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Circulating Tumor DNA Mutation 
Profiling by Targeted Next 
Generation Sequencing Provides 
Guidance for Personalized 
Treatments in Multiple Cancer 
Types
Yongqian Shu1, Xue Wu  2, Xiaoling Tong2, Xiaonan Wang3, Zhili Chang3, Yu Mao3, Xiaofeng 
Chen1, Jing Sun1, Zhenxin Wang4, Zhuan Hong5, Liangjun Zhu5, Chunrong Zhu4, Jun Chen6, 

Ying Liang7, Huawu Shao3,8 & Yang W. Shao2

Cancer is a disease of complex genetic alterations, and comprehensive genetic diagnosis is beneficial 
to match each patient to appropriate therapy. However, acquisition of representative tumor samples 
is invasive and sometimes impossible. Circulating tumor DNA (ctDNA) is a promising tool to use as a 
non-invasive biomarker for cancer mutation profiling. Here we implemented targeted next generation 
sequencing (NGS) with a customized gene panel of 382 cancer-relevant genes on 605 ctDNA samples 
in multiple cancer types. Overall, tumor-specific mutations were identified in 87% of ctDNA samples, 
with mutation spectra highly concordant with their matched tumor tissues. 71% of patients had at least 
one clinically-actionable mutation, 76% of which have suggested drugs approved or in clinical trials. In 
particular, our study reveals a unique mutation spectrum in Chinese lung cancer patients which could 
be used to guide treatment decisions and monitor drug-resistant mutations. Taken together, our study 
demonstrated the feasibility of clinically-useful targeted NGS-based ctDNA mutation profiling to guide 
treatment decisions in cancer.

Cancers arise largely due to genetic mutations, yet are notorious for genetic diversity in di�erent carriers1, 2. 
Personalized cancer treatment optimizes the clinical bene�ts for each patient by choosing targeted interven-
tions based on that patient’s unique genetic pro�le and thus avoids ine�ective therapies3. However, personalized 
treatment requires comprehensive and precise genetic pro�ling of the patient’s tumor. �e development of next 
generation sequencing (NGS) has o�ered unprecedented progress in uncovering cancer genome characteristics 
and facilitating personalized cancer therapy due to its outstanding accuracy, sensitivity and high throughput4–6. 
Resected tumor tissues are frequently used in current NGS-based genetic testing7, but the operation is generally 
invasive, risky and o�en simply not possible, especially for cancer patients with advanced disease8. Additionally, 
cancer cells continuously acquire new mutations due to genomic instability and/or selective pressure from the 
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tissue microenvironment and clinical treatment9–11. �us, testing of a single tumor sample may overlook intra- 
and inter-tumor heterogeneity12, 13.

Circulating tumor DNA (ctDNA) is tumor-derived fragmented DNA circulating in blood along with cell free 
DNA (cfDNA) from other sources. ctDNA has an average length of 167 bp14–16. Although the mechanisms of 
ctDNA release into circulation have not yet been fully addressed, most reports consider apoptosis and/or necrosis 
of tumor cells as its main sources16, 17. ctDNA is therefore a genomic reservoir of di�erent tumor clones and a 
good representation of tumor genomic diversity compared to a single tumor sample. Moreover, with a half-life 
from 16 minutes to a few hours18–20, ctDNA re�ects the most up-to-date status of the tumor genome. Several 
methods have been developed to inspect tumor-speci�c mutations in ctDNA, such as allele-speci�c PCR, droplet 
digital PCR (ddPCR) and “BEAMing” (Beads, Emulsions, Ampli�cation and Magnetics)21–24. Although these 
techniques are highly sensitive, their two major drawbacks are (1) low throughput on mutation scanning, and (2) 
the requisite of prede�ned knowledge of molecular targets to test for, meaning these techniques cannot be used 
for de novo mutation identi�cation. Several groups have incorporated NGS into ctDNA mutation pro�ling and 
successfully identi�ed numerous genetic alterations that correlate with disease progress and prognosis25–28. With 
growing interest in ctDNA testing, it is important to evaluate its utility in di�erent types of solid tumors, not only 
as a diagnostic tool, but also as a tool for screening, monitoring and novel biomarker identi�cation. In this study, 
we used a self-designed pan-cancer gene panel covering the exons of 382 genes for targeted NGS and established 
a clinically-applicable pipeline for ctDNA enrichment, sequencing and data analysis. �is method was applied 
onto 605 patients with 29 di�erent types of solid tumors. For comparison, tumor tissues from 344 patients were 
tested at the same time. Our data proves that mutation pro�ling of ctDNA by targeted NGS is feasible in clinical 
practice to guide treatment decisions during diagnosis and disease monitoring.

Results
Study Design and Patient Enrollment. 605 cancer patients were randomly selected from 25 hospitals 
across Mainland China with a total of 29 types of tumors to ensure the representativeness and generalizability of 
this study. Brain tumors were excluded from this study due to the inhibition of release of ctDNA to blood by the 
blood-brain barrier24 (Supplementary Table 1 and Fig. 1a). Most patients had progressed to advanced cancer at 
the time of recruitment. Lung cancer (n = 373) was the largest category due to its high incidence in China29 and 
success in targeted therapy30–32. �e other most common tumor types in our study were colorectal (n = 49), breast 
(n = 35) and stomach cancers (n = 30) (Fig. 1a). Two major criteria were applied for the exclusion of patients: 1) 
patients subjected to recent surgeries with primary tumors resected; and 2) patients currently receiving intensive 
targeted and/or non-targeted chemotherapies, with clinical imaging showing restrained tumor progression.

Patients were divided into two cohorts: one cohort (cohort I) had ctDNA samples collected along with their 
matched archived formalin-�xed para�n-embedded (FFPE) or frozen tumor tissue samples, and another cohort 
(cohort II) only had ctDNA samples collected (Fig. 1b). Cohort I was designed to compare mutation pro�les 
between ctDNA and tumor samples, as well as to assess the concordance rate for mutation detection between 
sample types. Cohort II was designed to compare ctDNA mutation pro�les between two cohorts of patients. For 
each subject in both cohorts, genomic DNA from matched whole blood was also sequenced in order to discrimi-
nate of somatic and germline abnormalities.

Targeted NGS-based Pan-Cancer Gene Mutation Profiling. Tumor tissue, cfDNA (which includes the 
ctDNA along with cfDNA from other sources) and whole blood controls were all sequenced using the same pre-
de�ned panel (Fig. 2). Brie�y, cfDNA was extracted from plasma, while genomic DNA was extracted from whole 
blood and either �xed or fresh tissue blocks (Fig. 2a). �e median concentration of cfDNA from all 605 patients 
was 11.48 ng/ml plasma (Supplementary Fig. 1a). Extracted cfDNA was analyzed by the Agilent 2100 Bioanalyzer 
in order to detect genomic DNA contamination (Supplementary Fig. 1b) and subjected to an extra size-selection 
step using magnetic beads if contamination was found (data not shown). cfDNA and genomic DNA from all sam-
ple types underwent whole-genome library construction (Supplementary Fig. 1c and data not shown), followed 
by hybridization-based capture enrichment of 5,804 exons of 382 cancer-relevant genes and 37 introns of 16 genes 
frequently rearranged in solid tumors (Fig. 2b and Supplementary Table 2). Libraries a�er target enrichment were 
sequenced to high uniform depth on Illumina Miseq or HiSeq4000 platforms, depending on the sample type (see 
Methods). Sequencing data was analyzed using a customized bioinformatic pipeline optimized to accurately detect 
di�erent classes of genomic alterations, including base substitutions, indels, copy number variations (CNV) and gene 
fusions (Fig. 2c). Finally, both germline and somatic genetic alterations in each patient were subject to manual data 
curation and reported (Fig. 2d). �e average turnover time from receiving samples to reporting was 10 business days.

High Concordance of Mutation Spectra between Matched ctDNA and Tumor Samples. Cohort I 
included 344 patients representing 28 tumor types (Fig. 3a). ctDNA and tumor tissue blocks were sequenced simultane-
ously to provide a direct comparison of these two sample types. Patients with at least one somatic mutation identi�ed in 
their ctDNA were de�ned as patients with detectable mutations in ctDNA, and were grouped by tumor types (Fig. 3b). 
Overall, ctDNA abnormalities were detected in around 80% of patients representing a majority of tumor types, with 
the exception of so� tissue tumors (mostly sarcoma) which showed the lowest rate of mutation detection in ctDNA.

In cohort I, a total of 1109 CNVs and mutations in ctDNA samples, and 1249 CNVs and mutations in tumors, 
were identi�ed from 208 genes. 932 out of 1249 genetic abnormalities (74.6%) in tumor tissue were shared by 
matched ctDNA samples (Fig. 3c), although CNV was under-reppresented in ctDNA due to the current limita-
tion of statistical approaches for CNV identi�cation in NGS, especially in low tumor content samples33 (Fig. 3d 
and Supplementary Fig. 2a). Not surprisingly, CNV constituted 57% (181 out of 317) of the tumor-unique muta-
tions. �erefore, CNVs were excluded in later analysis, and the concordance rate for all the other types of abnor-
malities increased to 87.0% (883 out of 1016). Meanwhile, ctDNA samples also harbor 177 unique abnormalities 
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(including 24 CNVs) that were absent from tumor tissues, which may be ascribed to the inadequate representa-
tion of spatial and temporal heterogeneity by tumor tissue sequencing.

�ere is a signi�cant correlation (Spearman r = 0.64, p < 0.0001) in the number of mutations identi�ed 
between ctDNA and matched tumor tissue within each patient (Fig. 3e). 88% of tumor and 91% of plasma sam-
ples had 1–6 somatic mutations identi�ed (median: 3 per sample for both). As expected, ctDNA, since it is mixed 
with cfDNA from other non-tumor sources, displayed signi�cantly lower mutant allele frequencies (MAFs) with 
66% of them below 10% (median: 5%), while mutations in tumor tissues had much higher MAFs with a median 
of 23% (Supplementary Fig. 2b).

Increasing sequencing coverage depth of ctDNA proved to be an e�cient way to improve the detection sen-
sitivity of tumor-speci�c mutations (Fig. 3f and Supplementary Fig. 2c). We chose 300× mean coverage depth 
of ctDNA as our cuto� for data analysis in this study. We could not detect any tumor-speci�c mutations in the 
ctDNA of 24% of patients using a mean coverage depth below 300× and a MAF detection cuto� of 1% (see 
Methods); however, when the coverage depth was increased to 300–500×, we observed a signi�cant improvement 
in detection of matching mutations between ctDNA and tumor pairs. Further increasing the coverage depth to 
500–1000×, 1000–2000× or >2000× did not signi�cantly improve the matching rate (Fig. 3f). �e number 
of mutations identi�ed in tumor tissue and ctDNA, as well as their overlaps, are provided in Supplementary 
Table S3. Similar results were observed when comparing output of coverage depth variation between groups 
of di�erent coverage depth in cohort I. When below 300× coverage depth for ctDNA sequencing, only 67% of 
tumor mutations were identi�ed in ctDNA samples (Supplementary Fig. 2c). When coverage depth was increased 
to 300–500×, 88% of tumor mutations were detected in ctDNA, but the concordance rate was hardly improved 
when the coverage depth was increased up to 2000×. As a result, samples with coverage depth below 300× in this 
pilot group were excluded from other analyses.

Figure 1. Study design and patient enrollment. (a) �e percentage of di�erent tumor types that enrolled in this 
study, including both Cohort I and II. Tumor types that were represented by less than 4 cases were classi�ed as 
“Others”. (b) A schematic outlining our two-tiered study, including the cohorts and the specimens involved in 
this study.
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�ere are several reasons to explain why mutations would be detected in tumor tissue but not in ctDNA, even 
at high coverage depth. One key reason is the low MAF of these mutations in tumor samples, suggesting extensive 
tumor heterogeneity in these patients (Supplementary Fig. 3a). Indeed, 43% of mutations that were undetected in 
ctDNA have a low MAF (below < 10%) in matched tumor tissues (Supplementary Fig. 3b). Other reasons include 
aged FFPE samples that may not represent the current mutation pro�le of the patient’s tumor, early stage cancers 
with low tumor burden, treatment intervention that may lower the possibility of detecting mutations in plasma 
and speci�c genetic regions that cannot be targeted well by NGS due to high GC-content or repetitive sequences 
that would in�uence ctDNA more than tissue sample due to the low MAF in ctDNA. Previous studies have 
showed that cfDNA concentration in plasma may be correlated with tumor burden and disease status24; however, 
we observed that the mutation detection rate was not signi�cantly in�uenced by the plasma cfDNA concentration 
(Supplementary Fig. 3c).

Targeted NGS-based Mutation Profiling of ctDNA Shows Great Potential for Clinical Practice 
to Guide Treatment Decisions. Our cohort II includes solely 261 ctDNA samples from patients with 28 
types of solid tumors to validate the ctDNA mutation patterns observed in cohort I (Fig. 4). Promisingly, the 
results from cohorts I and II showed similar trends in several aspects, including percentage of patients with 
detectable mutations in ctDNA, number of mutations per patient, distributions of MAFs and di�erent mutation 
types (Fig. 4b–e).

Combining ctDNA samples from cohorts I and II, somatic mutations were detected in 87% (529 out of 605) 
of patients. By compiling mutations identi�ed in ctDNA samples of these two cohorts, it was observed that TP53 
(18.1% of all mutations), APC (3.3%) and DNMT3A (2.5%) were the most frequently mutated tumor suppres-
sor genes, while EGFR (11.9%), KRAS (3.7%) and PIK3CA (3.0%) were the most frequently mutated oncogenes 
(Fig. 5a). 35.3% (662 out of total 1874 mutations in cohort I and II) of all mutations detected in ctDNA are 
potentially clinically-actionable, which are de�ned by three criteria: 1) they are related to FDA approved drugs 
or therapies; 2) they contribute to clinical therapy choice and outcome predictions in published clinical studies; 
and 3) they are targets of drugs or therapies that are currently under active clinical trials, showing promising 
intervention results27, 34 (Fig. 5a, green and red portions; Supplementary Table 4). Among these, 66.0% (437 out of 
662) of mutations can be targeted by drugs already approved or currently in clinical trials (Fig. 5a, red portion). In 
summary, at least one clinically-actionable mutation was detected in 71% of patients (376 out of 529 patients with 
mutations detectable in their ctDNA, Fig. 5b), and 54% of patients had at least one druggable mutation (Fig. 5c). 
Overall, our data strongly suggests that this technique is an informative and e�ective approach to uncover drug-
gable molecular targets, and has great potential to be used in guiding clinical treatment decisions.

Characteristics of Mutations Identified in ctDNA from Chinese Lung Cancer Patients. Our study 
also comprehensively analyzed the mutation spectrum in Chinese lung cancer patients. 273 lung cancer patients 
involved in this study were documented with clear clinical histological diagnosis and cancer stage classi�cation. 
Adenocarcinoma represents 84% (n = 228) of all cases and no obvious gender di�erence in susceptibility to this 
subtype was observed (Fig. 6a). However, for squamous cell (n = 30) and small cell carcinoma (n = 15), more male 
patients were observed than females. By performing a co-mutation plot of mutations identi�ed with the highest 
incidences in these patients, we showed that TP53 mutations (52.38%) appear most frequently in ctDNA taken 
from patients with all types of lung cancers, followed by EGFR mutations (~40%) that exhibit strong preference 
to patients with adenocarcinoma (Fig. 6a and c). Di�erent genes displayed variable preferences for di�erent types 
of mutations. For example, EGFR is prone to adopt in-frame indel and missense mutations, while ALK is prone 
to forming fusion genes (Fig. 6b). In EGFR, the most prevalent mutations are exon19-deletion, T790M, L858R 
and exon20-insertion, with other types of activated EGFR mutations detected at lower frequencies (Fig. 6d). 

Figure 2. Work�ow of targeted NGS-based mutation pro�ling. (a) Genomic DNA is extracted from multiple 
sample types. (b) Whole-genome libraries are prepared from fragmented genomic DNA or cfDNA, followed 
by hybridization capture with biotinylated DNA probes to establish target-enriched sequencing libraries for 
NGS. (c) Sequencing data undergoes quality control (QC), mapping and bioinformatic analysis to identify 
di�erent classes of genomic aberrations. (d) Mutations identi�ed are �ltered and annotated according to related 
databases, and their clinical signi�cances are interpreted in the �nal report.
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T790M mutations were only present in patients with resistance to tyrosine kinase inhibitor (TKI) treatment35. 
EGFR-C797G/S mutations, which were reported as the acquired resistance mutations in patients treated with the 
third generation of TKI, AZD929136, were also detected.

It was observed that KRAS mutations are detected in 8% of patients, mainly those with adenocarcinoma, 
and are mutually exclusive from EGFR mutations as previously reported37, 38, although one patient harbored 
KRAS-G12L, EGFR ampli�cation and exon19-deletion simultaneously (Fig. 6a). In squamous cell carcinoma, the 
occurrences of CDKN2A (27%) and PTEN (17%) mutations become more frequent compared to other cancer 
subtypes, while in small cell carcinoma, RB1 mutations become more prevalent (40%) (Fig. 6a). Taken together, 
our study fully validates the use of targeted NGS-based genetic testing of ctDNA samples in clinical practice for 
guiding therapy decisions and monitoring treatment responses in lung cancer.

Figure 3. Mutation detection concordance between matched tumor and ctDNA samples in cohort I. (a) 
�e composition of di�erent tumors classi�ed by their tissue origins. Tissue types that have less than 4 cases 
represented in the study are classi�ed as “Others”. (b) �e percentage of patients with mutations detected in 
ctDNA within di�erent tumor types. Tumor types with less than 4 cases are not shown. (c) Shared and unique 
mutations identi�ed in tumor and ctDNA samples. (d) �e composition of mutation types in tumors and 
ctDNA. (e) Correlation of mutation numbers in ctDNA and matched tumors (Spearman’s rank test, p < 0.0001). 
�e scatter dots were plotted according to mutation numbers identi�ed per patient in ctDNA and matched 
tumors and the density represents the number of patients. (f) �e correlation between mutation detection 
concordances in the matched tumor-ctDNA samples and sequencing coverage depth. �e concordance rate 
was calculated by dividing the number of mutations in ctDNA to the number of mutations in matched tumor 
sample for each patient. Each dot represents one individual patient with median concordance rate shown by the 
black bar. *p < 0.05, Dunn’s multiple comparisons test; ns, not signi�cant.
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Discussion
In this study, we presented that targeted NGS of ctDNA is non-invasive, can be completed with a fast turnover 
time, and can be standardized to generate reproducible data for routine clinical practice.

As we know, ctDNA is vigorously diluted by fragmented DNAs from normal cells, only taking up 0.01~10% 
of total cfDNA39. A critical advantage of targeted NGS compared to whole genome or exome sequencing is its 
increased coverage depth and sensitivity on genes of interest in a cost-e�ective manner for clinical practice. In this 
study, we designed a targeted pan-cancer gene panel, and identi�ed mutations in all the patients with a median of 
3 mutations per case. In cohort I, targeted NGS of ctDNA is equally e�ective to that of tumor tissues in identifying 
somatic mutations, with the exception of CNV detection, which needs to be further optimized for sensitivity by 
NGS. In addition to mutations shared with matched tumor DNA, ctDNA also harbored unique mutations that 
could be ascribed to spatial and temporal gaps between these two sample types. To validate the reproducibility of 
using ctDNA genetic testing as an independent test without matched tumors, we tested ctDNA alone in cohort II 
and observed similar number of mutations and mutation types as in cohort I.

In previous studies, a coverage depth as high as 10,000× has been reached in order to uncover rare ctDNA 
mutations26. However, high NGS coverage depth competes with sequencing errors to balance mutation identi�-
cation with low false discovery rate40. �erefore, di�erent detection thresholds should be set up for genetic testing 
during the diagnosis stage for de novo discoveries and during the disease monitoring stage for known mutations 
identi�ed in primary tumors. To justify the minimum coverage depth enough to spot mutations in a cost-e�ective 
manner, we analyzed the mutation detection rate and concordance at di�erent levels of coverage depth, and 

Figure 4. Similar ctDNA results between cohorts I and II. (a) �ere was a comparable distribution of tumor 
types covered in both cohorts I and II. (b) �e fraction of patients with detectable ctDNA mutations in cohort 
II. (c) �e distribution of mutation numbers identi�ed per patient in cohorts I and II. (d) �e distribution of 
MAFs in cohorts I and II. No signi�cant di�erence was detected between the two cohorts in c and d by Mann-
Whitney U test. (e) �e distribution of di�erent mutation types in cohorts I and II.
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found that 300× mean coverage was the minimum requirement for mutation detection with the cuto� of MAF 
detection set at 1%, with increasing coverage depth leading to slightly increased mutation detection. In our study, 
most patients have progressed to advanced cancers when recruited. �erefore, with a MAF cuto� of 1%, we were 
able to detect at least one somatic mutation in 87% of patients. However, in most early-stage solid tumors or 
post-treatment patients, ctDNA levels are very low and thus need ultra-deep sequencing (>10000×) in order to 
detect rare mutations. Recently, accurate methods have been developed to reduce sequencing-related artifacts at 
these ultra-deep coverage depths41, 42. For example, Newman et al. developed a new method combining in silico 
elimination of stereotypical background artifacts with a molecular barcoding strategy for accurately identifying 
ultra-low frequency mutations in ctDNA samples. However, this technology will be costly for large gene panels in 
clinical practice, and is more suitable to be used for more de�ned, smaller gene panels.

A small discordance between mutation pro�les from tissue and liquid biopsies is generally common. On one 
hand, a liquid biopsy harbors the mutations of all cancerous lesions (primary and metastases). �us, ctDNA 
sequencing can detect mutations that cannot be identi�ed in one single biopsy from tumor tissue. On the other 
hand, in cancers with low tumor burden, several mutations identi�ed in tissue samples may not be detected 
in liquid biopsies due to the low content of ctDNA in cfDNA. �us, when considering how to interpret muta-
tions detected in both tissue and ctDNA samples during clinical management, we recommend combining all 
high-con�dence somatic mutations present either in tissue or liquid biopsy samples for the generation of a �nal 
report. Regarding clinical reports, we adopted the strategy of involving multiple reviewers from molecular tumor 
boards to independently, then collaboratively, review mutation results. Our reporting strategy is relatively labor 
intensive and time-consuming, but the combined independent and collaborative reviews are not only important 
but also bene�cial to the interpretation of clinically-actionable mutations.

�e purpose of accessing the tumor genome is to acquire useful mutation information, guiding clinical ther-
apeutic decisions. In our study, 71% of patients that have detectable mutations in their ctDNA have at least one 
clinically-actionable mutation with 76% having suggested drugs approved or in clinical trials. Targeted drugs are 
only e�ective when certain mutations are present. Drug-resistant mutations were also identi�ed in our study, and 
identi�cation of these will avoid unnecessary treatment. Although targeted agents for tumor suppressor genes 
are not currently available, such as TP53, RB1 and BRCA1/2, their loss of function was shown to in�uence e�-
cacy of some chemotherapy drugs43–45 and thus mutations in these genes are worthy of being taken into account 
when making therapeutic decisions. Further analysis of lung cancer, the most prevalent cancer type in our study 
cohorts, revealed a similar mutation distribution in the Chinese population as previously-reported46, 47. EGFR was 
mutated in 46.9% of adenocarcinoma cases, which could instruct the clinical application of EGFR TKI instantly. 
We also observed a much lower detection rate of KRAS (8%) in Chinese patients than the 33% reported by the 
Cancer Genome Atlas Research Network in 201438. However, since the patients we tested have undergone various 
levels of chemotherapy or targeted treatments, their genomic pro�les were likely reshaped by drug selection, 
restraining further interpretation of the results.

In summary, targeted NGS-based ctDNA mutation pro�ling is a non-invasive and sensitive tool to monitor 
tumor development, treatment response and drug resistance. With the �exibility to update customized targeted 

Figure 5. Clinically-actionable mutations identi�ed in ctDNA samples. (a) Genes that are frequently mutated 
in cancer were ranked by their mutation frequency in all ctDNA samples tested, with the proportion of 
currently druggable mutations and potentially actionable mutations highlighted in red and green, respectively. 
Genes with low mutation occurrences (≤4) were not shown. (b) �e percent of patients that presented with 
varying numbers of clinically-actionable mutations. (c) �e percent of patients that presented with varying 
numbers of druggable mutations.
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gene panels to adapt to di�erent tumor types and to incorporate new discoveries, it o�ers a cost-e�ective platform 
as a routine clinical test to guide cancer treatment.

Methods
Patients and Sample Collection. Between November 2014 and October 2015, a total of 605 can-
cer patients were enrolled from hospitals across China (Supplementary Table 1). All patients were informed 
of sample collection and intended research usage. Written consent was collected according to ethical regula-
tions of each participating hospital. �e tests were performed in a centralized clinical testing center (Nanjing 
Geneseeq Technology Inc., Nanjing, China) according to protocols reviewed and approved by the ethical com-
mittee of Jiangsu Provincial Hospital. All methods were performed in accordance with the relevant guidelines 
and regulations.

5–10 ml peripheral blood was collected from each patient and placed into EDTA-coated tubes (BD 
Biosciences). Plasma was extracted within 2 hours of blood collection and shipped to the central testing labora-
tory within 48 hours. Formalin �xed para�n embedded (FFPE) blocks/sections or fresh tumor tissues/biopsies 
were obtained from the hospitals, with con�rmation by pathologists for diagnosis and tumor purity.

DNA Extraction and Quantification. cfDNA was extracted using the NucleoSpin Plasma XS kit 
(Macherey Nagel) with optimized manufacturer’s protocols. Fresh tissue DNA and whole blood DNA were 
extracted using the DNeasy Blood & Tissue kit (Qiagen) according to the manufacturer’s protocols. FFPE sam-
ples were de-para�nized with xylene and DNA was extracted using the QIAamp DNA FFPE Tissue Kit (Qiagen) 
according to the manufacturer’s protocols. Purified DNA was qualified by Nanodrop2000 (Thermo Fisher 
Scienti�c) and quanti�ed by Qubit 2.0 using the dsDNA HS Assay Kit (Life Technologies) according to the man-
ufacturer’s recommendations.

�e size distribution of cfDNA was analyzed by the Agilent Technologies 2100 Bioanalyzer using the Agilent 
High Sensitivity DNA kit (Agilent Technologies) according to the manufacturer’s instructions. For cfDNA 

Figure 6. Mutation analysis of lung cancer patients. (a) A co-mutation plot of various types of mutations in 
the ctDNA of lung cancer patients. Only genes with more than 10 occurrences are shown in this plot. (b) �e 
composition of mutation types within each gene. (c) �e percentage of patients with mutations in each gene. (d) 
�e speci�c mutations identi�ed in EGFR and their frequencies in the ctDNA of our cohorts.
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samples contaminated with genomic DNA, size selection was performed using Agencourt AMPure XP beads 
(Beckman Coulter) according to the manufacturer’s recommendations.

Library Preparation. Sequencing libraries were prepared using the KAPA Hyper Prep kit (KAPA 
Biosystems) with an optimized manufacturer’s protocol. In brief, 1 µg of genomic DNA, which was sheared into 
350 bp fragments using the Covaris M220 instrument (Covaris), or 2–100 ng of cfDNA, underwent end-repairing, 
A-tailing and ligation with indexed adapters sequentially, followed by size selection using Agencourt AMPure XP 
beads. Finally, libraries were ampli�ed by PCR and puri�ed for target enrichment.

Hybridization Capture and Sequencing. Di�erent libraries with unique indices were pooled together in 
desirable ratios for up to 2 µg of total library input. Human cot-1 DNA (Life Technologies) and xGen Universal 
blocking oligos (Integrated DNA Technologies) were added as blocking reagents. Customized xGen lockdown 
probes (Integrated DNA Technologies) targeting 382 cancer-relevant genes and 16 fusion genes were used for 
hybridization enrichment (Supplementary Table 2). �e capture reaction was performed with the NimbleGen 
SeqCap EZ Hybridization and Wash Kit (Roche) and Dynabeads M-270 (Life Technologies) with optimized 
manufacturers’ protocols. Captured libraries were on-beads ampli�ed with Illumina p5 (5′ AAT GAT ACG GCG 
ACC ACC GA 3′) and p7 primers (5′ CAA GCA GAA GAC GGC ATA CGA GAT 3′) in KAPA HiFi HotStart 
ReadyMix (KAPA Biosystems). �e post-capture ampli�ed library was puri�ed by Agencourt AMPure XP beads 
and quanti�ed by qPCR using the KAPA Library Quanti�cation kit (KAPA Biosystems). Library fragment size 
was determined by the Agilent Technologies 2100 Bioanalyzer. �e target-enriched library was then sequenced 
on Illumina MiSeq or HiSeq4000 NGS platforms (Illumina) according to the manufacturer’s instructions. For 
blood samples, sequencing depth was >100× mean coverage by non-PCR duplicate read pairs. For tumor spec-
imens, sequencing depth was >300× mean coverage by non-PCR duplicate read pairs. For cfDNA samples, 
di�erent sequencing depth was achieved for evaluation with the majority of the samples at >2000×. 99% of exons 
were at coverage >100× for all samples.

Sequence Data Processing and Identification of Clinically-Actionable Mutations. Trimmomatic48 
was used for FASTQ �le quality control (QC). Leading/trailing low quality (quality reading below 15) or N bases 
were removed. Reads from each sample were mapped to the reference sequence hg19 (Human Genome version 
19) using Burrows-Wheeler Aligner (BWA-mem, v0.7.12)49 with parameters (-t 8 -M). Local realignment around 
indels and base quality score recalibration were applied with the Genome Analysis Toolkit (GATK 3.4.0)50. 
GATK3.4.0 was applied to detect germline mutations from blood control samples. VarScan251 was employed 
for detection of somatic mutations (somatic p-value = 0.1, minimum quality score = 15 and otherwise default 
parameters). Somatic variant calls presenting at less than 1% mutant allelic frequency in the paired blood control 
sample, but with at least 1% allelic frequency and at least 3 reads supporting variant alleles in tumor samples, were 
retained. We also �ltered mutations reported in dbSNP (v137) and the 1000 Genomes database, but still kept 
mutations if they were also present in COSMIC database (v76). Annotation was performed using ANNOVAR52 
using the hg19 reference genome and 2014 versions of standard databases and functional prediction programs.

Genomic fusions were identi�ed by FACTERA53 with default parameters. In short, we set minimum number 
of breakpoint-spanning reads to 5, minimum number of discordant reads to 2 and minimum similarity required 
for alignment of read to fusion template to 95%. Copy number variations (CNVs) were detected using ADTEx 
(http://adtex.sourceforge.net) with default parameters. �e main advantage of ADTEx is that it can derive abso-
lute copy numbers without any a priori knowledge of levels of normal DNA contamination or ploidy of the tumor 
samples54. �e algorithm takes not only depth of coverage (DOC) ratios but also allele frequency of germline 
heterozygous SNP (BAF) as inputs. �e DOC ratios are smoothed by discrete wavelet transformation techniques 
prior to applying HMM to estimate polyploidy, normal contamination ratio and absolute CNVs. Germline CNVs 
from each patient were identi�ed using the blood sample and normal human HapMap DNA sample NA18535 
(Coriell Institute) for each captured region (exonic region). Somatic CNVs were identi�ed using paired normal/
tumor samples for each exon.

To facilitate implementation of genomically-informed therapy, we have adapted the established principles55 
to create a three-tiered scale for levels of evidence to establish associations between genomic mutations and 
response to therapy. Level I data requires FDA-approved drugs or therapies (http://www.fda.gov/Drugs/). Level 
II data contributes to clinical therapy choice and outcome predictions in published clinical studies. We carried 
out literature searches to identify published prospective clinical studies pertaining to genomic alterations and 
their association with clinical bene�ts. For example, one such study might have been a case-control study demon-
strating a statistically-signi�cant association of a mutation with clinical bene�t. Level III data requires drugs or 
therapies that are currently under active clinical trials (http://clinicaltrials.gov/), showing promising intervention 
results. All genomic alterations that can be targeted by drugs from Level I or Level III data were de�ned as drug-
gable mutations.

At least two reviewers from the molecular tumor board independently compiled lists of candidate reportable 
mutations and manually reviewed the mutation calls based on various criteria: (i) not present in a segmental 
duplication region or a region with mapping score < 2; (ii) at least two distinct reads with di�erent mapping 
positions (reads with the same mapping positions are more likely duplicates) supporting variant alleles; (iii) reads 
supporting variant alleles should be located on both strands; (iv) variant nucleotides should not always be located 
at the 3′ end of supporting reads; and (v) indel sequences should not be followed by near-identical closely located 
repeats. �ese independent lists were then combined by the medical director and returned to the board for group 
assessment. Once the molecular tumor board agreed on a �nal list of mutations to report, the medical director 
composed a formal medical report describing the mutations detected and the clinical action associated with each 
mutation.

http://2
http://adtex.sourceforge.net
http://www.fda.gov/Drugs/
http://clinicaltrials.gov/
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Data Deposition Statement. Sequence data has been deposited at the European Genome-phenome 
Archive (EGA, http://www.ebi.ac.uk/ega/), which is hosted by the EBI, under accession number 
EGAS00001002251.
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