
CHAPTER 30 

CIRCULATION KINEMATICS  IN NONLINEAR LABORATORY WAVES 

Tae-In Kim,1  Robert  T.   Hudspeth,2 and W.   Sulisz3 

ABSTRACT 
A weakly nonlinear solution is presented for the two-dimensional 

wave kinematics forced by a generic wavemaker of variable-draft.  The 
solution is valid for both piston and hinged wavemakers of variable- 
draft that may be double articulated.  The second-order propagating 
waves generated by a planar wave board are composed of two components; 
viz., a Stokes second-order wave and a second-harmonic wave forced by 
the wavemaker which travels at a different speed. A previously 
neglected time-independent solution that is required to satisfy a 
kinematic boundary condition on the wavemaker as well as a mixed 
boundary condition on the free surface is included for the first 
time.  A component of the time-independent solution is found to 
accurately estimate the mean return current (correct to second-order) 
in a closed wave flume.  This mean return current is usually estimated 
from kinematic considerations by a conservation of mass principle 

INTRODUCTION 
Flick and Guza (1980) investigated the motion of a hinged wave- 

maker that is hinged either on or below the channel bottom using a 
Stokes expansion.  They studied the relationship between the second- 
harmonic (secondary) waves forced by the wavemaker and the Stokes 
waves by computing the coefficients for the propagating eigenmode 
numerically.  Their solution, like that of Daugaard (1972), neglects 
the interactions of the first-order evanescent eigenmodes at the free- 
surface boundary near the wavemaker because these evanescent eigen- 
modes do not contribute to the propagating waves.  Furthermore, their 
solution as well as that of Madsen (1971) and Daugaard (1972) is not 
exact because they neglect the time-independent, second-order solu- 
tions which are required to satisfy exactly the boundary conditions at 
the wavemaker and at the free surface. 

Massel (1981) attempted to extend the work of Flick and Guza 
(1980) by including a time-independent solution but only for the kine- 
matic boundary condition at the wavemaker. 

A closed-form solution is presented that is correct to second- 
order (except for the singularities at the irregular points) for the 
fluid motion forced by a sinusoidally moving generic wavemaker of 
variable draft.  The generic wavemaker motion is doubly articulated 
and includes both piston and hinged wavemakers.  The previously 
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neglected time-independent solutions required to satisfy both the 
nonlinear free surface and wavemaker boundary conditions are compared 
with the Eulerian mean horizontal momentum per unit area. The mean 
return current required to satisfy conservation of mass in closed wave 
flumes is estimated reasonably well by the time-independent, second- 
order solution for a broad class of planar wavemakers. 

NONLINEAR WAVEMAKER THEORY 
For convenience, all physical variables (denoted by superscript 

asterisks, *) will be made dimensionless by the following: 
(x,z,h,d,b,A,L) = k*(x*,z*,h*,d*,b*,A*,L*); (t,T) = /g*k* (t*,T*); 
(H,n,S,g,x) ° (H*,ti*,S*,g*,x*)/a*; (u,w) - (u*,w*)/(a* /g*k*); 
* = **/(a*/g*/k*); B = B*/(a*g*); and p = p*/(p*a*g*) where a* = 
amplitude of the first-harmonic wave component; k*(= 2w/L*) = the wave 
number; L* = wave length; g* = gravitational constant; p* = fluid mass 
density; and T* = wave period = the period of the wavemaker 
oscillation. 

77777777777777777777 

Fig. 1. Definition sketch for generic wavemaker 



NONLINEAR LABORATORY WAVES 383 

A generic wavemaker is shown in Fig. 1 which generates two-dimen- 
sional, irrotational motion of an inviscid, incompressible fluid in a 
semi-infinite channel of constant, still water depth, h.  The fluid 
motion may be obtained from a scalar velocity potential $(x,z,t) by 

[u,w] = - v$ (1) 

in which the two-dimensional gradient operator is *(•) = [3/3x, 3/3z]. 
The velocity potential is a solution to 

V2* =0 ; x >  ex(z,t) , -h < z < £n(x,t)   (2a) 

with boundary conditions (Phillips, 1977) 

3$/3z =0 ; x >  ex(-h,t) , z = -h (2b) 

32$ 

3t2 
+ |f -[e |^ - } e2 v$ v]|v$|2 + ||- 0;x>ex(T,,t),z=eTi(x,t)   (2c) 

3*/3x + 3x/3t - e3$/3z 3x/3z =0  ; x = ex(z,t) ; -h < z < en(t)  (2d) 

where B(t) = the Bernoulli constant and the parameter e = a*k* « 1. 
In addition, a radiation condition is required at infinity as x + + <=° 
in order to insure that propagating waves be only right progressing or 
that evanescent eigenmodes be bounded.  The instantaneous wavemaker 
displacement from its mean position, x(z>t)> is given by 

X(z,t) = 5(z)[U(z+h-d)-U(z+b)]sin uQt = £(z)AU sin u*Qt (3) 

where U(•) = the Heaviside step function.  The amplitude of the wave- 
maker displacement, £(z), for a double-articulated piston or hinged 
wavemaker of variable draft is given by the following equation for a 
straight line: 

5(z) = t(S/2)/(A/h)][M(l+z/h)+B'] (4) 

where M = (1-Sb/S); and B' = [A/h-M(d/h+A,/h+A/h)]; in which S/2 - the 
dimensionless wavemaker stroke measured at an arbitrary elevation 
above the wave flume bottom at z = -h+d+Av+A.  A piston wavemaker is 
represented by S, = S; and a wavemaker of full-depth draft is repre- 
sented by b = d = 0 and A = h.The dimensionless free-surface n(x,t) 
and total pressure p(x,z,t) are 

n(x,t) = 3$/3t --i e|v*|2 + B(t)  ; x >  eX(n,t)  , z = en(x,t)   (5) 

p(x,z,t) = 3*/3t --| e|v*|2-z/e+B(t) ; x>ex(z,t) , -h<z<en(x,t)   (6) 

Equations (2c & d) & (5) may be expanded in a Maclauren series by 

/  \n „r 
(en) 3 
n!  32 

I    Iff^£ir[|t--Ie^|2+B]   =0    ;  x>0  ,  z  = 0 (7b) 

Y     (en)    3       r 3  $ ^ 3$    r     9 1    2i.  *uij2    dB,   .      ._ .     .,  . l
n~Tr- 7T[7-2+?I-(e  3l_2e '•'Wl   +dF]=0   ;x>0  'z=0    (7a) 

n=0 3z      3t 

n=0 3z 
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Io^^[« + ft-«Hffi-0    ;x=0;-h<z<0 (7c) 
n=0 3x 

In addition, the functions $, n, B, p, and w may also be expanded in 
the small parameter, e, by the following: 

00 

*(x,z,t)   *    I    e" n+1$(x,z,t) (8a) 
n=0 

00 

n(x,t)      =   I   e
n n+1n(x,t) (8b) 

n=0 
00 

B(t) =    I    en n+1B(t) (8c) 
n=0 

00 

p(x,z,t)   = pg(z)  +    I    e"        P(x,z,t) (8d) 
n=0 

oo 

lot  = x  = (  I    e" (o  )t (8e) 
n=0 " 

in which ps(z) = z/e = the dimensionless hydrostatic pressure. 
Substituting Eqs. (7) & (8) into Eqs. (2)-(6) and collecting 

terms of the same order in e results in a set of linear boundary value 
problems which may be solved in successive order. 

Linear Solution 

v2 x* = 0 

d^/dz = 0 

f{1*}  + u>o  3JB/8T - 0 

a^/sx = -tl 

The linear boundary value problem for first-order (e°) is 

;x>0,-h<z<0 (9a) 

; x >  0 , z = -h (9b) 

; x > 0 , z = 0 (9c) 

= -u 3x/3x  ;x=0,-h<z<0 (9d) 

in which the linear, free-surface operator, £{•}, is defined by 

£{'}  = Go2 3
2
/3T

2
 + 3/3z){.} (10) 

The solution to Eqs. (9) must also satisfy a radiation condition at 
infinity as x + + oo that will admit only right progressing waves or 
bounded evanescent eigenmodes. 

The first-order, free-surface elevation, ,n(x,x), and the dynamic 
pressure .P(X,Z,T) may be determined from 

^(X.T) = n>0 3,*/3T ; x >  0 , z = 0 (11) 

JPU.Z.T) = wo Sjfc/Sx ;x>0,-h<z<0     (12) 

A simple-harmonic solution to the linear problem requires that ,B 
be identically zero in Eq. (9c).  The linear solution which satisfies 
the radiation condition as x + + » is well-known and may be expressed 
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by the following eigenfunction expansion (Hudspeth and Chen, 1981): 

^(X.Z.T) = -a1<()1(z)sin(x-T) - cos T J  a^Cz^xpC-o^x)   (13) 
m=2 

in which the orthonormal eigenfunctions, A  (z) in the interval of 
orthogonality [-h<z<0] are given by <f>m(z) = cos[am(z+h) ]/nm; where the 
normalizing constants, n , are computed from n^ = [2amh+sin 2amh]/4am; 
provided that u)|h+<xmh tan <xmh = 0 where a, = + i. 

>>  a_, in Eq. The dimensionless coefficients, am, in Eq. (13) are given by 

u (S/2A) w (S/2A) D (a h) 
a. --2-  D,(h) ; a  --2 5L^!L . m > 2 (14) 

1     n     1      m      a3 n 
m m 

D (h) = h[M(l-b/h)+B' ]sinh[h(l-b/h)]-h[M(d/h)+B' ]sinh[h(d/h)«U(d/h) ] 

- M{cosh[h(l-b/h)]-cosh[h(d/h).U(d/h)]} (15a) 

D (a h) = -(a h)[M(l-b/h)+B']sin[(a h)(l-b/h)] 
m m      m m 

+(o h)[M(d/h)+B']sin[(a h)(d/h)«U(d/h)]~M{cos[(a h)(l-b/h)] mm m 

-cos[(a h)(d/h)-U(d/h)]} ;  m > 2 (15b) m 

where M and B' are defined by Eqs. (4) and U(•) = Heavislde step func- 
tion which is required for negative-draft wavemakers (d < 0). 

Second-Order Solution 
The boundary value problem for second-order (e ) is 

V2$   =0 ; x > 0 , -h < z < 0 (16a) 

32$/3z =0 ; x > 0 , z = -h (16b) 

£{,»}  + «)    3,B/3T  = -2w u,   32$/3T
2
 + to    —  |^,$|2 

2 02 Oil O  ax   '    1   ' 

-  ,H I- (u2  32 */3T
2
 + 3,$/3z)        ;  x >   0  ,  z  = 0 (16c) 

32*/3x = -U^X/ST+S^/SZ 3X/3Z-(3
2
1$/3X

2
)X ; x=0 ,-h<z<0      (16d) 

The solution to Eqs. (16) must also satisfy a radiation condition at 
infinity as x+-H» that will admit only right progressing waves or 
bounded eigenmodes.  Because Eq. (16d) is an inhomogeneous Neumann 
condition, any constant times x may also be used for any time- 
independent solution. 

The Bernoulli constant is ,B = (a,/2a.)  and 3.B/3T = 0 in Eq. 
(16c). .The first term in the right hand side of Eq. (16c) must vanish 
since 3 .*/3T is a homogeneous solution of the linear operator on the 
left hand side of Eq. (16c) so that u>, = 0. 

It is customary in boundary value problems with inhomogeneous 
boundary conditions on orthogonal boundaries such as those given by 
Eqs. (16c & d) to linearly decompose the solution into complementary 
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homogeneous and Inhomogeneous solutions.  Accordingly, the solution to 
Eqs. (16) may be expressed as the linear sum of four scalar velocity 
potentials given by 2* = 2*S + 2*e + 2*  + ¥ in which 2*s is a second- 
order Stokes wave potential; 2*e *s a near-field evanescent inter- 
action potential; 2* is a wavemaker-forced potential; and V  is a 
time-independent potential needed to satisfy Eqs. (16c & d) exactly. 
This linear decomposition of 2$ reduces Eqs. (16c & d) to 

£{ 2*
S+2*

e+2*
f+f} =*lf ^tj  sin 2(X-T) 

- a1 sin (X-2T) I    amexp(-amx)f2(^>1,1(1^) 
m=2 

+ al  COS(X-2T) I    amexp(-amx)f3(<(i1,i)>m) 
m=2 

- sin 2T I      I    a a exp[-(am^n)x]f4(* ,*n) 
m=2 n=2 

- a, cos x y a exp(-a x)f As. ,<f> ) ; x>0 , z=0 (17a) 
1       u n    m     m   j     1    m 

m=2 
f        a 

|^ {2*
S+2*

e+2*
t+ 1}   = +-ji-W1(*1,5,2)[l-cos2T] 

+ sin_2T j. amamW2(((,m>?,z) ; x=0, -h<z<0 (17b) 
m=2 

in which the nonlinear, free surface interaction terms f., f2, fo, f,, 
and fc, and the nonlinear, wavemaker interaction terms W* and Wj 
represent nonlinear interactions involving first-order quantities that 
are defined in Appendix I. 

The second-order Stokes wave potential, 2*
S» must satisfy exactly 

Eqs. (16a & b); a radiation condition at infinity as x • + •» requiring 
only right progressing waves, as well as the inhomogeneous part of the 
nonlinear free-surface condition in Eq. (17a) given by 

f{2*
S} ~ alfl(*l) sin 2(X-T) =0       ; x > 0 , z = 0    (18) 

The well-known Stokes (1847) wave potential is simply 
2$
s = -(3u)0/8)coseclTh cosh 2(z+h) sin 2(x-x). 

The near-field evanescent wave potential, 2$
e, must satisfy Eqs. 

(16a & b), a radiation condition at infinity as x + + <*>  requiring only 
bounded evanescent eigenmodes, as well as that part of the inhomoge- 
neous free-surface boundary condition given by 

£{2*
6} +-a sin (X-2T) I     a^xpC-o^f ($ ,<|> ) 

m=2 

- al  cos (X-2T) I    amexp(^xmx)f (<|> ,<|)m) 
m=2 

+ sin 2i I      I a a  exp[-(a -ta )x]f (<J> ,<j>)=0;x>0,z=0 (19) 
m=2 n=2 



NONLINEAR LABORATORY WAVES 387 

A solution for the near-field evanescent potential that satisfies 
a radiation condition as x + + » is assumed to be given by 

2*
e(x,z,T) = aj cos (X-2T) £ a^xpC-tyOIA^z^z) + BJ^z^z)] 

xa—2 

- a. sin (X-2T) I    a exp(-a x)[Aj! (z)*'(z) - B A (z)* (z)] 1 '•„ m    m   mTl   m     m 1   m 
m=2 

- sin 2T    I     I   a a exp[-(a •+ari)x]C    [4 (z)4 (z)-i>'(z)<(>'(z)] u n      „ m n     m n   mn m   n   m   n 
m=2 n=2 

(20a) 

where 

6\(z) = sinh (z+h)/n.;    *'(z) = sin [a (z+h)]/n ;    m >   2  (20b) 1 1      m m      m 

Substituting Eqs. (20) into Eq. (19) and equating coefficients of 
like functions gives 

a ID (12 + 2(a -l)/oo + cosec ah- cosech h} 
A =JULl ,m    ° 2 L (21a) 

[4U* +<x*-l]2 + (2a)2 

o        flt m 

a oo     I [4u    + a    -1] [cosech h - cosec a  h - 4]   + 8(a  /oo   )  } 
D     _    m o   l       o m m m    o    >      ,*,,*. 
B

m T 7. 5 o o     (.•'ID; 

[**«   + <    -U      +   <2«J o m m 
4 12 2 

,[l + (aa/io)+7- (cosec a h + cosec a h) ] 
_ 3 nmo4 m n „,   , 
C = a a a>  5-5 5         (21c) mn  mno , „ ^ \ z , /      * z 

(2OJ ) + (a - a ) o      m   n 

The wavemaker-forced potential, .* , must satisfy Eqs. (16a & b); 
a homogeneous form of the linear, free-surface operator defined by Eq. 
(10); a radiation condition at infinity as x + + °° requiring only 
right progressing waves and bounded eigenmodes; as well as that part 
of the inhomogeneous wavemaker boundary condition given by 

3_ 
3x {2*f}  +|x- ^V^  +2LCOS2T V*1'5'Z) 

_ sin2x    j.    amamW2(<j,m,5,z)   = 0  ; x = 0,  -h <  z <  0 (22) 
m=2 

A solution for the wavemaker-forced potential that satisfies a 
radiation condition at x •»• +» is assumed to be given by 

2* (x,z,T) = {E1 cos (6JX-2T) + F1 sin (81x-2x)}Q1(z) 

- I    exp(-g.x){E. sin 2T + F. cos 2T}Q.(Z)   (23) 
^_2      J   J J        3 
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in which  the orthonormal eigenfunctions,  Q.,(z),   in the  interval  of 
a 

i 
orthogonality [-h < z < 0] are Qj(z) = cos g.(z+h)/N.; where the 
normalizing constants are N^ = ("28^h + sin 2$ Ai) I(h$ .);  provided that 
4u*h + g.h tan g.h = 0 and that gj= igj.   J     J 

The coefficients E. and F. are 

E, = - BT1 { Ya [a.(A +a B )<$,$  ,Q.> + Y a (a -hx )C <$ $  ,Q. > ] j     j  l '_ m  1 m m m TlTm'xj z   L_.    n m n mn Tnrn'^j zJ 
n=2 

+    Y a   [a,(B -a A XO' ,Q.>    -    Y    a  (a -hx  )C    <<j>V ,Q.>  ] u
n m     1    m    m m    YlTm'xj   z L.    n    m    n    ran YmYn'xj   zJ 

m=2 J n=2 J 

-    I    -f^2- <W2,Q  >z} ; j  >  1 (24a) 
m=2 

Fj = 6
J

:1
 

{7TT4T<cosh 2(z+h),Vz+ ai I W^i».-V.+ J
 J       4 sinh h J m=2 

+ <A«+amV<*i*;^>«1 -iL<wi«<jj>«} ; J > * (24b) 

where the inner product terms <•,•> in Eqs. (24) are summarized in 
Appendix II. 

An interesting feature of the second-order problem which has not 
previously been given much detailed attention is the time-independent 
potential, ¥(x,z), which must satisfy the following: 

V2V =0 ;x>0,~h<z<0 (25a) 

£{f}   =f = -a,   cosx    V    a exp(-a x)f ,(<(>.,A   )     ; x >  0  ;  z  = 0    (25b) 
3z 1 '•.mm      5 Tl Tm m—Z 

—•" 0 ; x >  0  ;  z  = -h (25c) 
oZ 

|i =_lWi( + i>5,z) ;  x  = 0  ;  -h <   z <   0 (25d) 

Because the time-independent solution is not a progressive wave, the 
radiation condition at infinity as x + + » is relaxed to admit 
bounded, time-independent velocities. 

Similarly, ¥ may be decomposed into two linearly independent 
potentials according to ¥ = *fs + tvm> 

The free surface potential, "F  , must satisfy Eqs. (25a & c); a 
boundedness condition as x + + «°; in addition to the inhomogeneous 
free surface boundary condition given by Eq. (25b).  A solution which 
is bounded is given by 

¥  (x,z) = a, cos x y  a exp(-tx x) [b d>,(z)<j> (z) + c *.' (z)d>' (z) ] 1       L „    m     m   mYl   Mil      mYl  Ym m=^ 

- a sin x \     a exp(-o x)[bjj(z)^'{z) - c 4,(z)4 (z)] 1       u „ m     m   ml   m      ml   m 
m=z 

(26a) 
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where 
3 2       2        2 

tu a  [cosech h + cosec a h] 
b ---2J! - - SL_ (26b) 

(a2 + l)2 

m 

3   2        2       2 
n> a  (a -1) [cosech h + cosec a h] 
o ram          m ,   . 

c =  (26c) 
2(a2 + l)2 

m 

The wavemaker potential, <fma
t  must satisfy Eqs. (25a & c); a 

boundedness condition on the velocity as x + + »; in addition to a 
homogeneous free surface boundary condition given by 

wm   av•" 
£{¥ } '^—  = 0 ; x > 0 ; z = 0      (27) 

and an inhomogeneous wavemaker boundary condition given by 

s•*•1  ai a•
fs 

^- - y5- WjU^g ,z) + ^- =0       ; x = 0 ; -h < z < 0 (28) 

A solution for v""1 is given by the following eigenfunction 
expansion: 

¥Wm(x,z) = I    d*.(z)[exp(-y.x) + 6. (x-1)] (29) 
A=n     J J J      JO 

where the orthonormal eigenf unctions, ijj.(z), in the interval of 
orthogonality [—h < z < 0] are given by 

^(z) = cos Uj(z+h)/[h/(2-6jo)]
1/2  ; j >  0 (30) 

provided that the eigenvalues, jjj, are given by u  = jir/h. 
The coefficients d. are •* 

di   = " W^l   {l<Wl^J>z+ J2 
am[V%<Mm'Vz+ <*!**  '*jV 

+ Cm  (%<n*m>Vz " <*lV+jV]} ;   J  >  ° (31) 

where the inner product terms <'.'>z are summarized in Appendix II. 

CIRCULATION KINEMATICS 
It is of interest to compare the second-order (e), time- 

independent solution forced by the weakly nonlinear boundary condi- 
tions at both the free surface and the wavemaker boundaries given by 
Eqs. (17) with the mean horizontal momentum per unit area.  The time- 
and depth-averaged dimensionless mean horizontal momentum per unit 
area is defined by (Phillips, 1977) 

ME " < / UE dZ>2, <32> 
—n 
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-1  2lT 

where the temporal averaging operator <• >, = (2ir)   /  (•)dx and UE 
is an Eulerian horizontal velocity component.       o 

The horizontal component of the dimensionless Eulerian velocity 
may be determined approximately from 

ME = U¥ + U$ + 0(e
2) (33) 

The dimensionless horizontal  component,  IL,,  that  is  forced by f,- and 
W,   in Eqs.   (17)  may be estimated  from the time-independent velocity 
potential according to II    = U„    (d  )  + U,„    (a  )  where 

¥ "f,""    o Y ,e    m 

DT,-(do> = -e(2uorl{F7h)i^T^h[M(1~b/h)+B,lcosh b<%-tanh b> 

-h[M(d/h)+B']sinh d  sech  h 

6           *m(o)Dm(amh) 2, 2 
+ u)      T     ^—r   [cosechTi+cosech ah]} (34a) 

0 m=2    n a2(a
2+l) mm    m 

ID n, *  (o)D (a h) „       ,     . o  1 v     Ym    ' mv m 
U,„    (a  )  = 6-   /,Nl,,  •• cos x    )     r—-  exp-a x 
T,e    m 0^)^(0) ^    n a3(c(2+1) 

mm    m 
2 2 [cosech h+cosech a  h][a  -tan x] (34b) 

mm 

Similarly,   the dimensionless  horizontal  component,  U.,  may be esti- 
mated from the first-order eigenmodes by a Maclauren series expansion 
about  the still water level according to 

IL   = -em <(3.$/3X)(31$/3T)>0 = IL     (ID  )+IT     (a  )   ;   z=0 (35a) $ ol 1 2i       »,•    o      },c    i 

The dimensionless, far-field component, U, m("i  ),   is given by 

U  (oo ) = e(2w )_1 (35b) 
$ ,oo  o O 

which is the well-known Eulerian description of the dimensionless 
Stokes drift (Longuet-Higgins, 1953).  The dimensionless evanescent 
component, U$ e(

a
m). 

is given by 

U,  (a ) = -(e/2)cos x Y a * (o)exp -ax [a - tan x]   (35c) 
$ ,e m _ m m        mm 

m=2 

In the far-field (x > 3h, say), the evanescent components of the 
mean horizontal momentum per unit area, D  (a ) + U  (a ),  are 
negligible.  This implies that far away from the local wavemaker 
effects, the mean horizontal momentum per unit area is approximately 

1 nl ? 
Mg ~ e(2u>o)  {1 - [p-^T^y][h(M(l-b/h)+B')cosh b(uj*-tanh b) 

- h(M(d/h)+B')sinh d sech h 

6    ,),m(o)Dm(amh)       2.        2 
+ 0)  Y  z—r  (cosech n + cosech a h)]}    (36) 

m=2 n a (a +1) 
mm m 
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which implies that for wavemakers intersecting the free surface (i.e., 
b=o), the leading-order coefficient, d , approximately estimates the 
uniform return current required to insure a zero net mass flux in a 
closed wave flume.  This may be observed by plotting the dimension- 
less, time-independent Eulerian velocities. 

The dimensionless horizontal component of the second-order (e), 
time-independent fluid motion is 

Vx,z) = _e sr -e ir 
= e    I    d.(y i|;   (z)exp-u.x-fi.   ) 

4 _A        J J     J J Ju 

3 
u      n, D  (a h)  exp-a x 

_ E _—-• [l+2h  cosech  2h]cos x ) —  
4    D,(h) L       n 2.   2... 

1 m=2      m        a  (a +1) m    m 
2 2 [cosech h+cosec a h] [d>, (z)A   (z)(l+a  tan x) m 1 m m 

+ $'(z)y (z)(a -tan x) ] (37a) 
1mm 

and the dimensionless vertical component is 

v,(x,z)=-ei|r-ei|r 

= E    I    d  u \|i'(z)exp-p.x 
J_I     J   J   J J 

3 
U3       n. D  (a h)  exp-a x 

o       i ri.ni. i_ii_i vnim m - e -T— _   ,. , [l+2h cosech  2h]cos x \ ^—-z  
1 m=2  m   a (a +1) mm 

2      2 [cosech h+cosec a h] U, (z)*' (z)( 1+a tan x) 
m   1   m      m 

- (^(zH^zXc^-tan x)] (37b) 

where y\ (z) = sin \i   . (z+h)//hT 

The magnitude of the velocity [u|(x,z) + V^(x.z)]1'2 is 
illustrated in Figs. 2 & 3 for both a piston and hinged wavemaker. 
Figures 2 & 3 demonstrate that the mean return current is estimated 
reasonably well by the leading coefficient, d . 
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APPENDIX I:  NONLINEAR INTERACTION COEFFICIENTS 
The nonlinear, inhomogeneous free surface interaction terms in 

Eq. (17a) are defined from first-order quantities by the following: 

fjC^)   = 3u)on~
2/2 (1.1) 

f2(*l'*m> " 2%%*l(0)*m(0) (I'2) 

5 

f3(*l,<,'m)   =T"*i(0) <t>m(0)[cosech"Ti - cosec a^h - 4] (1.3) 

f.(((>   ,4  )  = ui5  4  (0) d>  (0)   [a a Ao +1+ -r (cosec a h+cosec a h) ]     (1.4) 
4 Tm *n    o Yn   Ym     nmo   4       m       n 

fc(*,.* ) = (OJ
5
/2)4,(0) 4 (0)[cosech2h + cosec2a h] (1.5) 

5 1    in oTlm m 

The nonlinear,   inhomogeneous wavemaker interaction terms  in Eq.   (17b) 
are defined  by the following: 

HJUJ,?,!)   =   [A'1(z)a5/3z+*1(z)5]'[U(z+h-d)-U(z+b)] (1.6) 

W2(*m,?,z)  =  [*^(z)35/3z+am*m(z)5].[U(z+h-d)-U(z+b)] (1.7) 

where g(z) is defined in Eq. (4); 4>' are defined in Eq. (20b); and 

3g/3z = M(S/2A) (1.8) 

APPENDIX II:  INNER PRODUCTS <• ,'>z 

The inner product terms used to compute the coefficients of the 
second-order potential are determined from 

o 

' z <•,•>, = /  {-,-}dz (II.1) 
>h 

These inner products are: 

7 h    7    7    7 
2(u X.)   -K2, [2to +a  +a  ~\,] 

<*«W«  = •.(o)»n(o)A  (o){ °j] {      °    '    "    j   } (II.2) 
J (a +a -X.)  -(2a a ) m    n    j m n 

<4>*<(>• »A.>    = *  (o)<|>  (o)A.(o)ja   I la   I 
mTn    j   z       Tm      Tn        j        •   m''   nI 

w2[a4-Hx4-X2(a2+a2)4t»2a.(a2-hx2-X2)]-2(a a  )2[a)2-fl,] ,  o    m    n    ,1V m    n'    o j    m    n    j mji^ o_j_\ ,       ., 
1 2  2r,   2^2 ,2,2 ,, ,2, ' (LLmi) 

«„o„   (a ta -X, )  -(2a a  ) m n      m    n    j m n 
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twP Q,(0) 
<cosh  2(z+h),Q.> —J T- (II.A) 

J   Z       («* -  1)   (4 + Bp 

<W1,Aj>z   =|^-M<<).jAU)Aj>z + <<|>15AU,Aj>z (II.5) 

<W„,A.>    =4r M<^'AU,A.>    + a <<(.  ?AD,A.> (II.6) 
2    j   z       2A        m        j   z        m Tm j   z 

| a   |        o     ,     , 
<4'AU,A.>    =—2_ [xf-a   ]       U  (0)A.(0)  cos a b cos X.b (II.7) 

m        j   z 2        j     m l  m        j m j 
m 

2 2 
[(u +cc  tan a b)(fl.+X.tan X.b)+a   (1+tan a htan a b)(l+tan X.htan X.b)] ommjjjm m m J j 

- d>   [d.U(d)-h]A.(d.U(d)-h)a2[l+(X./a   )tan(X .d-U(d))tan(a d«U(d))]} 
m J m j     m j m 

<i  ?AU,A.>    = -|r M(a2-X?)"2 U  (0)A.(0)  cos a b cos  X.b Ynr jz2A        mjlTm        j m j 

x   [(a2+X2)(l  - (a32/a  )  tan a b)(l  + tan X.h  tan X.b) 
m    j o    m m j j 

+  2(u)2+o    tan a b)(ft.+X.   tan X.b)]  - o    m m        j     j j 

- d>  (d-U(d)-h)A.(d.U(d)-h)[a2+X2+2a  X.tan(a d-U(d) )tan(X .d-U(d)) ]} 
m 3 mjmjm j 

+ IT  [M(h-b)+B'h][a2-X2]_1((.   (0)A.(0)  cos a b  cos X.b 
2A m    j m        j m j 

0 
x   [(1  -  (10  /a   )  tan a  b)(fl.+X.   tan X.b) 

o    m m        j     j j 

o 
- (to +ct    tan a b)(l + tan X.h tan X.b)] 

o    m m j j 

-|- [Md.U(d)+B'h][a2-X2]~1
lj)  (d»U(d)-h)A. (d«U(d)-h) 

2A m    j       Tm j 

x   [a    tan(a d-U(d))-X.(tan X.d-U(d))] (II.8) 
mm J J 

where 

2 
4(u     ;  for A.(z)   = Q.(z)  and  X.   = 6 . 

SI.   = X,   tan X.h 
J j J 

0     ;   for A.(z)   •» I|J . (z)  and  X .   = \i • 
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a 1 

{     }     -M     1 
h h 

and AU is defined in Eq. (3). 
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