluation 
due to expression variation

qRT-PCR Able to detect specific biomarkers; high sensitivity Possible false positive results due to WBC 
contamination

EPISPOT Ability to detect viable CTCs; to identify specific secreted 
proteins

Time-consuming; proteins must be actively secreted 
or released by CTCs

Invasion assay Examines the ability of CTCs to digest cell adhesion matrix Time-consuming
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