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Abstract

Cancer metastasis is the leading cause of cancer-related death. Circulating tumor cells (CTCs) are shed into the

bloodstream from either primary or metastatic tumors during an intermediate stage of metastasis. In recent years,

immunotherapy has also become an important focus of cancer research. Thus, to study the relationship between

CTCs and immunotherapy is extremely necessary and valuable to improve the treatment of cancer. In this review,

based on the advancements of CTC isolation technologies, we mainly discuss the clinical applications of CTCs in

cancer immunotherapy and the related immune mechanisms of CTC formation. In order to fully understand CTC

formation, sufficiently and completely understood molecular mechanism based on the different immune cells is

critical. This understanding is a promising avenue for the development of effective immunotherapeutic strategies

targeting CTCs.
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Background
Cancer metastasis is the leading cause of cancer-related

death and remains one of the prevailing challenges in

cancer treatment. Most patients with metastatic disease

are treated with systemic agents, which prolong survival

and improve symptoms but are typically not curative,

and patients are unable to achieve long-term survival

[1]. In recent years, the prevailing view has become that

metastatic disease is invariably widespread and incurable.

However, with the emergence and success of cancer im-

munotherapy, notable exceptions exist, including subsets

of patients with metastatic melanoma [2], non-small-cell

lung cancer (NSCLC) [3], and renal cancer [4] treated

with immunotherapy. In recent years, immunotherapy

has become an important focus for cancer treatment,

and it appears that immunotherapy combined with clas-

sical treatments, such as surgery, radiotherapy, and

chemotherapy, can better improve patient survival rates

[5]. Successful immunotherapeutic strategies require the

identification of diagnostic, predictive, prognostic and

therapeutic methods. Currently, the methods used in the

clinic for guiding immunotherapies, such as tissue bi-

opsy and imaging, are still not 100% accurate due to

their limitations such as sensitivity and specificity. For

instance, conventional tissue biopsy cannot always be

routinely performed due to its invasive nature. Further-

more, the information acquired from a single biopsy

only provides a limited snapshot of a tumor and often

fails to reflect tumor heterogeneity. Therefore, it is crit-

ical to find a robust method for reflecting the overall

biological characteristics of the tumor and assisting in

making the optimal immunotherapy strategy [6].

A new diagnostic technique regarded as “liquid biopsy”

has received considerable attention over the past several

years [7, 8]. CTCs are one of the cornerstones of liquid

biopsy and have indisputable advantages, as they are

noninvasive, simple to administer, and more patient-
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friendly and would overcome the problem of tumor het-

erogeneity, allowing the progression of a tumor to be

more easily followed by serial testing and helping to in-

form treatment decisions [9]. Recently, scientists have

begun to explore the intrinsic relationships between im-

munotherapy and CTCs. The analysis of immune

markers, heterogeneity and therapeutic targets from

CTCs have shown promising application in immuno-

therapy. In this review, we systematically analyze the

present isolation techniques for CTCs and then mainly

investigate the clinical applications of CTCs in cancer

immunotherapy and the related immune mechanisms of

CTC formation.

CTC isolation technologies
CTCs are known as an important marker for auxiliary

diagnosis, prognosis evaluation, treatment decision, etc.

To further extend CTCs’ clinical application, it is neces-

sary to develop specific and effective techniques to cap-

ture rare CTCs from peripheral blood. Here we

generally classify all CTC isolation techniques into bio-

logical and physical methods according to their enrich-

ment principles (Fig. 1).

Biological isolation methods

Biological isolation methods are characterized by using

specific surface markers, such as EpCAM. CellSearch is

the gold standard for CTCs, capturing cells with specific

EpCAM. The MagSweeper system introduces EpCAM-

modified immunomagnetic beads, which are suitable for

isolating circulating endothelial progenitor cells (CEpCs)

with low to medium EpCAM expression. The three gen-

erations of the CTC-chip were developed to show in-

creasingly higher isolation efficiency on CTCs, providing

CTC samples with higher quality. The NanoVelcro chip

is characterized by using specific antibody-modified

nanomaterial substrate. One disadvantage of above

methods is that they cannot effectively isolate CTCs with

non-specific surface antigen expression. To overcome

this defect, scientists are exploring new methods, even

combining biological and physical isolation together, and

achievements like CTC-iChip have been made (Add-

itional file 1: Table S1).

Physical isolation methods

Physical isolation methods are based on CTC physical

properties such as size (microfilter), membrane charge

(dielectrophoresis), and density (density gradient centri-

fugation), etc. The combination of physical properties

with some specific platforms, such as microfluidics, also

shows great potential in capturing CTCs. Most of these

methods do not require specific surface markers on

CTCs. These techniques are generally simple in principle

but must depend advanced materials or assistive

engineering technologies for better clinical application

(Additional file 1: Table S1).

The clinical applications of CTCs in
immunotherapy
Clinical prognosis prediction

The clinical prognostic value of CTCs has been being

studied for years, but its predictive effect on immuno-

therapy is still insufficient. In this section, we will focus

on the prognostic value of two aspects: the number and

biological characteristics of CTCs (Additional file 2:

Table S2). Mao et al. [10] found a significant decrease in

the number of CTCs on days 7 and 30 after natural

killer (NK) cell treatment in stage IV NSCLC, which

may be related to the tumor shrinking. The tumor vol-

ume shrinks after NK cell treatment, which reduces the

number of CTCs released from the lesion into the blood.

Therefore, CTCs could be a useful biomarker for evalu-

ating the efficacy of NK cell therapy. In another study of

NK cell immunotherapy in hepatic carcinoma [11], a

similar correlation was also observed. In addition, a

study that aimed to investigate the safety and short-term

efficacy of irreversible electroporation (IRE) combined

with NK cell immunotherapy found that CTC number

may reflect the efficacy of the combination therapy in

unresectable primary liver cancer [12]. Currently, pro-

grammed cell death ligand 1 (PD-L1) expression is the

most established predictive biomarker of the response to

drugs that target the PD-L1/programmed cell death pro-

tein 1 (PD-1) axis [13–15]. To assess PD-L1 expression

in tumors, tissue PD-L1 biopsy is a common method.

However, this puts patients at risk of complications and

delayed reports, and the limited sample may be inad-

equate to represent the overall tumor heterogeneity. PD-

L1 expression on CTCs could offset the shortcoming of

tissue PD-L1 biopsy. In patients treated with PD-1 in-

hibitor, pretreatment PD-L1+ CTCs are associated with

their poor prognosis [16]. Based on PD-L1 expression

on CTCs, after patients were treated with nivolumab for

6 months, they all obtained a clinical benefit in the

group with PD-L1(−) CTCs, while they all experienced

progressive disease in the PD-L1(+) CTC group [17]. In

addition to NSCLC, CTCs are also predictors of worse

outcomes in head and neck cancer (HNC). For an HNC

cohort treated with nivolumab, CTC-positive patients

had a shorter progression-free survival (PFS), and PD-

L1-positive CTCs were found to be significantly associ-

ated with worse outcomes [18]. Specifically, in gastro-

intestinal tumors, high PD-L1 expression on CTCs at

baseline might serve as a predictor to screen patients for

PD-1/PD-L1 blockade therapies, and measuring the dy-

namic changes in CTCs could monitor the therapeutic

response [19]. These reports indicate that a reduction in

total CTC, PD-L1posive CTC and PD-L1high CTC counts
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may reflect a good response to PD-1 inhibitors (Add-

itional file 2: Table S3). Additionally, the expression

levels of MART-1, MAGE-A3 and PAX3 on CTCs have

prognostic significance in patients with melanoma [20],

and these proteins are highly expressed in melanoma tis-

sues [21–25]. Multimarker RT-qPCR assay further dem-

onstrated a significant association between the disease-

free survival (DFS) and the expression levels of MART-

1, MAGE-A3 and PAX3 [20, 21].

Immunotherapeutic strategies targeting CTCs

Immune check point therapy

Blocking immune checkpoints has been one of the fo-

cuses of antitumor immunotherapy in recent years

(Fig. 2a) [26], and substantial progress has been made

[27]. By blocking the immune checkpoint on CTCs, the

immune system can be activated to eliminate CTCs in

the blood circulation, which suggests a new way to re-

duce the recurrence and metastasis of malignant tumors.

Fig. 1 A mind map summarizing CTC isolation technologies. GEDI: geometrically enhanced differential immunocapture; GO: graphene oxide;

VerIFAST: vertical immiscible filtration assisted by surface tension; ISET: isolation by size of epithelial tumor cells; FMSA: flexible micro spring array;

DFF: Dean Flow Fractionation; p-MOFF: parallel multi-orifice flow fractionation; MOFF-DEP: multi-orifice flow fractionation and dielectrophoresis
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Using specific antibodies to simultaneously target two

immune checkpoints, PD-L1 and CD47, was more ef-

fective than targeting PD-L1 or CD47 alone in inhibiting

lung metastases [26].

A study proposed the concept of adaptive immune re-

sistance [27], in which the tumor utilizes the natural

physiology of PD-L1 induction to protect itself from an

antitumor immune response. Therefore, the immune

checkpoint PD-L1 can act as a “do not find me” signal

on CTCs to escape the antitumor immune response.

Blocking PD-L1 can enhance the activity of effector T

cells and NK cells in the tumor microenvironment and

may increase their production through indirect or direct

effects on PD-1+ B cells. CD47 is also highly expressed

on the surface of CTCs. CD47 can bind with signal regu-

latory protein α (SIRPα) on macrophages to transmit in-

hibitory signals and inhibit phagocytosis [28]. Therefore,

CD47 can act as a “do not eat me” signal on CTCs.

Fig. 2 The four current immunotherapeutic strategies targeting circulating tumor cells. a Immune checkpoint therapy: The dual inhibition of both

CD47 and PD-L1 inhibits immune evasion to promotes immune activation by T cells and NK cells. b Monoclonal antibody therapy: Depending on

FcγRI and FcγRIV, monoclonal antibodies (mAbs) mediate CTC elimination by Kupffer cells. c “Unnatural killer cell” therapy: Leukocytes coated

with E-selectin (ES)/tumor necrosis factor-related apoptosis inducing ligand (TRAIL) liposomes enhance the apoptotic effects of CTCs. d In vivo P-

aPDL1 therapy: Conjugating anti-PDL1 (aPDL1) to the surface of platelets can facilitate the delivery of aPDL1 to target CTCs
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Blocking CD47 on CTCs can promote phagocytosis by

macrophages. In addition, blocking CD47 can also pro-

mote macrophages or dendritic cells (DCs) to stimulate

tumor-specific cytotoxic T cells, which can eventually

clear CTCs [29].

Compared with using a single antibody, the combined

blockade of CD47 and CD274 expression in tumors can

cause the immune system to maintain a higher quality of

T cells and NK cells in vivo and can prevent the immune

escape of CTCs [26]. This immunotherapy with the dual

blockade of immune checkpoints not only shows the

interaction among CTCs, T cells, and NK cells in the

immune microenvironment, but also provides a new dir-

ection for the targeted therapy based on immune check-

point signal on CTC.

mAb therapy

In the decade from 2003 to 2013, the use of mAbs as

therapeutic tools dramatically increased and became a

mainstream strategy for cancer treatment (Fig. 2b) [30],

but how mAbs specifically mediate tumor cell elimin-

ation and the effects involved in the process are still un-

clear. Until 2013, based on in vitro live cell imaging and

in vivo microscopy of the mouse liver, the researchers

proposed the mode of action of mAbs, which for the

first time, directly demonstrated that mAb therapy in-

duced the macrophage phagocytosis of CTCs and that

this effect was dependent on FcγRI and FcγRIV [30].

This conclusion was consistent with that of their earlier

studies, which demonstrated that FcγRI and FcγRIV

were required to prevent liver metastasis after mAb

treatment [31].

In the mouse model system, the B16F10 cell line, is

the only homologous mouse solid tumor cell line [32]

that can be used to obtain specific mAbs. Mice were

vaccinated with B16F10 cells and were treated with a

vector or TA99 mAb. In vivo imaging in the liver of

mice treated with the vector showed that Kupffer cells

were able to interact with a small portion of tumor cells

without causing the elimination of tumor cells. However,

Kupffer cells in the liver of mice treated with the TA99

mAb were able to rapidly recognize and phagocytose

tumor cells. Although there was no difference in the

number of tumor cells that contacted Kupffer cells in

the liver of mice treated with the vector or the TA99

mAb, the number of phagocytosed tumor cells signifi-

cantly increased after treatment with the TA99 mAb.

Repeated experiments with isotype mAbs were carried

out to further confirm the conclusion and to rule out

the possibility of nonspecific phagocytosis due to the in-

jection of mAbs [32]. To investigate whether other non-

Kupfer cell-dependent killing occurred, clodronate lipo-

somes were used to deplete Kupffer cells [33] before the

injection of tumor cells and mAbs. When the cells were

depleted, treatment with the TA99 mAb was ineffective.

For patients with primary colorectal cancer, tumor re-

section creates a permissive environment for tumor cells

to adhere to the liver and increases the risk of metasta-

sis, while Kupffer cells are the first defense line for

tumor cells to enter into the liver. Kupffer cells are able

to sample small number of tumor cells without mAbs

[34] but do not block tumor cells very effectively. In

contrast, after mAb treatment, Kupffer cells effectively

phagocytosed intact tumor cells, thereby preventing liver

metastasis.

“Unnatural killer cell” therapy

The use of TRAIL- and ES-coated white blood cells

(WBCs) to reduce CTCs is suggested to be very effective

(Fig. 2c), both in vitro in human blood and in vivo in

mice [35]. To form a distant metastasis, CTCs have to

cross vascular endothelial cells, similar to WBCs. There-

fore, CTCs possess the characteristics that overlap with

WBCs, such as surface molecules, which are involved in

adhesion to endothelial cells. Further, CTCs possess the

activity similar to the inflammatory infiltration and

lymphocyte homing processes and thereby penetrate

endothelial cells to form tiny metastases [36–41]. In

many tumor-derived CTCs, surface-expressed glycosyl-

ated ligands are capable of recognizing and binding to

ESs expressed on endothelial cells [42]. In a liposome

(Fig. 2c) containing ES and TRAIL, the interaction be-

tween ES on tumor cells and the death receptor TRAIL

on COLO 205 cells and PC-3 cells induced autophagy in

tumor cells. However, in the bloodstream, the large

number of blood cells and the small number of tumor

cells [43] make it difficult for the liposomes to effectively

and frequently contact CTCs. In the blood stream, red

blood cells occupy the center of the laminar flow, while

CTCs and WBCs are located in the outer layer of the

flow, which causes CTCs to contact WBCs more fre-

quently [35, 44]. Furthermore, the leukocyte surface also

contains an ES receptor. Thus, WBCs carrying ES and

TRAIL liposomes can allow TRAIL to more effectively

contact CTCs, promoting CTC phagocytosis and con-

trolling hematogenous metastasis by reducing the num-

ber of CTCs. Although this method did effectively

inhibit tumor cells in the experimental stage, it remains

to be seen whether it can reduce the formation of metas-

tases [35].

In vivo P-aPD-L1 therapy

Platelets play a critical role in tumor thrombus forma-

tion and tumor metastasis. Tumor cells induce platelet

activation and aggregation in the blood circulation

(Fig. 2d) [45]. At the same time, tumor cells and platelets
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form tumor thrombi by releasing thrombin-activated fi-

brinogen [46].

Platelets can capture CTCs in a variety of ways, such

as via P-selection, via the indirect capture of tumor cells

through the coagulation system, and via the capture of

tumor cells through the immune complement pathway

[47]. Additionally, platelets can promote tumor metasta-

sis by aggregating with CTCs, thus helping CTCs avoid

immune attack and migrate to new tissues, during which

the binding between P-selectin and the CD44 receptor

plays a key role [46, 48]. CTCs can interact with acti-

vated platelets and leukocytes and can form aggregates

that attach to endothelial cells, which contribute to me-

tastasis [49].

PD-1 is a coinhibitory receptor expressed on the sur-

face of antigen-stimulated T cells. PD-L1 is a protein

that is encoded by the CD274 gene [50]. PD-1/PD-L1 in-

hibitors can block the PD-1/PD-L1 pathway and can

promote T cells from attacking tumor cells [51]. Based

on the interaction between platelets and cancer cells, a

platelet stimulating drug delivery system has been devel-

oped [52]. One technique involves binding aPD-L1 to

the platelet surface to form aPD-L1-conjugated platelets

(P–aPD-L1). This binding is highly stable without caus-

ing any significant platelet damage [45]. When vascular

endothelial cells are damaged, receptors on the surface

of platelets bind to their corresponding ligands. Platelets

adhere to the injury site and become activated; then,

their contents are released into the extracellular environ-

ment in the form of particles, leading to the recruitment

and activation of other immune cells as well as to T cell

migration and monocyte differentiation into DCs [53].

At the same time, pseudopods form around the activated

platelets, and the serosa fall off to form platelet-derived

microparticles (PMPs) [54]. Conjugated aPDL1 is also

present on the PMP membrane. PMPs can promote the

targeted binding of conjugated aPDL1 to CTCs and anti-

gen presenting cells (APCs) in peripheral blood, thus

blocking the expression of PD-L1 on tumor and APCs,

reducing local tumor recurrence and inhibiting tumor

metastasis.

When P-aPDL1 was injected into mice with partially

resected primary melanoma (B16F10) or into a triple-

negative breast cancer (TNBC) tumor model (4 T1 car-

cinoma), aPDL1 was effectively released through

platelet-derived particles during platelet activation.

aPDL1 significantly reduced the risk of cancer recur-

rence and metastasis and prolonged the overall survival

time of mice after the operation. Additionally, P–aPDL1

therapy has a stronger anticancer effect than free-aPDL1

treatment. One of the reasons is that the local concen-

trations of antibodies increase around cancer cells. An-

other reason is that platelet activation not only induces

the release of conjugated aPDL1, but also recruits many

other immune cells into the tumor microenvironment.

Upon blocking PD-L1, these immune cells can induce a

strong anticancer immune response [45].

In regard to using the interaction between platelets

and CTCs for immunotherapy, therapeutic drugs other

than aPDL1 can be selected to bind to the platelet sur-

face. Chen et al. coated PM-NV composites containing

acid-sensitive cross-linking agents in platelet membranes

and modified platelet membranes with TRAIL. Platelets

can target PM-NV composites loaded with drugs to

tumor cells, and then the drugs are released and inhibit

the development of tumors [52].

Interaction between tumor cells and immune cells or

cellular components

The immune system and tumor microenvironment play

a decisive role in tumor progression. A novel 4D lung

model (see later in the article for a description of the

model) was developed to better understand tumor pro-

gression and the interaction between tumor and immune

cells or cellular components [55].

First, CTCs from the 4D lung cancer model were

injected into immune competent mice and nu/nu mice,

respectively. In the immune competent mice, tumor cell

lines did not form metastatic lesions, while in the nu/nu

mice, metastases formed. This highlights the important

role of immune cells in inhibiting the formation of meta-

static lesions. Second, a cellular 4D model in which all

of the cells in the lung were preserved was used to

model the in vivo phenomenon. The naïve immune cells

and activated immune cells were added to the model,

which was seeded with tumor cell lines; while the acti-

vated cell line inhibited metastasis, and the naïve cell

line did not. This further emphasizes the importance of

activated immune cells in inhibiting the formation of

metastatic lesions. Third, genes related to immune regu-

lation and metastasis were compared between nonmeta-

static cell lines and metastatic cell lines in the model

with activated immune cells. The results showed that

the expression of PD-L1 in the metastatic cell line was

significantly higher than that in the nonmetastatic cell

lines in the model. In general, activated immune cells

impact the activity of CTCs that have decreased PD-L1

expression, resulting in the inhibition of metastatic le-

sion formation [55]. This study suggests a possible im-

munotherapy approach to inhibit tumor metastasis by

reducing the activity of CTCs. Namely, the expression of

PD-L1 on CTCs could be inhibited or the effect of PD-

L1 on CTCs could be blocked.

Cellular models for studying immunotherapy targeting CTCs

4 T1 cell line 4 T1 cells are 6-thioguanine-resistant cells

selected from the 410.4 tumor cell line without
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mutagenesis. When 4 T1 cells are injected into BALB/c

mice, a primary tumor lesion can form at the injection

site, and 4 T1 cells can spontaneously form highly meta-

static tumors that can metastasize to the lungs, liver,

lymph nodes and brain. The growth and metastatic char-

acteristics of 4 T1 cells in BALB/c mice are very similar

to those in human breast cancer, so tumors from 4 T1

cells can be used as an animal model of human breast

cancer. Even small clusters of metastatic cells (as few as

one) in distal organs could also be detected. Therefore,

the 4 T1 cell line can be used to study the metastasis of

CTCs at the distal site. To evaluate whether synergistic-

ally blocking CD47 and CD274 on cancer cells was ef-

fective against CTCs in the lungs, a well-established

CTC 4 T1 model was employed [26].

B16 cell line B16 cells are a useful model for studying

metastasis and solid tumor formation and one of the

first effective murine tools for metastasis research. B16

cells originate in the melanogenic epithelia of mice and

are easy to track in vivo posttransplantation. Their fidel-

ity of metastasis from skin to the lung, liver, and spleen

make them a useful and predictable tool to study meta-

static pathways. B16 cells are also used as a preclinical

model to study immunotherapy [56]. Among B16 cells,

the B16F10 cell line has the strongest ability to

metastasize and undergo erosion. B16F10 CTCs could

be detected in the blood circulation on the fourth day

after the subcutaneous inoculation of tumor cells [57].

Cellular and acellular 4D lung cancer model The

ex vivo cellular 4D model was created by harvesting the

heart-lung block from Sprague-Dawley rats, while the

acellular 4D model was developed by removing native

lung cells, which leaves behind the native extracellular

matrix [55]. The native matrix components provide an

intact structure with the vasculature, bronchi and alveoli.

In the experiment, tumor cells (344SQ or 393P) were

placed in the left trachea, traveled to the left lung and

formed a primary tumor. Later, the acellular and cellular

lungs were connected to the right main bronchus to

form a metastasis model in which the CTCs break away

from the primary tumor, intravasate into the vasculature,

travel to the contralateral lung, extravasate and form

metastatic lesions. This model allows the isolation of

tumor cells at different phases of tumor progression,

namely, at the primary tumor site, in the circulation, and

from metastatic lesions, which aids in the study of the

mechanism of CTC metastasis. By adding immune cells

to the model, the mechanism of immune cell interac-

tions with tumor cells and the impact of this interaction

on metastasis can also be studied, providing a new direc-

tion for tumor immunotherapy [55].

CTC formation: relevant immune mechanisms
The process of CTC formation and metastasis involves

several main steps: cancer cell release, immune escape,

and adhesion to and exudation from blood vessels to

form distant metastases. In these processes, interactions

between CTCs and immune system play an important

role. Although thousands of tumor cells enter the blood

from the primary tumor per day on average, the number

of CTCs that can be actually measured is often very

small. This is because a large number of tumor cells are

more likely to be attacked by immune cells due to the

loss of the protection from the original immunosuppres-

sive microenvironment after their release.

The first process is the release of tumor cells, which is

mainly associated with tumor angiogenesis, the alter-

ation of the extracellular microenvironment and the loss

of cell adhesion molecules. The major immune compo-

nents in this process include tumor-associated macro-

phages (TAMs), myeloid-derived suppressor cells

(MDSCs), neutrophils, and platelets. For example,

MDSCs secrete proinflammatory factors and endothelial

growth factors to induce tumor angiogenesis [58]. In

addition, MDSCs secrete IL-6, TGF-β, EGF and HFG to

promote epithelial-mesenchymal transition (EMT) in

tumor cells [59, 60]. Platelets release growth factors such

as PDGF, EGF and VEGF to induce tumor angiogenesis

and increase the permeability of blood vessels by releas-

ing MMPs, 5-hydroxytryptamine and histamine. MDSCs,

TAMs, and neutrophils can produce various proteases,

such as matrix metalloproteinase 9 (MMP-9), to pro-

mote matrix digestion and remodeling and promote

tumor cell migration and extravasation into blood ves-

sels by secreting cytokines [61, 62]. The paracrine loop

of TAMs and tumor cells also plays an important role in

mediating tumor invasion and metastasis [63]. Further-

more, platelets and neutrophils can promote the adhe-

sion of CTCs to endothelial cells [64, 65]. Neutrophils

can also capture and adhere to CTCs through neutrophil

extracellular traps (NETs) [66]. Studies have discovered

that the development and metastasis of advanced melan-

oma is correlated with MDSCs, Treg cells and the levels

of IL-1β, IFNγ, and CXCL10 in peripheral blood [67].

With regard to the immune escape of CTCs, the more

detailed mechanism will be described below based on

the different immune cells (Fig. 3).

Dendritic cells (DCs)

Clinical studies have demonstrated that there are signifi-

cant correlations between the number of CTCs and the

number of DCs [68]. DCs can become tumor-associated

DCs with an impaired self-function under the influence

of the tumor environment, which can affect the recogni-

tion and killing functions of cytotoxic T lymphocytes

(CTLs), NK cells and other cells [68].
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Cytotoxic T lymphocytes (CTLs)

The T cell receptors (TCRs) on the surface of CTLs can

specifically recognize tumor-associated antigens pre-

sented by MHC-I molecules on the surface of tumor

cells. To escape this killing effect, MHC-I molecules are

expressed at lower or even undetectable levels in many

tumor cells [69]. In addition, the expression of other

molecules on the surface of tumor cells can also influ-

ence this mutual recognition. The overexpression of

Cytokeratin 8 (CK8), together with its heterodimeric

partners CK18 and CK19, on the surface of tumor cells

has been demonstrated to inhibit MHC I interactions

Fig. 3 The metastatic cascade: The main steps of tumor spread. a. Intravasation: Tumor cells are first released from the primary tumor

microenvironment, then traverse the interstitial connective tissue, and ultimately gain access to the circulation by penetrating the vascular

basement membrane. b. CTCs escape from immune surveillance in the circulation: CTCs encounter immune cells through direct cell–cell

interactions and are subject to immune-mediated elimination. Escape mechanisms involving the expression of CD47, PD-L1 and FASL, as well as

alterations in MHC molecules, promote the survival of CTCs in the circulation. c. Extravasation: In the process of extravasating to secondary

locations, CTCs can directly interact with immune cells, supporting the formation of metastases
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with TCRs on CD8+ CTLs [70, 71]. In addition to pre-

venting specific T cell recognition, tumor cells also kill

T cells by upregulating the expression of FASL on their

surface while downregulating the expression of FAS,

which reduces the threshold for apoptosis in CTLs, to

achieve immune escape [72]. This mechanism mainly

leads to the apoptosis of some CD8+ T cells [73]. Some

other experiments suggest that CTCs may escape im-

mune attack by secreting soluble FASL [74–76]. Block-

ing immune checkpoints is another important immune

escape mechanism, and PD-1 and PD-L1 are the most

prominent examples. PD-L1 can be expressed by tumor

cells and can transmit inhibitory signals after binding to

PD-1 on T cells, thereby limiting immune effector func-

tions [27] CTL associated antigen 4 (CTLA 4), related

B7 family members and galectin 9 are also possible tar-

gets for immune escape mechanisms [77]. Several stud-

ies have demonstrated that when HLA-G or a

nonclassical MHC I are highly expressed on the surface

of tumor cells, the killing effect of T cells and NK cells

can be inhibited [78–81]. HLA-G inhibits the process in

which immune cells destroy tumor cells by binding to a

multitude of receptors, such as KIRs, CD8, and

leukocyte immunoglobulin like receptor sub family B

member 1 (LIR 1), which are expressed on the surface of

immune cells. The secretion of soluble HLA G (sHLA

G), a molecule that results from alternative splicing

within cancer cells, is also a mechanism of immune es-

cape [82].

NK cells

With regard to the immune escape mechanisms of NK

cells, on the one hand, tumor cells can undergo changes

that make it difficult for NK cells to recognize and kill

them. On the other hand, tumor cells actively secrete

some substances that inhibit NK cell activity [83]. NK

cells mainly identify tumor cells and initiate the killing

process by recognizing MICA/MICB on tumor cells

through the NKG2D receptor. Therefore, tumor cells

mainly downregulate the expression of MICA/MICB on

the surface while upregulating the expression of hypoxia

inducible factor 1α (HIF 1α) to increase the cell surface

expression of disintegrin and metalloproteinase contain-

ing domain protein 10 (ADAM10), which can cleave sur-

face MICA/MICB [84, 85]. Moreover, in glioblastoma,

tumor cells induced NK cell activation via the secretion

of lactate dehydrogenase 5 (LDH5), resulting in the de-

creased expression of surface NKG2D receptors [86].

Notably, while the inhibition of NKG2D receptor activa-

tion is a way that tumors escape NK cell killing in many

studies, there are still a few experiments where the re-

sults appear to contradict to our current understanding.

For example, a soluble MHC I related NKG2D ligand

(Mult1) stimulated NK-mediated antitumor responses in

an experiment [87]. Additionally, CTCs have been

shown to inhibit the activity of NK cells by causing

platelet to aggregate and interact with NK cells [88, 89].

Macrophages

Macrophages play a major role in removing CTCs from

the blood. In particular, resident macrophages in the

liver show a strong ability to clear CTCs. Studies showed

that some CTCs can upregulate the expression of CD47

on their surface, which is identified by SIRPα (also

known as macrophage fusion receptor) on the surface of

macrophages and DCs, then transmitting the ‘do not eat

me’ signal and inhibiting the clearance of tumor cells

[28]. Although numerous studies demonstrated the con-

sequences of CD47 expression in relation to immune es-

cape [90, 91] and indicated that it might be a part of a

potential metastasis initiator signature, up to now, this

mechanism has not been clear enough [49].

Platelets

Platelets can rapidly adhere to CTCs and can transfer

platelet-specific MHC class I to tumor cells, thereby es-

caping recognition and killing by NK cells [69]. In re-

sponse to DCs, the most potent APCs in tumor

immunity, VEGF is released from platelets and can in-

hibit the differentiation and development of DCs. In

vitro platelets can prevent the differentiation of

hematopoietic precursors into DCs [92, 93]. TGFβ re-

leased from platelets can also inhibit immune function

in various ways, such as inhibiting the infiltration, prolif-

eration, differentiation, and activation of immune cells in

tumors, inducing low or no expression of HLA-class II

molecules, etc., allowing tumor cells to escape immune

surveillance [94].

Conclusion
Along with the development of CTC isolation technolo-

gies and the progress of tumor immune research, CTCs

have begun to be considered an immunotherapeutic tar-

get, and adopting immunotherapeutic strategies to re-

duce or even eliminate CTCs may be a new and feasible

way to inhibit tumor metastasis or recurrence. However,

due to insufficiently and incompletely understood mo-

lecular mechanisms, immunotherapeutic strategies tar-

geting CTCs are not currently fully developed. We look

forward to more further research on the relationships

between CTC formation and immune escape.
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