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Abstract 

Background: Observational studies have suggested an association between circulating vitamin D 

concentrations [25(OH)D] and risk of breast and prostate cancer, which was not supported by a 

recent Mendelian randomization analysis comprising 15,748 breast and 22,898 prostate cancer 

cases. Demonstrating causality has proven challenging, and one common limitation of MR studies 

is insufficient power.  

Methods: We aim to determine if circulating concentrations of vitamin D are causally associated 

with the risk of breast and prostate cancer, by using summary level data from the largest-ever 

genome-wide association studies conducted on vitamin D (N=73,699), breast cancer 

(Ncase=122,977) and prostate cancer (Ncase=79,148). We constructed a stronger instrument using 

six common genetic variants (as compared with the previous four variants), and applied several 

two-sample MR methods. 

Results: We found no evidence to support a causal association between 25(OH)D and risk of 

breast cancer [OR per 25nmol/L increase, 1.02 (95%CI: 0.97-1.08), P=0.47], estrogen receptor 

(ER)+ [1.00 (0.94-1.07), P=0.99] or ER [1.02 (0.90-1.16), P=0.75] subsets; prostate cancer [1.00 

(0.93-1.07), P=0.99] or the advanced subtype [1.02 (0.90-1.16), P=0.72] using the inverse variance 

weighted method. Sensitivity analyses did not reveal any sign of directional pleiotropy. 

Conclusion: Despite its almost five-fold augmented sample size and substantially improved 

statistical power, our MR does not convincingly support a causal effect of circulating 25(OH)D 

concentrations on breast or prostate cancer risk. However, we can still not exclude a modest or 

non-linear effect of vitamin D. Future studies may be designed to understand the effect of vitamin 

D in subpopulations with a profound deficiency. 
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Key message 

We did not find a putative causal role of circulating vitamin D concentration in the risk of breast 

or prostate cancer. 

We still cannot exclude a modest or non-linear effect of vitamin D on malignant disease. 

Future work on vitamin D may be focused on cancer mortality or on subpopulations with a 

profound deficiency. 
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Introduction 

Vitamin D is a fat-soluble vitamin and steroid pro-hormone that plays an essential role in bone 

health.1 Its biologically active form 1,25-hydroxyvitamin D regulates multiple signaling pathways 

involved in cell proliferation, apoptosis, differentiation and inflammation, and is therefore believed 

to have an anti-carcinogenic property.2 

Epidemiologic evidence on the association of circulating vitamin D and risk of breast and prostate 

cancer, the two most common malignancies in women and men, remains inconclusive. A meta-

analysis aggregating data from 24 prospective studies (Ncase=31,867) identified a pooled relative 

risk of breast cancer for the highest (>31ng/ml) vs. lowest (<18ng/ml) blood 25-hydroxyvitamin 

D [25(OH)D] of 0.92 (95%CI: 0.83-1.02).3 Another meta-analysis combining data from 19 

prospective studies (Ncase=12,824) found a summary relative risk of 1.04 (95% CI: 1.02-1.06) per 

10 ng/ml increment in circulating 25(OH)D concentration.4 Inferring causality from such studies 

is challenging because it is difficult to exclude reverse causality, confounding or measurement 

error. 

Although the effect of circulating 25(OH)D on cancer risk can be demonstrated by traditional 

randomized controlled trials (RCT), large-scale RCTs are not currently widely available due to 

high cost and long duration. In the Women’s Health Initiative trial, 36,282 postmenopausal women 

were randomized to 400 IU vitamin D or placebo, and a hazard ratio of 0.96 (95%CI: 0.85-1.09, 

P=0.55) for breast cancer was observed after 7 years’ follow up.5 For prostate cancer, only two 

comprehensive ongoing trials involving both men and women, the “VITAL” launched in 2010 

(N=25,871)6 and the “D-Health” launched in 2014 (N=21,315),7 will provide an opportunity to 

clarify the role of vitamin D on male health outcomes upon completion. Yet, both RCTs are likely 

to be underpowered given the relatively low prostate cancer incidence. 
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Mendelian randomization (MR) analysis overcomes the limitations of conventional approaches by 

using genetic variants (single nucleotide polymorphisms, SNPs) as instrumental variables (IVs) 

for assessing the causal effect of a risk factor (exposure) on an outcome from observational data.8 

A two-sample MR obtain IV-exposure and IV-outcome associations from two different sets of 

participants. A recent two-sample MR conducted by Dimitrakopoulou et al. included summary 

results from large collaborative networks (Ncase=70,563) to examine the causal role of vitamin D 

on seven cancers (breast [Ncase=15,748], prostate [Ncase=22,898], lung [Ncase=12,537], colorectal 

[Ncase=11,488], ovarian [Ncase=4,369], pancreatic [Ncase=1,896] and neuroblastoma [Ncase=1,627]). 

This study observed little evidence that genetically predicted 25(OH)D was associated with the 

risk of any cancer [OR per 25nmol/L increase for breast: 1.05 (95%CI: 0.89-1.24); prostate: 0.89 

(95%CI: 0.77-1.02)].9 However, the Dimitrakopoulou et al. study used four genetic variants 

identified from an earlier SUNLIGHT consortium genome-wide association study (GWAS).10 

With the rapid expansion in sample sizes of GWAS, two additional vitamin D associated loci have 

been recently identified.11 Incorporating these loci could improve the strength of genetic 

instrument and both the accuracy and precision of MR estimates. The statistical power can be 

further improved by using summary genetic data for breast and prostate cancer from recent larger 

GWASs.12–14 

Therefore, we conducted an updated two-sample MR analysis to examine the effect of 25(OH)D 

on breast and prostate cancer. Six genetic variants associated with plasma 25(OH)D concentration 

were used as IVs. Summary statistics for the IV-exposure were extracted from the largest vitamin 

D GWAS involving 73,699 individuals.11 Summary statistics for the IV-outcome were extracted 

from the largest GWASs for breast (122,977 cases and 105,974 controls) and prostate cancer 

(79,148 cases and 61,106 controls) conducted by the OncoArray network.15 
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Methods 

Data for IV-exposure 

We retrieved summary data for the association between six SNPs and circulating 25(OH)D 

concentration from the SUNLIGHT meta-GWAS involving 79,366 discovery samples and 42,757 

replication samples of European ancestry. Genome-wide analyses were performed within each 

cohort according to a uniform analysis plan. Specifically, additive genetic models using linear 

regression on natural-log transformed 25(OH)D were fitted, and a fixed-effects inverse variance 

weighted meta-analysis across the contributing cohorts was performed, with control for population 

structure within each cohort and quality control thresholds of minor allele frequency (MAF)>0.05, 

imputation info score>0.8, Hardy-Weinberg equilibrium (HWE)>110-6, and a minimum of 

10,000 individuals contributing to each reported SNP-phenotype association. Information 

regarding the quality control and statistical analyses has been reported previously.11 

Among the six SNPs, four were previously identified as being robustly associated with vitamin D 

(rs3755967 at GC, rs12785878 at NADSYN1/DHCR7, rs10741657 at CYP2R1, rs17216707 at 

CYP24A1). The other two were newly identified by the discovery sample (rs10745742 at 

AMDHD1, rs8018720 at SEC23A) and validated in the replication sample. 

Data for IV-outcome 

We retrieved summary data for associations of the six vitamin D proxy SNPs with breast and 

prostate cancer from the currently largest meta-GWAS of these outcomes conducted by the 

OncoArray network,15 a large-scale collaboration that was established to understand the genetic 

architecture and biological mechanisms underlying five common cancers (breast, prostate, ovarian, 

colorectal and lung cancer). A total of 447,705 individuals of European ancestry were genotyped 
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on a custom Illumina array, and imputed to the 1000 Genomes Project reference panel. For each 

cancer type, results from individual GWAS were combined by fixed-effects inverse variance 

weighted meta-analysis, with control for population stratification within each cohort and quality 

control thresholds of MAF>0.01, imputation info score>0.3 and HWE>110-12. Information 

regarding the quality control and statistical analyses has been reported previously.12–14 

For breast cancer, 122,977 cases (105,974 controls) were involved, of which, 69,501 were estrogen 

receptor (ER)+ cases and 21,468 were ER cases; for prostate cancer, 79,148 cases (61,106 

controls) were involved, of which 15,167 were diagnosed with advanced prostate cancer (defined 

as Gleason Score 8+ or death from the disease or metastatic disease (i.e. M1) or prostate specific 

antigen values > 100 ng/ml). Our current sample size was 4.6-folds higher than that in 

Dimitrakopoulou et al.9. 

Statistical analysis 

MR uses SNPs as proxies for risk factors, assuming that SNPs are randomly allocated at conception, 

mirroring a randomization process; and that SNPs always precede disease onset thus eliminating 

reverse causality. Three important assumptions need to be met to ensure a valid IV.16 The first is 

the relevance assumption, that the IVs should be associated with the exposure; the second 

assumption requires no association between IVs and confounders of the exposure-outcome 

relationship; and the third is the exclusion restriction assumption, indicating that genetic variants 

should affect the outcome only through the exposure. If all MR assumptions are satisfied, then a 

causal estimation can be made based on the observed IV-exposure and IV-outcome association. 

We conducted a two-sample MR to test for a potential causal relationship between circulating 

25(OH)D and risk of breast and prostate cancer. We also investigated cancer subtypes including 
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ER+ and ER breast cancer and advanced prostate cancer. We applied a number of MR methods 

including an inverse variance weighted average approach (IVW),17 a maximum likelihood 

method,18 MR-Egger regression,19 and a weighted median approach.20 

For each of the k genetic variants (IVs), the estimate of genetic association with the exposure is 

represented as ˆ
Xk with standard error

Xk , and the estimate of genetic association with the 

outcome is represented as ˆ
Yk with standard error

Yk . The IVW estimator can be motivated as a 

weighted average of the ratio estimates 
ˆ
ˆ

Yk

Xk




for each variant, weighted using the reciprocal of an 

approximate expression for their asymptotic variance
2

2ˆ
Yk

Xk




, as shown by the formula below. To 

evaluate potential heterogeneity among causal effects of different variants, we employed the Q 

test, P-value < 0.05 was considered as the existence of heterogeneity. 

The causal estimate 
2

2 2

ˆ ˆ
ˆ

ˆ
Xk Yk Ykk

IVW

Xk Ykk

  


 






 

The approximate standard error of the estimate   2 2

1ˆse ˆIVW

Xk Ykk


  


 

Complementary to IVW, we also adopted the maximum likelihood method. When the genetic 

associations with the exposure are precisely estimated, both approaches give identical results. 

When there is considerable imprecision in the estimates, causal effect estimates from the IVW are 

over-precise, whereas the likelihood method gives appropriately-sized confidence intervals. 

In addition, we performed MR-Egger regression to test for bias due to directional pleiotropy, where 

the average of the direct effects of the tested genetic variants on outcome is non-zero (i.e. a 

violation of exclusion restriction assumption). Under the INstrument Strength Independent of 
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Direct Effect (InSIDE) assumption, the intercept of a weighted regression of �̂�𝑦𝑘 on �̂�𝑥𝑘 will be 

different than zero in the presence of directional pleiotropy, and the slope of that regression will 

be a consistent estimate of the causal effect of X on Y.21 Complementary to MR-Egger, we also 

employed a weighted median method to derive causal effect estimates. This method provides 

consistent estimates even when up to 50% of the analyzed genetic variants are invalid IVs. We 

also employed a multivariable MR approach22 to adjust for potential horizontal pleiotropy acting 

in particular through BMI, because rs10741657 has been associated with BMI (P=0.01), and BMI 

has been associated with 25(OH)D concentrations23 and breast cancer risk24. Publicly available 

genetic data for BMI were retrieved from the GIANT consortium for 339,000 individuals (95% 

were of European descent).25 

Further, we performed a sensitivity analysis where we excluded one SNP at-a-time, and performed 

IVW on the rest five SNPs to identify the potential influence of outlying variants on the estimates. 

Finally, we estimated the power of our study according to a method suggested by Brion et al.26. 

The six 25(OH)D associated SNPs collectively explained 2.84% of the variance of circulating 

vitamin D concentration. We fixed the type-I error rate at 0.05. 

Results 

Table 1 shows the sample size in the current analysis for each cancer and subtype. The number of 

overall breast cancer cases was 122,977, of which 69,501 were ER+ cases and 21,468 were ER 

cases. The number of overall prostate cancer cases was 79,148, of which 15,167 had advanced 

disease. Under the current sample size, our study had 80% power to detect a causal effect of a 

relative 7% (i.e. ORs of 0.93 or less) decrease in breast cancer risk per 25nmol/L increase of 

25(OH)D and 8% for prostate cancer (i.e. ORs of 0.92); corresponding estimates for ER+ breast 
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cancer, ER breast cancer and advanced prostate cancer were 8%, 12% and 13% relative 

reductions (i.e. ORs of 0.92, 0.88 and 0.87). We also presented power estimations for a range of 

proportions of 25(OH)D variation explained by the six genetic variants.  

Table 2 presents the information on the association of six SNPs (rs3755967, rs12785878, 

rs10741657, rs17216707, rs10745742 and rs8018720) with 25(OH) D concentration and cancers. 

There was no evidence that any of the individual vitamin D associated SNPs were also associated 

with breast or prostate cancer. We did not find that the genetic instrument for circulating 25(OH)D 

concentration was associated with the risk of breast [IVW per 25nmol/L increase: 1.02 (95%CI: 

0.97-1.08)] or prostate cancer [IVW: 1.00 (95%CI: 0.93-1.07)], breast cancer subtypes [ER+: 1.00 

(95%CI: 0.94-1.07); ER: 1.02 (95%CI: 0.90-1.16)] or advanced prostate cancer [IVW: 1.02 

(95%CI: 0.90-1.16)]. The maximum likelihood method generated very similar results. We did not 

detect heterogeneity among the causal estimates of the six variants (Phet=0.45 and 0.80 for overall 

breast and prostate cancer; 0.61 and 0.14 for ER+ and ER subset; 0.58 for advanced prostate 

cancer), indicating little evidence for the existence of SNP-specific horizontal pleiotropy. Further, 

we did not identify aggregated directional pleiotropy using MR-Egger (Pintercept= 0.92 and 0.88 for 

overall breast and prostate cancer; 0.82 and 0.70 for ER+ and ER subset; 0.72 for advanced 

prostate cancer; the intercepts with 95%CIs are shown in Table 3), although this method has low 

statistical power when few genetic instruments are used. Consistent with IVW, estimates from 

MR-Egger and weighed median approach did not provide any evidence of a causal effect of 

circulating vitamin D on prostate or breast cancer (Table 3). Multivariable IVW estimates 

controlling for BMI were almost identical with the classical IVW approach (results not shown). 

Similar results were observed in the leave-one-out analysis where we iteratively removed one SNP 

each time and performed IVW using the remaining five SNPs (Table 4). 
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Discussion 

In this study, we used an updated and stronger instrumental variable constructed from six SNPs 

and capitalized on the summary statistics of the largest meta-GWAS conducted for breast and 

prostate cancers in European populations. We aimed to determine whether the relationship 

between 25(OH)D and risk of two cancers was causal employing a range of two-sample MR 

methods. However, none of these analyses suggested a causal relationship between circulating 

25(OH)D concentrations and breast or prostate cancer risk. 

Despite previous retrospective observational studies suggesting an inverse association between 

higher circulating 25(OH)D concentrations and breast cancer risk, such a relationship has not been 

firmly supported by evidence from prospective epidemiological studies. Bauer et al. meta-

analyzed 9 prospective studies (Ncase=5,206) and identified weak evidence of an association 

between circulating 25(OH)D and risk of postmenopausal [RR per 5ng/mL (approximately 

12.5nmol/L) 0.97 (95%CI: 0.93-1.00)], but not premenopausal [0.99 (95%CI: 0.97-1.04)] breast 

cancer.27 Similar results were observed in a meta-analysis conducted by Wang et al. that 

aggregated data over 13 prospective studies (Ncase=9,110), where circulating 25(OH)D was 

inversely associated with postmenopausal breast cancer [RRhighest vs. lowest quantile 0.85 (95%CI: 0.75-

0.96)], and with similar but imprecise estimates for premenopausal breast cancer [0.84 (95%CI: 

0.52-1.35)].28 When the sample size was further increased to 31,867 individuals and with a careful 

inclusion criteria as in the meta-analysis conducted by Kim et al., little evidence of a significant 

association was reported for either postmenopausal [RRhighest vs. lowest category 0.96 (95%CI: 0.85-1.02)] 

or premenopausal [0.82 (95%CI: 0.48-1.41)] breast cancer.3 In agreement with these findings, the 

Women’s Health Initiative (WHI) trial of vitamin D in postmenopausal women did not support a 

role in breast cancer [HRtaker vs. non-taker 0.96 (95%CI: 0.85-1.09)].5 However, it has been argued that 
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personal use of vitamin D supplements (outside of the trial) may have obscured the effect. Among 

the 43% of WHI women who were not taking personal vitamin D at randomization, a reduced risk 

of breast cancer was observed comparing calcium and vitamin D supplementation to placebo [HR 

0.82 (95%CI: 0.70-0.97)].29 Although our study had 80% power to detect even smaller effect sizes, 

ranging from 0.89 to 0.95 per 25nmol/L change, we did not find evidence of an association 

between genetically determined 25(OH)D concentration and risk of breast cancer. 

Results of observational studies investigating 25(OH)D with prostate cancer risk are relatively 

consistent. Xu et al. performed a meta-analysis of 17 nested case-control studies (Ncase=11,380) 

and observed an increased risk of prostate cancer [RRhighest vs. lowest category 1.18 (95%CI: 1.07-1.30), 

I-square=20.8%].30 A similar effect-estimate was reported by Gao et al. with improved precision 

in a meta-analysis comprising 19 prospective studies (Ncase=12,824) [RRhighest vs. lowest category 1.15 

(95%CI: 1.06-1.24), I-square=0%].4 In line with those findings, a large cohort consortium of 

10,018 cases and 11,052 controls examined an unweighted polygenic risk score based on four 

25(OH)D associated SNPs (rs2282679 at GC, rs6013897 at CYP24A1, rs10741657 at CYP2R1, 

rs12785878 at DHCR7). This analysis found that a greater number of high vitamin D increasing 

alleles was associated with an increased risk of aggressive prostate cancer,31 which might merely 

reflect metabolic events, molecular or immunological alterations relevant to prostate cancer risk. 

Our MR found no evidence of an association between genetically predicated 25(OH)D 

concentration and risk of overall or advanced prostate cancer. 

Our previous MR study did not provide strong evidence of a causal link between 25(OH)D and 

seven cancers. That study might have been underpowered to identify small effects for some cancers 

or subgroups,32 as a positive association for ovarian cancer was shown in an independent MR with 

larger sample size.33 Insufficient power is a common limitation of MR studies, because the genetic 
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variants usually explain a modest proportion of phenotypic variance. The four previously reported 

vitamin D associated SNPs could only explain 3.6%-5.2% of the variance of 25(OH)D;10,34 and 

the six vitamin D associated SNPs identified by us, could only explain 2.84% out of the 7.5% 

overall SNP-heritability calculated using the linkage disequilibrium score regression analysis.11 

Although improvement in the proportion of variability explained by IVs was minimal, our overall 

statistical power was considerably raised, using data from substantially augmented GWASs of 

breast and prostate cancer. We had 80% power at an alpha level of 0.05 to identify a 7% relative 

decreased breast cancer risk (i.e. an OR of 0.93) and an 8% relative decreased prostate cancer risk 

(i.e. an OR of 0.92) per 25nmol/L increase in circulating 25(OH)D. These effect sizes are 

comparable to the effects observed in meta-analyses of prospective studies for both cancers. 

However, it is likely that the true causal effect of 25(OH)D is even weaker – if the true causal 

effect was less than 3%, a magnitude that is probably of limited clinical relevance – we only had 

a power of 23% for breast cancer, and 15% for prostate cancer, with our current sample size. 

MR provides the opportunity to make causal inference between an exposure and an outcome using 

observational data. The validity of causal estimates requires several assumptions to be satisfied. 

We selected the most significant independent SNPs identified by the largest 25(OH)D GWAS, so 

all were robustly associated with the exposure of interest. The six variants combined constitute a 

strong instrument, with an F statistic of 387. This would minimize any bias due to using a weak 

instrument in the analysis. Secondly, none of the six instrumental variables (or the proxy SNPs in 

high linkage disequilibrium with the six IVs at r20.8) used in our analysis were cited by the 

NHGRI-EBI Catalog of published GWAS as associated with known confounders of cancer risk, 

such as BMI, smoking, alcohol consumption, mammographic density or inflammation at =10-5 

level. However, due to the lack of individual data, we were not able to test the association of 
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genetic instruments with other confounders such as physical activity, hormonal and lifestyle 

related factors, which are usually captured by questionnaires. Finally, the major assumption is the 

exclusion restriction that the genetic determinants affect cancer only through vitamin D 

concentrations. Violation of this assumption is unlikely as we employed a range of methods known 

to control for pleiotropy, and obtained highly consistent results. However, we are also aware that 

MR-Egger regression with only six SNPs could be underpowered to identify pleiotropy. All MR 

studies so far have only tested the linear effect of circulating vitamin D concentrations in the 

general population. Future studies may be designed to understand the effect of vitamin D in 

subpopulations with a profound deficiency (non-linear effects), as well as to investigate the causal 

role of vitamin D in cancer progress or death. 

In conclusion, although a very small causal effect of circulating 25(OH)D concentration on breast 

and prostate cancers cannot be ruled out, our updated analysis, despite its almost five-fold 

augmented sample size and substantially improved overall statistical power, provide no evidence 

in support of a causal relationship between circulating concentrations of 25(OH)D and the risk of 

breast or prostate cancer. 
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Table1. Number of cancer cases and controls and statistical power in Mendelian randomization study of 

circulating vitamin D concentration and risk of breast and prostate cancer. 

Cancer type Cases Controls Total 
Proportion 

of cases 

Minimum detectable odds ratio 

R2=0.01 R2=0.02 R2=0.03 R2=0.04 R2=0.05 

Breast cancer 

Overall 122977 105974 228951 0.54 0.89/1.12 0.92/1.09 0.935/1.069 0.943/1.06 0.948/1.05 

ER-positive 69501 95042 164543 0.42 0.87/1.15 0.905/1.104 0.922/1.085 0.932/1.073 0.939/1.065 

ER-negative 21468 100594 122062 0.18 0.80/1.25 0.855/1.169 0.882/1.134 0.897/1.11 0.908/1.10 

Prostate cancer 

Overall 79148 61106 140254 0.56 0.86/1.16 0.90/1.11 0.92/1.09 0.93/1.08 0.94/1.07 

Advanced 15167 58308 73475 0.21 0.79/1.26 0.85/1.18 0.87/1.15 0.88/1.13 0.90/1.11 

ER: estrogen receptor. Minimum detectable odds ratio per 25nmol/L increase/decrease in 25(OH)D 

concentration: assume 80% power, 5% alpha level, and that 1% to 5% of 25(OH)D variance is explained by 

the six SNPs used in the current paper. 
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Table2. Characteristics of GWAS-identified genetic variants associated with circulating 25(OH)D concentrations and their effects in the breast and prostate cancer. 

SNPs 
Chr: pos 

(hg19) 
Locus 

Effect

/ 

Other 

allele 

Circulating Vitamin D 

Levels 

Overall Breast 

Cancer 

ER-positive Breast 

Cancer 

ER-negative Breast 

Cancer 
Prostate Cancer 

Advanced Prostate 

Cancer 

Beta 

(SE) 
P-value 

Beta 

(SE) 
P-value 

Beta 

(SE) 
P-value 

Beta 

(SE) 
P-value 

Beta 

(SE) 
P-value Beta (SE) P-value 

rs3755967 4:72609398 GC T/C 
 -0.089 

(0.0023) 
4.74E-343 

 -0.0031 

(0.0069) 
0.65 

0.0012 

(0.0082) 
0.89 

 -0.0103 

(0.0125) 
0.41 

 -0.0029 

(0.0091) 
0.75 

 -0.0114 

(0.0158) 
0.47 

rs10741657 11:14914878 CYP2R1 A/G 
0.031 

(0.0022) 
2.05E-46 

0.0075 

(0.0063) 
0.23 

0.0015 

(0.0075) 
0.84 

0.012 

(0.0115) 
0.30 

0.0031 

(0.0082) 
0.71 

0.0122 

(0.0142) 
0.39 

rs12785878 11:71167449 
NADSYN1

/ DHCR7 
T/G 

0.036 

(0.0022) 
3.80E-62 

 -0.0016 

(0.0070) 
0.82 

0.0054 

(0.0083) 
0.52 

 -0.0245 

(0.0127) 
0.054 

 -0.0111 

(0.0090) 
0.22 

 -0.0243 

(0.0154) 
0.12 

rs10745742* 12:96358529 AMDHD1 T/C 
0.0190 

(0.0020) 
2.10E-20 

0.0044 

(0.0063) 
0.49 

 -0.0011 

(0.0075) 
0.88 

0.0097 

(0.0115) 
0.40 

0.0006 

(0.0082) 
0.94 

 0.0000 

(0.0142) 
0.99 

rs8018720* 14:39556185 SEC23A C/G 
 -0.019 

(0.0027) 
1.11E-11 

0.0132 

(0.0083) 
0.11 

0.0162 

(0.0099) 
0.10 

0.0222 

(0.0152) 
0.14 

 -0.0071 

(0.0108) 
0.51 

 -0.0065 

(0.0186) 
0.73 

rs17216707 20:52732362 CYP24A1 T/C 
0.026 

(0.0027) 
8.14E-23 

0.0062 

(0.0082) 
0.45 

0.0063 

(0.0098) 
0.53 

0.0055 

(0.0150) 
0.71 

 -0.0040 

(0.0106) 
0.70 

 -0.0026 

(0.0182) 
0.88 

Reference Jiang, et al. 2018 
Michailidou, et al. 

2017 

Michailidou, et al. 

2017 
Milne, et al. 2017 

Schumacher, et al. 

2018 

Schumacher, et al. 

2018 

*Novel vitamin D GWAS-identified SNPs, beta-coefficients were extracted from the pooled analysis (discovery dataset + replication dataset). ER: estrogen receptor. 

The beta coefficients for the association between SNPs and circulating vitamin D are based on per effect allele per unit change in log 25(OH)D. To enable better comparison with results from 

observational studies, we run MR analyses after transforming these beta coefficients into the natural scale (nmol/L) using a formula suggested by Rodriguez-Barranco et al. BMC Med Res 

Methodol 2017 Mar 17;17(1):44. 
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Table 3. Mendelian Randomization estimates between genetically predicted 25(OH)D concentrations 

and cancer risk using multiple 25(OH)D GWAS-identified variants. 

Cancer type Method OR 95%CI P-value Pint or Phet # 

Breast 
 

Overall Inverse-variance weighted 1.02 (0.97, 1.08) 0.47 0.45 

Overall Maximum likelihood 1.02 (0.97, 1.08) 0.47 NA 

Overall MR-Egger 1.02 (0.91, 1.13) 0.78 0.92 

 MR-Egger intercept   0.001(0.010-0.012) 

Overall Weighted Median 1.02 (0.96, 1.08) 0.51 NA       
ER-positive Inverse-variance weighted 1.00 (0.94, 1.07) 0.99 0.61 

ER-positive Maximum likelihood 1.00 (0.94, 1.07) 0.99 NA 

ER-positive MR-Egger 1.01 (0.90, 1.14) 0.85 0.82 

 MR-Egger intercept   0.001(0.013-0.011) 

ER-positive Weighted Median 1.00 (0.93, 1.07) 0.99 NA       
ER-negative Inverse-variance weighted 1.02 (0.90, 1.16) 0.75 0.14 

ER-negative Maximum likelihood 1.02 (0.90, 1.16) 0.75 NA 

ER-negative MR-Egger 1.06 (0.83, 1.37) 0.63 0.70 

 MR-Egger intercept   0.005(0.031-0.021) 

ER-negative Weighted Median 1.05 (0.94, 1.18) 0.36 NA       
Prostate 

 

Overall Inverse-variance weighted 1.00 (0.93, 1.07) 0.99 0.80 

Overall Maximum likelihood 1.00 (0.93, 1.07) 0.99 ΝΑ 

Overall MR-Egger 1.01 (0.88, 1.16) 0.89 0.88 

 MR-Egger intercept   0.001(0.015-0.013) 

Overall Weighted Median 1.01 (0.94, 1.10) 0.73 ΝΑ       
Advanced Inverse-variance weighted 1.02 (0.90, 1.16) 0.72 0.58 

Advanced Maximum likelihood 1.02 (0.90, 1.16) 0.72 NA 

Advanced MR-Egger 1.06 (0.78, 1.43) 0.62 0.72 

 MR-Egger intercept   0.004(0.035-0.026) 

Advanced Weighted Median 1.05 (0.91, 1.21) 0.49 NA 

NA: not applicable. The odds ratios represent increase/decrease of risk per 25nmol/L increase in 

25(OH)D. # Phet: P-values of Chi-square Q test for heterogeneity were shown; Pint P-values of MR-Egger 

regression test on the intercept. 
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Table 4. Mendelian Randomization estimates between genetically 

predicted 25(OH)D and cancer risk, a sensitivity analysis leaving 

one SNP out at a time. 

SNP (left out) OR 95%CI P-value 

Overall Breast Cancer 

rs3755967 1.03 (0.93, 1.15) 0.55 

rs10741657 1.01 (0.95, 1.07) 0.71 

rs12785878 1.03 (0.96, 1.09) 0.42 

rs10745742 1.02 (0.96, 1.08) 0.56 

rs8018720 1.03 (0.97, 1.09) 0.33 

rs17216707 1.02 (0.96, 1.08) 0.57 

ER-positive Breast Cancer 

rs3755967 1.02 (0.90, 1.14) 0.80 

rs10741657 1.00 (0.93, 1.07) 0.96 

rs12785878 0.99 (0.93, 1.06) 0.84 

rs10745742 1.00 (0.94, 1.07) 0.96 

rs8018720 1.01 (0.94, 1.08) 0.80 

rs17216707 1.00 (0.93, 1.06) 0.91 

ER-negative Breast Cancer 

rs3755967 0.95 (0.74, 1.22) 0.71 

rs10741657 1.00 (0.87, 1.16) 0.95 

rs12785878 1.06 (0.95, 1.18) 0.27 

rs10745742 1.01 (0.88, 1.17) 0.85 

rs8018720 1.03 (0.91, 1.17) 0.61 

rs17216707 1.02 (0.88, 1.18) 0.82 

Overall Prostate Cancer 

rs3755967 0.97 (0.85, 1.10) 0.64 

rs10741657 1.00 (0.92, 1.07) 0.91 

rs12785878 1.02 (0.94, 1.10) 0.66 

rs10745742 1.00 (0.93, 1.08) 0.99 

rs8018720 1.00 (0.93, 1.07) 0.93 

rs17216707 1.00 (0.93, 1.08) 0.93 

Advanced Prostate Cancer 

rs3755967 0.95 (0.76, 1.19) 0.67 

rs10741657 1.01 (0.88, 1.15) 0.92 

rs12785878 1.07 (0.93, 1.22) 0.35 

rs10745742 1.02 (0.90, 1.16) 0.71 

rs8018720 1.02 (0.90, 1.16) 0.76 

rs17216707 1.03 (0.90, 1.17) 0.69 

The odds ratios represent increase/decrease of risk per 25nmol/L 

increase in 25(OH)D. Odds ratios calculated using inverse variance 

weighted method. 

 


