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ABSTRACT

Neutron stars may be in hydrostatic equilibrium only for very particular magnetic
configurations with conservative magnetohydrodynamic forces. We consider the
magnetohydrodynamic evolution of a neutron star with a non-zero external dipole
field component. The ohmic dissipation should slightly change this equilibrium
distribution of the currents, producing a slow circulation of matter which tends to
maintain the magnetic configuration close to an equilibrium one. The evolution of a
strong magnetic field (B = 10!2-10!3 G) under the influence of both ohmic dissipation
and circulation is analysed in detail. The resulting field decay turns out to be crucially
dependent on the thermal history of the neutron star. The time-scale of decay in the
core may be rather short, particularly for old neutron stars with low surface tempera-
tures 7;. For instance, this time-scale may be of the order of ~105-107 yr for T, ~
5x105-10° K. The circulation accompanying field decay in the core is, in some
aspects, like the classical meridional circulation in rotating stars. For example, the
‘magnetic’ circulation can partially mix the core matter. The velocity of circulation
decreases with the age of the neutron star as a result of the decay of the magnetic field.
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fields not only have an influence on the transport processes

1 INTRODUCTION or thermal balance of the superdense core matter (Haensel,

A large fraction of observed radio pulsars have very strong
magnetic fields B=10'2 G. The origin of these fields has
been a subject of debate for many years. There are two
essentially different points of view regarding the origin of
neutron-star magnetic fields: one holds that these strong
fields are inherited from their progenitors, and amplified
during the collapse to the neutron star, and the other
contends that these fields are generated by thermomagnetic
effects after the neutron star is born (see e.g. Blandford,
Applegate & Hernquist 1983; Urpin, Levshakov & Yakovlev
1986). It is important to realize that the later evolution of the
field and its influence on thermal and magnetohydrodynamic
processes within the star are likely to depend on its origin.
The thermally generated magnetic field is expected to be
confined to the crustal region, but its long-term evolution will
be determined by the properties of both the crust and the
liquid core (Urpin & Van Riper 1993). If the magnetic field is
a fossil remnant of that of the progenitor star, then the
magnetic flux is expected to thread the interior regions,
where the density o may be above the nuclear density,
0n=2.8%10'" g cm™3, Undoubtedly, these strong magnetic

Urpin & Yakovlev 1990; Urpin & Shalybkov 1992) but can
also affect a number of important magnetohydrodynamic
phenomena in neutron-star interiors. The present paper
considers one such phenomenon initiated by a strong mag-
netic field passing through the interior regions: namely, we
argue that in neutron-star cores with normal (non-superfluid
or non-superconducting) npe-matter there is a large-scale
circulation of matter which accompanies a quasi-static
change in the field strength.

The reasons for such a circulation are as follows. It was
argued by Chandrasekhar & Prendergast (1956) that a star
with an arbitrary magnetic field cannot be in hydrostatic
equilibrium. Equilibrium is possible only for a rather particu-
lar magnetic configuration with a conservative magneto-
hydrodynamic force. We have considered one such
configuration with a non-zero dipole component outside the
star. Dissipative processes can, however, change the
magnetic configuration in the course of evolution. The ohmic
dissipation of currents changes the distribution of these
currents within the star. Changes in the currents and the
magnetic field will slightly change the magnetohydrodynamic
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i equilibrium through a set of quasi-static configurations.
These changes produce a slow circulatory flow of matter
which maintains the field configuration through a series of
self-similar stages. The dissipation and circulation together
result in a decay of the configuration, which is accompanied
by a decrease in the magnitude of the currents alone, without
any change in their spatial distribution. This circulation is
very similar to the standard meridional circulation in stars
(see e.g. Schwarzschild 1958). The only difference is in the
causes of the circulatory flows: in the classical case the circu-
lation tends to balance a departure from thermal equilibrium,
whereas in the ‘magnetic’ case it compensates deviations
produced by ohmic dissipation from a hydrostatic equi-
librium magnetic configuration.

The paper is organized as follows. In Section 2 we
consider hydrostatic equilibrium in magnetized neutron
stars. Following the early work of Chandrasekhar & Prender-
gast (1956), we generalize their analysis to the case of a
degenerate star with a non-uniform density. The general
equations governing the hydromagnetic equilibrium con-
figurations, and the solution of these equations with a non-
zero dipole component outside the star, are obtained.
Section 3 briefly discusses the electrical resistivity and
conductivity of a superdense plasma in a strong magnetic
field. Here we deal with a neutron-star model in which there
is normal npe-matter in the core; other possibilities will be
considered elsewhere. Section 4 analyses the decay of equi-
librium hydromagnetic configurations due to ohmic dissipa-
tion. In Section 5 we argue for the existence of a large-scale
circulatory flow in neutron-star interiors and calculate the
velocity and configuration of the circulation. Section 6
discusses the results obtained.

2 HYDROSTATIC EQUILIBRIUM IN
MAGNETIZED DEGENERATE STARS

It was pointed out by Chandrasekhar & Prendergast (1956)
that a stellar magnetic field can be in hydrostatic equilibrium
only for some particular magnetic configurations because of
the non-conservative character of the Lorentz force. In this
section we consider magnetic configurations that satisfy
hydromagnetic equilibrium in liquid degenerate stars. The
equation governing the magnetic field B of such a configura-
tion is

~V—’7+V¢+L(VxB)xB=O, (1)

o 4mpo

where p is the pressure, o the density and v the gravitational
potential. Calculating the curl of equation (1) and taking into
account the fact that in degenerate stars p = p(p), we obtain

Vx[%Bx(VxB)}=O. (2)

Strictly speaking, VpXVp#0 because of small thermal
corrections to the pressure of degenerate particles. If,
however, the temperature 7 is not very high we can neglect
these small corrections. For instance, for magnetic fields
typical of neutron stars, the thermal corrections are
negligible in equation (1) if 7<3 X107 K. It follows from
equation (2) that the equilibrium magnetic field must require

the condition
(VXB)XB=pVn, (3)

where 7 is an arbitrary function. Only in this special circum-
stance can the pressure and gravitational force balance the
magnetic force. If magnetohydrodynamic equilibrium does
not apply, the magnetic force will drive a large-scale flow
which, in its turn, will change the magnetic configuration.
According to equation (3), hydrostatic equilibrium is
possible for a much wider class of configurations than was
considered by Easson (1976), who argued that only force-
free configurations satisfy equilibrium equations. Easson’s
conclusion was based on an analysis of separate hydrostatic
equilibria for neutron and electron—-proton components,
coupled with a chemical equilibrium between the charged
particles and neutrons due to weak interactions. As was
argued by Goldreich & Reisenegger (1992), however, the
rate of weak interactions is very slow, and at a low tempera-
ture they cannot wipe out perturbations from chemical equi-
librium. In that case, equilibrium configurations should
satisfy equation (3).

The paper by Chandrasekhar & Prendergast (1956) treats
the case of a uniform-density star (o = constant), but, since
the density can change by a large factor within the core of a
neutron star/white dwarf, we will generalize their results to
non-uniform-density stars. We restrict ourselves to axially
symmetric configurations. The magnetic field, quite gener-
ally, can be expressed as the sum of toroidal and poloidal
parts in the form

B=e¢,Orsin 6+V X (e, A rsin ), : (4)

with ® and A being any two functions that do not depend on
the ¢-coordinate. In what follows we will use both spherical
(r, 6, @) and cylindrical (s, z, ¢) coordinates. For axial
symmetry, the g-component of the Lorentz force (V X B) X
B/4x should vanish (see equation 3). This condition implies
(s°©,s°A) 9, , 0 , 9,, .0, ,
——————=—(s0)—(sA)—(s°0 ) = (s’A)=0

3. 2) 5,5 @) (sA) =3 (s°@) L(s"A)=0, (5)
where we use the standard notation for the Jacobian. In an
equilibrium magnetic configuration, the toroidal and
poloidal components must therefore be related by

20 =F(s?A), (6)

with F being an arbitrary function of the specified argument.
The ¢-component of equation (2) gives

9109 a1+ 8 842
0z [Qas(s A)+,o as(s 64
(7)
_ 01,0090 .01
as[s o 0z s oz 0

where Q= A A/p. Following Chandrasekhar & Prendergast
(1956), we introduce the operator A given by
A R )

°T3s® s ds 9zF ort r Or
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in the cylindrical (the first equality) and spherical (the second
equality) coordinates. Simplifying equation (7), one obtains

a(Q, SZA)=3(32@, ©/p)
a(s, z) a(s, z)

(9)

Taking into account that s?A and s?© can be expressed in
terms of each other in accordance with relationship (6), we
can define a function G(s%A ) such that

A(s’A, G/szp)=a(s2®, 0/p)
A(s, z) d(s,z)

(10)

It is easy to show that the function G, satisfying this equality,
is governed by the equation

2G(s°A)= (s*®%). (11)

d(s°A)
Now, combining equations (9) and (10), we finally obtain

G(s*A)
s2

AsA + =04(s’A), (12)

where ¢ is an arbitrary function of the argument. Equations
(11) and (12) yield the most general axially symmetric
magnetic configuration possible for hydrostatic equilibrium
in stars. Equation (12) differs from the analogous equation
obtained by Chandrasekhar & Prendergast (1956) for a star
with a uniform density only by the factor p on the right-hand
side. The most general force-free fields are obtained by
setting ¢ = 0.

The present paper deals with pure poloidal configurations
for which G=0. Other possibilities will be considered else-
where. Particular cases of poloidal configurations for stars
with p =constant have been investigated by Ferraro (1954).
The case of particular interest for our purposes is the
equilibrium configuration with the dipole field outside the
star. The internal field in this case can be presented in the
form (4) with ® =0 and A = A(r). Since the magnetic force is
very small compared to the gravitational force within the
core, we can neglect deviations from sphericity of the density
distribution in equation (12). Evidently, A is a function of r
alone only if ¢ =constant = A . Hence the equation governing
this configuration is

it 5, =Ae (13)

Continuity of B at the stellar surface r =R implies that the
function A has to satisfy the boundary condition

R%—A+3A 0. (14)

The general solution of equation (13), which has no singu-
larity at »= 0 and satisfies the boundary condition (14), is

r dr, n . A R .
A=A| — | p(rn)radrn———=| p(n)ridn. (15)
rR T 3R Jo

0

For a uniform-density distribution o = p, = constant we have

2 2
A_(g?) (16)

in accordance with the result of Ferraro (1954). If the density
profile within the star can be approximated by the second-
order polynomial p = 0,(1—r?/R?), where p, is the central
density, then

A 2 5 2 R2
a2 (-2 2)-2 1

The parameter A characterizes the magnetic field strength in
the configuration. It is more convenient, however, to charac-
terize the field not by the value of A but by the surface values
of the magnetic field at the pole, B, which are

2 4 2
=-=A0,R’, B.=———Ap,R 18
Bs 15 Lo ’ 105 Lo ( )

for the configurations (16) and (17), respectively. Using
equations (16), (17) and (4), one can obtain the distribution
of the magnetic field within the star for the case of uniform
density,

15 1 7
Br=—2 B, cos 0 (5__—5R2)’
(19)

15 2r 1
B,=—B, — -
2 sin 6 (SR 3)’

and for the density profile p = 0,(1 — r?/R?),
2 2
e ESA PR AL POV
4 6 R’ 14 R?

21 15 2\ 5
By=2B| 5 [1-22 20
2 [RZ( 28 R) 12}3"19 (20)

For non-uniform density the field concentration in the
central regions is higher than for o =constant. For instance,
for non-uniform density B, at the surface is = 4 times weaker
than in the centre, whereas at p = constant this ratio is equal
to 2.5.

3 CONDUCTIVITY AND RESISTIVITY OF A
NEUTRON-STAR CORE

The equilibrium configuration (19) should evolve under the
influence of dissipative processes. This section briefly
discusses the conductive properties of neutron-star cores
with normal npe-matter (without neutron superfluidity and
proton superconductivity). In the present paper we will
neglect the influence of the solid crust on the evolution of the
magnetic field. Strictly speaking, this is not entirely correct
because the crustal conductivity may reach high values (see
e.g. Itoh & Kohyama 1993) and the time-scale of field
diffusion through the crust is very long (Sang & Chanmugam
1990; Urpin & Van Riper 1993). This time-scale can signifi-
cantly exceed the decay time-scale of internal magnetic
configurations with currents perpendicular to the magnetic
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field (Haensel et al. 1990). It is therefore quite possible that
due to the high crustal conductivity the external field will not
decay substantially in the course of evolution, being
maintained by the crustal currents, in spite of the compara-
tively rapid reduction of the internal field in the core. How-
ever, since the properties of the neutron-star crust are not
well established, one cannot exclude the situation in which
the solidity of the crust is not very important; this may be
especially relevant for strong magnetic fields. Depending
upon the crustal yield strength and the magnetic stresses, the
crust can ‘flow’ under magnetic stresses like a normal fluid
(Ruderman 1972). Which behaviour is more relevant in real
conditions (i.e. whether the crust really behaves like a solid
or ‘flows’ under the stresses) depends on very delicate
properties of astrophysical lattices, such as the shear
modulus, the yield strength, etc. Unfortunately, the theoreti-
cal estimates give a rather uncertain value for the critical
magnetic stresses that can break the crust. For instance,
according to Ruderman (1972) the critical value B, of a
magnetic field that can be compensated by lattice stresses is
not very high and lies in the range 10'>-10'3 G. Thus under
the magnetic stresses produced by the field B> B, a lattice
will flow, and hence the fluid approximation is valid essen-
tially down to the stellar surface. The conductive properties
of such a fluid ‘crust’ are evidently not of particular import-
ance, and in this case the field evolution is mainly determined
by the evolution in the core, which is in turn determined by
the conductivity of the core and its hydrodynamics. The
present paper deals with the evolution of such ‘strong’ mag-
netic fields that break the crust. A forthcoming paper will
consider the opposite case of ‘weak’ magnetic fields and
strong crustal solidity.

The plasma of neutron-star cores is usually regarded as a
mixture of strongly degenerate fermions. At densities o ~ o,
the main constituents of such matter are neutrons with an
admixture, typically several per cent, of protons and
electrons. The conductivity of core matter has been a subject
of study in several papers. The paper by Baym, Pethick &
Pines (1969) examined the relaxation times of charge
carriers with respect to p—e, n—p and n—e interactions, and
obtained an expression for the conductivity at B=0. It was,
however, argued by Haensel et al. (1990) that magnetic fields
with strength ~10'2-10'* G can magnetize the plasma of
neutron-star cores, resulting in strong anisotropy of the
transport processes. The component of the electrical resist-
ivity tensor perpendicular to B may be much larger than the
component parallel to B, and so perpendicular currents
should decay much more rapidly. Recently, a more detailed
study of the conductive properties of core matter with
different chemical compositions and in the presence of a
magnetic field has been carried out by Yakovlev &
Shalybkov (1991), who obtained simple analytical expres-
sions for components of the resistivity and conductivity
tensors.

In the presence of a magnetic field the charge flow is
described by the conductivity and resistivity tensors 6 and R
In a coordinate frame in which the z-axis is directed along the
magnetic field B, these tensors are

o, orn O R, R, O
6=|-0, o, 0], R=|-R, R, 0} (21)
0 0 o 0 0 R,

Here o, and R, are the conductivity and resistivity com-
ponents along B, o, and R, are the components perpen-
dicular to B, and o0, and R, are the so-called Hall
components which appear due to the Hall effect. The
resistivity components R, and R, determine the dissipation
of the parallel (j,) and perpendicular (j,) components of
electric currents: the rate of Joule heating per unit volume is
O=R,j2+R,j%5. The magnetic fields in neutron-star
interiors are probably non-quantizing, and hence R,= o; ! is
equal to the resistivity at B=0.

The anisotropy of ¢ and R is characterized by the
magnetization parameters 4.= .7, and a,=w,7, of
electrons and protons, respectively, where w, is a particle
gyrofrequency and 7, is an effective relaxation time. The
electron relaxation time in nuclear matter is determined by
the electromagnetic scattering on protons, and the proton
relaxation time is mainly determined by strong interactions
with neutrons. The influence of the magnetic field on
transport by the particles a is pronounced if a,=1. The
appropriate values of the magnetization fields B, and B,
which correspond to a, = 1 and a, = 1, respectively, are

B.=8.4x10°T? (&+0.17) G,
0
(22)

(ou/P)
(on/p)+0.17

(see Yakovlev & Shalybkov 1991), where T; = T/108 K. The
magnetization field B, for electrons is rather weak: typical
neutron-star magnetic fields may strongly magnetize the
electron component in the core, even at high temperatures.
In contrast, the field B, is much stronger owing to the large
proton mass and the short relaxation time. In real conditions,
however, protons can be magnetized too, particularly at low
temperatures. Generally, both electrons and protons can
contribute to the transport of charge in npe-plasma, and
therefore the resistivity is characterized by both the para-
meters a. and a,. The components of the resistivity tensor in
this case are

B,=59%x10"T;

3
R,=6.06%10 T2 (&) (1+—”—) 5;
Je)

20,
(23)
B’ B
R, =Rn(1+?), RA:ROE’
0 e
where
1/2
By=(B.B,)*=71x10"T? (%) G. (24)

At B< B, we have R, = R,, and the direct influence of the
magnetic field on the rate of dissipation is negligible. Even in
this case, however, the field can lead indirectly to more rapid
dissipation due to the Hallcurrents (see Jones 1988; Urpin
& Shalybkov 1991). The Hall currents are, however, non-
dissipative and do not contribute to the rate of Joule heating
Q directly. Nevertheless, since the Hall parameter B/B, may
be rather large even at B<B,, the Hall drift can rapidly
change the configuration of the currents, producing strong
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non-uniformities in the field, and thus increase the dissipa-
tion rate. The strong magnetic field B> B, can essentially
change the character of dissipative processes. The transverse
resistivity R | is much higher than the parallel one at B> B,,.
Thus enhancement of R, is clearly associated with the
magnetization of charge carriers. For B> B, we find that the
stronger magnetic field, the higher the dissipation rate, since
R, < B2, Moreover, the magnetic field changes the depen-
dence of dissipative processes on temperature. In a weak
field, B< B,, the Joule heating Q< R, T? and hence the
rate of field decay decreases at low temperatures. In a strong
field, B> B,, we have Q< R,/B}T*« T2 and the rate of
dissipation increases if the neutron star cools down.

4 OHMIC DECAY OF THE INTERNAL FIELD

The magnetic field in the liquid interior of neutron stars is
governed by the standard induction equation

3_1?=_Eivx[R-(VxB)]+Vx(VxB), (25)
ot 4

where V is the velocity of the hydrodynamic flow in the core.
To follow the evolution of the internal magnetic field, one has
to take into account the effect of hydrodynamic flows, which
can be induced as follows. As mentioned above, hydrostatic
equilibrium in the liquid interiors is possible only for particu-
lar magnetic configurations. For instance, the equilibrium
configuration producing the exterior dipole field is given by
equation (20) or (21) within thc star. Clearly, a magnetic
equilibrium configuration cannot be maintained without
changes in the course of evolution, during which dissipative
processes alter the distribution of currents inside the star.
Small deviations from the equilibrium distribution must
result in a hydrodynamic flow, which advects the magnetic
field in such a way as to compensate the small unbalanced
forces, and restores a new hydrostatic equilibrium. The
evolution of the field in the neutron-star core is therefore
determined by two processes, one of which (ohmic dissipa-
tion) tends to destroy the equilibrium configuration, and one
of which (hydrodynamic flow) acts to reduce deviations and
return the field distribution to equilibrium. Since the time-
scale of hydrodynamic processes is much shorter than that of
dissipative processes, deviations from the equilibrium con-
figuration have to be very small. In the resulting configura-
tion governed by the above two processes, the distribution of
the field within the star should be close to that given by
equation (20) (if o=constant). The ohmic dissipation can
manifest itself only by a decrease of the factor B,. The
equation determining the magnitude of the field may be
easily obtained by multiplying equation (25) by B/8x and
integrating it over the stellar volume. Thus we have

1 d

8n dt 167

2
JBZdV= ¢ J'RL(V xBRdV. (26)
In this equation we take into account the fact that the field
and the current are perpendicular for the dipole configura-
tion, so the field decay is determined by the resistivity tensor
component R, alone. The hydrodynamic flow does not con-
tribute directly to the field decay. Substituting B from
equation (20) and R, from equation (24) and assuming that

B> B, we obtain

2 2
— G 28T 27)
B, dt R By
Because of neutron-star cooling, the quantities R, and B,
depend on age. It is convenient to extract these dependences,
introducing

22
AR'T?
Tg=

=——"5 =140x10"
5.87¢°R, 0%y

and
B.=B,T;?=5.02%1010G

(numbers are given for the Friedman & Pandharipande
neutron-star model with M= 1.4 M,,). The quantities 7 and
B, are the time-scale of the internal field decay and the
characteristic field magnetizing the core plasma at Ty=1,
respectively. Integrating equation (27), we obtain

B BJZ?(O) l t dt’ -1/2
B"(’)_B"(O)[“ B rBL Tﬁ(z’)} | 2

Evidently, field decay is essentially non-exponential and is
strongly dependent on the thermal history. The particular
law of time dependence of B,(z) is determined by the
neutron-star cooling. For comparatively strong original
magnetic fields B,(0)~ 10'2 G, the decay time-scale may be
several orders of magnitude shorter than 7, and this time-
scale decreases with neutron-star cooling. This result is in
agreement with the qualitative conclusion by Haensel et al.
(1990), who examined the internal field decay without
analysing hydrostatic equilibrium. It should be noted that
after a relatively short initial phase the field decay, guided by
equation (28), reaches a self-similar regime that is practically
independent of the original field strength. If

todf B?
—>—tq, (29)
L Ti(¢)” By0) *

then we have

1| df |7
Bp(t)”BclaJ'Om] . (30)

The initial stage which precedes the self-similar regime lasts
~1-10 Myr depending on the original field strength. At the
late evolutionary stage (#> 107 yr) the temperature is reduced
to low values (T<10°K) and the field can decay rather
rapidly: the characteristic time-scale may be shorter than 106
yr. The order of magnitude of the integral in equation (30)
for old neutron stars is ~ ¢/T3(¢). One can therefore estimate
B, for these stars as

1/2
Bp<t>~Bc(’—f) Ti(1) (31)

For ¢~107-108 yr this formula gives B, ~ 10° G.

Not only does the thermal evolution influence the field
decay, but, in its turn, additional heating due to ohmic dissi-
pation can slow down the cooling. The total magnetic energy
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of the poloidal field configuration (20) is
E,=0274B2(1)R> (32)

By making use of equations (27) and (28), the rate of energy
production within the star, é= —dE,/d¢, can be written in
the form

2 3 H 2 2 t 2 -2
Tg B, Ty B* 1), Ta(f)

(33)

At the late evolutionary stage, when inequality (29) is
fulfilled, € becomes independent of the original field strength:

1 |0 df ]_2
—= | - (34)
Tx(1) Uo (1)
This additional heating may slow down the cooling. This

effect is of particular importance for old neutron stars with
surface temperatures T,<10° K.

é€~0274R’B!

5 FIELD DECAY AND CIRCULATION

As mentioned in the previous section, the field decay violates
hydrostatic equilibrium and induces a slow circulatory flow
which tends to maintain the magnetic configuration close to
equilibrium. Since the hydrodynamic time-scale is very short
in comparison to the dissipative one, the departure from
the equilibrium configuration is small. The reasons for this
circulation are very similar to those for the classical
Eddington-Sweet meridional circulation in stars. The classi-
cal circulation tends to compensate deviations from thermal
balance due to stellar rotation. The circulation due to field
decay in neutron stars should balance the departure from
hydrostatic equilibrium that is continuously produced by dis-
sipative processes. The circulatory flow, which maintains the
magnetic configuration close to equilibrium, is governed by
equation (25). We will consider the circulation accompanying
the decay of the dipole configuration, with A given by equa-
tion (20). For the sake of simplicity we neglect the Hall com-
ponent of the resistivity tensor, assuming that B> B,,. Since
we examine the axially symmetric configuration, equation
(25) can be written in the form

. . 2R 2
VxB=eq,%9{r2A—5ﬁ[%(ﬁA)—zA . (35)

Clearly this equation determines only the component of the
velocity (V, ) perpendicular to the magnetic field. Multiply-
ing equation (35) by B/B?, one obtains

R |, _
- py [W(r A) 2/\1”. (36)

BXe,sinf) ;.
1= B’ £ . [’ A

The total hydrodynamic velocity is then

V=V, +¢B, (37)

where qis a function of r, 6 and ¢. This function can be calcu-
lated from the continuity equation, which in the case

0 = constant reads V- V= 0. We therefore have
Vg B=-V-V,. (38)

It should be noted that equations (36)-(38) are not valid in
the surface layers, where the circulation velocity should
satisfy the standard hydrodynamic boundary conditions. Our
self-similar solution describes the circulation only in
comparatively deep layers where the flow becomes insensi-
tive to the boundary conditions.

From equations (36)-(38) it is easy to estimate the order of
magnitude of the circulation velocity,

r B2
~ 2e-? 39
Tz Bﬁ § (39)

Using the estimate (31) for the polar magnetic field, we
obtain

y~L. (40)
t

Naturally the circulation velocity tends to zero with age. The
circulation should compensate the change of the magnetic
configuration due to dissipation, but the latter becomes
slower as the field becomes weaker. Since the velocity
decreases with age approximately in accordance with an
inverse linear law, the core matter probably does not turn
over more than once in the course of the evolution.

The circulation is of particular interest in the dense central
region. Using equation (17), one can represent V| in this
region as a Taylor expansion of . To the lowest order,
equation (36) then becomes

V.=—-1 1—2 sin @(sin Be, + cos Oey),

R B,
V,=0.548 — =2 T~

Tp Bc
Substituting this expression into equation (38) and taking
into account that in the central regions B=(5/2) B,(cos 0e, —
sin fe,), we obtain

9q sin6 d9g_4 W

P e . 42
©S¥%r r 96 5 RB, (42)
This equation can be easily integrated to give
4V, r. |" dy
=- - _sin @ . 43
a 5 B, RSln L sinzy 43)

Finally, we obtain the following expression for the circulation
velocity in the central region of the neutron star:

V /2
V= ——Orsma[e,(sin0—2cost9j d};)
R ¢ Siny

/2 dy
+ey|cos O+2sin 6 — 1|
g Sin’y

As mentioned above, in the less dense regions, at »~ R, the
configuration of the flow may be more complicated. It is seen
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from equation (44) that, in the deep layers, matter flows
towards the centre of the star near the polar axis, while near
the equatorial plane it flows towards the surface. Generally,
the angle 6, at which the radial velocity changes sign
depends on the radius, but in the central regions this angle is
determined by the equation

/2
d
tan00=2f &
g SIN°y

(45)

and is ~54°. A sketch of the circulation pattern in the deep
layers of the core is shown in Fig.1.

It should be noted that, although the Hall currents do not
influence the rate of field decay (see equation 26), they may
be very important for a circulation at B,> B> B.. Certainly,
in this case the Hall currents contribute appreciably in
equation (25), and the circulation will mainly compensate
changes of the magnetic configuration due to these currents.

6 CONCLUSION

We have examined the decay of strong magnetic fields and
the accompanying circulation of matter in a neutron-star
core in which the neutrons and protons are normal (i.e. non-
superfluid and superconducting). In conclusion, we briefly
summarize the main results of the paper.

Hydrostatic equilibrium in a strongly degenerate neutron-
star core may be reached only for very particular magnetic
configurations with conservative magnetohydrodynamic
forces. One such configuration with a non-zero dipole
component outside the star has been considered in detail. In
the course of evolution this configuration should change
under the influence of dissipative processes. However, as the
distribution of currents changes, the configuration deviates
from the initial hydrostatic equilibrium configuration. Since
dissipation is very slow in comparison with hydrodynamic
processes, the departure from the equilibrium configuration
has to be very small. In practice this implies that the
evolution of the magnetic field goes through a set of self-
similar equilibrium configurations with the same spatial field
distributions but with the currents that maintain the con-
figurations decreasing in magnitude. Because the dissipation

polar axis

0 equator

Figure 1. The circulation pattern for the dipole field decay. The
dashed curve shows schematically the flow far from the centre,
where equation (44) does not apply.

alone cannot provide evolution of this nature, decay of the
field should be accompanied by the very slow circulation of
neutron-star matter. Since the magnetic field lines are partly
‘frozen in’ in a highly conductive core plasma, this circulation
advects the magnetic field, compensating the changes of the
configuration due to dissipation. This circulation, together
with the dissipation, results in quasi-static evolution of the
magnetic field without changes in the spatial distribution of
currents. To provide evolution of this nature in the deep
layers of the core, matter flows towards the centre of the star
near the polar axis, while it moves outwards near the
equatorial plane. The velocity of circulation decreases with
neutron-star age because of a decrease in the field strength
(see equations 39-40). The core matter probably does not
turn over more than once during the lifetime of the neutron
star.

The circulation considered in the present paper can play
an important role in the chemical equilibrium in the core. In
analysing the circulation we have completely neglected beta-
processes in the flowing matter. These processes can,
however, change the chemical composition of the npe-
plasma since the chemical equilibrium depends on the dens-
ity, but the hydrodynamic flow causes the plasma to pass
through core regions that have non-uniform densities. As
pointed out by Pethick (1991), beta-decay can also lead to
additional dissipation of the magnetic field due to a change of
the chemical equilibrium in the moving plasma. This ‘beta-
decay’ dissipation can accelerate field decay for some
conditions, and can influence the velocity and configuration
of the circulation. We plan to consider these questions in a
forthcoming paper.
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