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Abstract

A mid- to late-Holocene synthesis of fire activity from the Mediterranean basin explores the linkages among fire, climate variability and seasonality 

through several climatic and ecological transitions. Regional fire histories were created from 36 radiocarbon-dated sedimentary charcoal records, available 

from the Global Charcoal Database. During the mid-Holocene ‘Thermal Maximum’ around 7500–4500 cal. BP, charcoal records from the northern 

Mediterranean suggest an increase in fire while records from the southern Mediterranean indicate a decrease associated with wetter-than-present 

summers. A North–South partition between 40° and 43°N latitude is apparent in the central and western Mediterranean. Relatively abrupt changes in 

fire activity are observed c. 5500–5000 cal. BP. Records of Holocene fire activity appear sensitive to both orbitally forced climate changes and shorter-

lived excursions which may be related to North Atlantic cold events, possibly modulated by an NAO-like climate mechanism. In cases where human–fire 

interactions have been documented, the regional coherency between fire occurrence and climate forcing suggests a dominant fire–climate relationship 

during the early–mid Holocene. The human influence on regional fire activity became increasingly important after c. 4000–3000 cal. BP. Results also suggest 

that: (1) teleconnections between the Mediterranean area and other climatic regions, in particular the North Atlantic and the low latitudes monsoon 

areas, influenced past fire activity; (2) gradual forcing, such as changes in orbital parameters, may have triggered abrupt shifts in fire activity; (3) regional fire 

reconstructions contradict former notions of a gradual (mid- to late-Holocene) aridification of the entire region due to climate and/or human activities 

and the importance of shorter-term events; (4) Mediterranean fire activity appears hightly sensitive to climate dynamics and thus could be considerably 

impacted by future climate changes.
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Introduction

The Mediterranean is a region characterized by strong seasonal 
precipitation (Lionello et al., 2006) and extreme weather events 
including floods and droughts. The driest years, marked by sum-
mer heat-waves, are linked to extreme fire activity (Moriondo 
et al., 2006). For instance, during 2007, Greece experienced particu-
larly large fires that resulted in over 226 000 ha of burned forests, 
olive groves, shrub lands and farmlands (Good et al., 2008). On 
average, 50 000 fires and between 700 000 and 1 000 000 ha burn 
per year within the Mediterranean basin, representing one of the 
globe’s most significant wildland fire regions (Food and Agricul-
ture Organization (FAO), 2001). Consequently, fire is one of the 
most relevant agents of Mediterranean ecosystem dynamics 
(Pausas, 2006). Since at least the last glacial period, fire has helped 
to shape biome distributions and to maintain the structure and func-
tion of fire-sensitive communities (Carrión, 2002; Colombaroli 
et al., 2009). The region also has an exceptionally long and complex 
history of human use, stretching back at least c. 10 000 cal. BP 
with the advent of Neolithic farming in the eastern Mediterranean 
(Bocquet-Appel et al., 2009). Indeed, the combined evaluation of 

charcoal-inferred paleofire activity with past hydrological, vegeta-
tion, and archaeological data reveals strong relationships between 
climate, fire, vegetation, and anthropogenic land use (Carrión et al., 
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2007; Turner et al., 2008, 2010). Furthermore, long-term records 
attest to past variability in fire including periods during the 
Holocene, with greater-than-present fire activity (Tinner et al., 
2009; Vannière et al., 2008). However, despite the considerable 
increase in research and publications on Holocene fire history in 
the Mediterranean in the last ten years (Figure 1 and Table 1), 
there remains a poor understanding of basin-wide fire history. A 
Mediterranean-wide Holocene fire synthesis allows us to establish 
long-term trends and identify significant disturbance events.

At continental-to-regional scales, coherent patterns in fire 
activity are evident throughout the Holocene period and have been 
explained in terms of large-scale climatic controls (Marlon et al., 
2009; Power et al., 2008) and coupled with large-scale atmospheric 
circulation patterns (Trouet et al., 2006; Veblen and Kitzberger 
2002). Even within forested regions of the Mediterranean basin, 
where fire activity is closely linked to vegetation dynamics 
and fuel load (Pausas and Bradstock, 2007), past and present fire 
occurrence is ultimately controlled by seasonal hydrologic condi-
tions (Telesca and Lasaponara, 2006; Vannière et al., 2008). Medi-
terranean fires occur during summer when climate conditions 
(typically expressed as the ratio between precipitation and eva-
potranspiration as a function of temperature) favour fuel flamma-
bility, and fire occurrence depends on the duration and intensity of 
this dry season (Pausas, 2004). For example, severe fire-weather 
(summer drought and autumn foehn winds) are of overriding 
importance in determining fire behavior in California chaparral 
(Mediterranean-type climate) where fuel management policy has 
been ineffective in fire supression (Keeley and Fotheringham, 
2001a, b). Taking into account this dominant fire–climate relation-
ship, this synthesis provides insights into the linkages between 
changes in paleofire activity and regional climate forcing.

The mid to late Holocene (in this paper early Holocene refers 
the period before 8500–8000 cal. BP, mid Holocene to the 8000–
4000 cal. BP period and late Holocene to the period post 4500–
4000 cal. BP) corresponds to the transition from Holocene thermal 
maximum to Neoglacial periods (e.g. Calvo et al., 2002; Matthews 
and Dresser, 2008). During these periods, orbitally forced changes 
in summer insolation affected the Northern Hemisphere (Berger 
and Loutre, 1991) and the Mediterranean region experienced 
important ecological changes. For example, the evergreen-broadleaf 
forests reached their maximum expansion before being disrupted 

by climate changes and/or human activities (Colombaroli et al., 
2008; Gil-Romera et al., 2010). But contradictory interpretations of 
climate reconstructions appear, in particular about the so-called 
Holocene aridification trend and the establishment of the present-
day Mediterranean climate (de Beaulieu et al., 2005; Frigola et al., 
2007; Jalut et al., 2009; Magny et al., 2002, 2007a; Marchal et al., 
2002; Roberts et al., 2008; Sadori et al., 2008; Tinner et al., 2009; 
Tzedakis, 2007). This may reflect real inter-regional differences or 
contrasting sensitivities of different proxies, and/or the difficulties 
to distinct human versus climate influences on vegetation changes. 
However, most authors suggest this heterogeneity in climate recon-
structions within the Mediterranean region are linked to changes in 
seasonality and the importance of geographic gradients (North–
South and East–West, Davis and Brewer, 2009; Magny et al., 2003, 
2007a, 2009; Roberts et al., 2008; Tzedakis, 2007). Furthermore, 
recent studies have identified climate oscillations that punctuated 
the Holocene in the Mediterranean area with potential links to the 
North Atlantic (Incarbona et al., 2008; Magny et al., 2007a, 2009; 
Rodrigues et al., 2009). Other studies indicate that the Mediterra-
nean region has been particularly sensitive to past climate change 
linked to the North–South summer gradient and northward (or 
southward) displacement of the Intertropical Convergence Zone 
(ITCZ) (Gasse and Roberts, 2004; Tinner et al., 2009). The aim 
of this paper is to identify the long-term trends in fire activity for 
several Mediterranean subregions and discuss the similarity, 
synchronicity and/or discrepencies associated with forcing factors.

In this paper we present a synthesis of 36 radiocarbon dated 
time series from sedimentary charcoal records as an index of pale-
ofire activity. These paleofire reconstructions combine individual 
records of total charcoal influx (paricles/cm2 per yr) as an indica-
tor of local to regional biomass burned (for discussion see the 
review by Conedera et al., 2009). Charcoal series were extracted 
from the Global Charcoal Database (Power et al., 2008) and 
improved by newly available records and standarized to correct 
for heterogeneity within the data (see Power et al., 2010).

Study area

Mediterranean climate zones are characterized by mild wet win-
ters and warm-to-hot dry summers and occur on the west side of 
the continents between about 30°N and 45°N latitudes. The dry 
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season lasts between one and three months on the Italian coasts in 
the north of the Mediterranean, and more than five months below 
40°N latitude, including Sicily, southern Spain or the Levant 
(Quézel and Médail, 2003). Annual precipitation for Mediterra-
nean bioclimates (Quézel and Médail, 2003) varies between 100 
mm/yr and greater than 2000 mm/yr, and is often dependent on 
elevation. In addition to the orographic controls of Mediterranean 
climate, latitudinal gradients occur from the northernmost part of 
Mediterranean region (e.g. northern Italy), characterized by sub-
mediterranean vegetation, to the mesomediterranean vegetation 
zone (e.g. central Italy), situated between 45°N and 40°N latitude, 
and to the southernmost thermomediterranean zone (e.g. southern 
Spain). Bioclimate and surrounding vegetation of each site are 
listed in Table 1. At low and middle elevations, in meso- and ther-
momediterranean regions, broadleaf-evergreen trees (e.g. Quercus 
ilex, Q. suber, Chamaeorops humilis, Laurus nobilis, Olea euro-
pea) and shrubs (e.g. Pistacia terebinthus, Arbutus unedo) domi-
nate. Outside the true Mediterranean region, at mid-latitudes, 
deciduous broadleaf trees dominate (Quercus, Ulmus, Carpinus, 
Tilia, Corylus) in the lowlands (e.g. North Italy). Submediterra-
nean deciduous trees (e.g. Quercus pubescens, Fraxinus ornus, 
Ostrya carpinifolia, Castanea sativa) form a forest belt above
(e.g. c. > 1000 m a.s.l. in Sicily) and north of the evergreen Medi-
terranean vegetation belt (e.g. northern Italy, northern Spain, 
northern Greece, Chiappini, 1988; Ellenberg, 1996; Reisigl et al., 
1992; Thuiller et al., 2003). This vegetation belt is a transitional 
zone between the Mediterranean and temperate biomes. Submedi-
terranean tree species are also co-dominant in mixed deciduous- 
evergreen stands in the lowlands of the true Mediterranean region 
(e.g. mesomediterranean Tuscany, Lazio). The relative abundance 
of evergreen and deciduous species in the transition zones depend 
mainly on exposure and soil characteristics. When these are 
favourable, evergreen, deciduous broadleaf trees, shrubs and 
annual herbs can grow together (Quézel and Médail, 2003).

The Mediterranean region is at the limit between high- 
latitude atmospheric circulation (Siberian high-pressure system, 
associated to the North Atlantic Oscillation NAO mechanisms 
in winter; Cullen and deMenocal, 2000; Xoplaki et al., 2003; 
Figure 2) and (sub-)tropical circulation, which is linked to the 
summer monsoon and trade wind activity (Lionello et al., 2006). 
The interhemispheric temperature gradient leads to a seasonal 
migration of the Intertropical Convergence Zone (ITCZ). The 
southern position in winter allows storm tracks coming from the 
Atlantic to bring rain over the Mediterranean, while the subtropi-
cal high-pressure blocks westerlies (and rainfall), when the ITCZ 
is at its northern position in summer (Weischet, 2002). The inter-
annual variability of the Mediterranean summer climate is linked 
to the mean latitudinal position of the ITCZ and to the strength 
and position of the Atlantic subtropical anticyclone, which are in 
turn connected to the Northern Hemisphere summer monsoons 
(Dima and Wallace, 2003; Rodwell and Hoskins, 2001). The 
western and central Mediterranean basins are mainly influenced 
by a western extension of the African monsoon (Xoplaki et al., 
2003), while the eastern most part of the basin is under the influ-
ence of the Asian monsoon (Ziv et al., 2006). This connection is 
necessarily only indirect (i.e. atmospheric circulation bridges: 
the tropical circulation cells and the mid-latitude stationary 
waves) and does not imply a northward extension of the mon-
soon over the Mediterranean (see the review by Tzedakis, 2007). 
As the summer monsoon intensifies, the meridional Hadley cir-
culation, which descends over North Africa, begins to influence 
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the development and persistence of subtropical high pressure 
over the Mediterranean causing dry conditions. Note that ITCZ 
movement to the north during the early Holocene (10 000- 
8000 cal. BP) as a consequence of maximum boreal insolation 
exceeded the today’s interannual variability (Figure 2; Fleitmann 
et al., 2003; Haug et al., 2001), but did not expand north of 
c. 25°N (Tzedakis et al., 2007). Changes in the mean position 
of the ITCZ, in the intensity of monsoons and in the pattern of 
the Hadley circulation influence the atmospheric circulation in 
the subtropical Atlantic and the Mediterranean realms with con-
sequences for precipitation and temperature (Alpert et al., 2006; 
Baldi et al., 2005; Tzedakis et al., 2009).

Current state-of-the-art on 
Mediterranean fire history

The 36 charcoal-based fire history time series (Figure 1 and Table 1) 
document our current knowledge of Holocene fire history in the 
Mediterranean basin. Five representative multiproxy paleoenvi-
ronmental records were selected as a basis for summarising the 
current state-of-the-art on mid- to late-Holocene fire history in 
five Mediterranean regions, including Spain, Sicily, central Italy, 
the Southern Alps, and the eastern Mediterranean (Figure 3). 
Additional charcoal series are cited to illustrate regional homoge-
neity and/or diversity of fire activity in each subregion. For those 
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anticyclone west of the Mediterranean, with increased summer precipitation in the northern part and drier conditions in the southern part of 
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sites included in this analysis, ID numbers are listed parentheti-
cally after the first mention of a record (Figure 1; Table 1).

Spain

The Siles Lake (301) record from the Segura Mountains in south-
ern Spain (Figures 1 and 3A; Carrión, 2002) illustrates a period 
between 8500 and 8000 cal. BP of high fire activity, also recorded 
further north in the Ebro valley (site of Hoya del Castillo (842) and 
Guallar, Davis and Stevenson, 2007; Figure 1 and Table 1, Guallar 
is located in the same region) regionally considered as more arid 
than today. After 8000 cal. BP, Siles Lake observes a period of low 
fire activity. This pattern has been confirmed by two other sites 
from southern Spain: Cañada de la Cruz (612) and Villaverde 
(613) (Carrión et al., 2001a, b). Low-elevation and/or northern 
Spain fire-history records, including: Navarrés (637), Ojos del 
Tremendal (639), Hoya del Castillo and El Carrizal (596) (Carrión 
and Van Geel, 1999; Davis and Stevenson, 2007; Franco-Múgica 
et al., 2005; Stevenson, 2000 ), suggest potentially opposite pat-
terns with fire records in the south. High charcoal influx values 
have been observed during the period c. 7000–6000 cal. BP, which 
is coherent with increased aridity in the Ebro Basin during the mid 
Holocene (González-Sampériz et al., 2009). After 5000 cal. BP, 
records from Segura Mountains, including Siles Lake, Cañada de 
la Cruz, Villaverde and Navarrés (637) (Figure 1 and Table 1) indi-
cate a significant increase in fire activity, whereas fire activity is 
absent at northern sites. After 2800 cal. BP, all charcoal series 
available from Spain, including Baza (614), Gádor (627) (Carrión 
et al., 2003, 2007) and Las Pardillas (556) (Sánchez-Goñi and 
Hannon, 1999) show a general increase in fire activity.

Sicily

The recently published pollen and charcoal record of the coastal 
lake Gorgo Basso (848) (Figures 1 and 3B) from southern Sicily 
by Tinner et al. (2009) offers a more or less similar environmental 
history to the Segura region (see above). Approximately 8000 cal. 
BP, a decline in evergreen Olea europaea woods and an increase 
in fire activity appear to reflect drier climate conditions. From 
7000 cal. BP, evergreen broadleaved forest (Quercus ilex-Olea 
europaea) expanded at the expense of open communities and was 
associated with a lower fire activity as well as a decrease in 
human activities. This is consistent with results from two other 
records available in Sicily: the upland Lago di Pergusa (714) in 
the central part of the island (Sadori and Giardini, 2006; Sadori 
et al., 2008) and the southern coastal lake Biviere di Gela (436) 
(Noti et al., 2009), where fire was frequent during periods of open 
xeric vegetation and declined under mixed deciduous–evergreen 
forest between 7500 and 7000 cal. BP. Low fire activity within the 
rather dense coastal evergreen forests persisted until renewed 
human activity disrupted these forests and opened the landscape 
for agriculture by c. 5000 cal. BP at Lago di Pergusa, c. 4500 cal. 
BP at Biviere di Gela and 2700 cal. BP at Gorgo Basso.

Central Italy

The multiproxy diagram from Lago dell’Accesa (Figures 1 and 3C) 
has been drawn with charcoal and pollen data from Vannière et al. 
(2008; pollen analysis: D. Colombaroli), completed with lake-level 
fluctuations from Magny et al. (2007b) and summer precipitation 
reconstruction from Peyron et al. (2011, this issue) based on pollen 

data (Drescher-Schneider et al., 2007). From 8500 to 2000 cal. BP, 
five periods of fire activity increase have been identified in this 
high-resolution study (contiguous 20 year span samples): 8000–
7500, 6500–6000, 5500–5000, 3500–3000 and 2700–2300 cal. BP. 
Reconstructed fire frequency and return interval suggest decreases 
in fire activity were contemporaneous with Quercus ilex recovery, 
forest expansion, increasing lake-levels and pollen-inferred summer 
precipitation increases. As a general trend, fire frequency decreases 
from 5800 cal. BP to reach minimum values c. 5000 cal. BP. After 
3700 cal. BP, fire activity appears to have been independent of lake-
level fluctuations and summer precipitation changes, but could be 
linked with human impact, well attested by pollen data (not shown 
here). Six other charcoal records have been identified from literature 
in central Italy and Croatia, including; Valle di Castiglione (846), 
Battaglia (1113), Lagaccione (845), Malo Jezero (865), Lago di 
Massaciuccoli (130), Lago del Greppo (490) (Figure 1, Table 1). 
Excluding the series from Lago di Massaciuccoli (Colombaroli 
et al., 2007), these sites either have low sample resolution or do not 
span the mid Holocene. Nevertheless, some common features are 
detectable. At Lago di Massaciuccoli and Malo Jezero, a reduction 
in fire activity is attested c. 5300–5000 cal. BP (Colombaroli et al., 
2009). This trend is also recorded at Lagaccione (Magri 2008; Magri 
and Ciuffarella, 1991) and Lago del Greppo (Vescovi, 2007) from 
6000 cal. BP. An increase of fire activity is then observed around/
after 3500 cal. BP at Malo Jezero (Colombaroli et al., 2009) and 
Valle di Castiglione (Magri, 2008; Magri and Ciuffarella, 1991), 
3000 cal. BP at Battaglia (Caroli and Caldara, 2006) and 2200 cal. 
BP at Lago di Massaciuccoli (Colombaroli et al., 2007).

North Italy, Slovenia and Italian Switzerland 

(Southern Alps)

Northern Italy, Slovenia and Italian Switzerland lie within the 
fire-prone region of the submediterranean transition, between 
Mediterranean and temperate biomes, and thus are not fully typi-
cal of the Mediterranean climate area (Conedera et al., 1998; 
Tinner et al., 1998). Given the outstanding relevance of fires, this 
region south of the Alps, below 45°–46.5°N latitude, has the best 
documentation of Holocene fire history in all of southern Europe. 
Eleven charcoal records have been identified and selected for this 
synthesis, including Lago Piccolo di Avigliana (381), Lago della 
Costa (445), Lago di Fimon (826), Mlaka (615), Lago Lucone 
(824), Griblje Marsh (611), Lago di Muzzano (259), Lago di 
Origlio (258), Pian di Gembro (634), Piano (827), Lago Basso 
(379) (Figure 1 and Table 1). The amplitude of the fire signal is 
highly variable, but this might be a function of sedimentary proc-
esses related to the distance from the fire source. At Lago di 
Origlio (Figures 1 and 3D) and Lago di Muzzano (Tinner et al., 
2005) charcoal influx values slightly increase c. 6500–6000 cal. 
BP and 5000–4500 cal. BP, respectively, i.e. during the Neolithic, 
but regional fire activity reached a maximum c. 2500 cal. BP (Iron 
Age). During this last period fires were sufficiently frequent 
to induce fire-adapted vegetation and create openings in fire-
resistant oak forest. This fire history is more or less the same at 
the regional scale, fire activity increased c. 6500 cal. BP, a 
decrease occurred c. 5000 cal. BP, followed by subsequent 
increases and decreases in fire, but charcoal influxes do not 
decline to initial values for most of the records. Whereas periods 
of low fire activity coincided with phases of cold-humid climate, 
the human control on fire is unambiguously documented by the 
positive correlation between charcoal particles and pollen types 
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Figure 3. Selected series with high-resolution charcoal records from the main Mediterranean regions. Lake Siles from Southern Spain 

(Carrión, 2002), Gorgo Basso from Sicily (Tinner et al., 2009), Lago dell’Accesa from central Italy (lake levels from Magny et al., 2007, pollen data 

from Colombaroli et al., 2008, mean fire interval from Vannière et al., 2008, summer precipitation from Peyron et al., 2011, this issue), Lago di 

Origlio from Italian Switzerland (Tinner et al., 2005) and Eski Acıgöl from Turkey (Turner et al., 2008)
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indicative of human activities (Andric, 2007; Finsinger, 2004; 
Finsinger and Tinner, 2006; Kaltenrieder et al., 2010; Pini, 2002; 
Tinner et al., 2005; Valsecchi, 2005; Valsecchi et al., 2006, 2008; 
Wick, 1994).

Turkey, Syria and Israel (eastern Mediterranean)

The eastern Mediterranean region is more limited in terms of pub-
lished fire records. Recently, Turner et al. (2008) published a 
high-resolution series from lake Eski Acıgöl (772) (Figures 1 and 
3E) in order to assess the changing role of climate and human 
impact on fire activity in the oak parkland zone of central Turkey. 
In this upland region biomass availability and humidity appear to 
have been the main factors controlling the timing of fire activity 
during the mid Holocene. Around 5000 cal. BP, the positive shift 
in δ18O values reflects climatic aridification towards modern con-
ditions in accordance with other western Asian climatic records 
(Roberts et al., 2008). The tree cover reached its maximum extent 
c. 5500 cal. BP, afterwards declining to be replaced by steppe 
herbs and grasses. Relative highest charcoal influx values have 
been detected during this time of relatively dense tree cover. Nev-
ertheless, high fire activity is recorded later when oxygen isotope-
inferred precipitation increased and herb cover developed, which 
might indicate increased winter or spring (rather than summer) 
precipitation. Three other series are available from the eastern 
part of the Mediterranean: Akgöl (1115) in Turkey (Turner et al., 
2010), Ghab (67) in Syria, (Yasuda et al., 2000) and Hula (1114) 
in Israel (Turner et al., 2010). Despite these time series having 
lower sample resolution, they all indicate a clear negative trend 
in fire activity after 6000 cal. BP, reaching minimum values 
c. 5500–4500 cal. BP. Between 4000 and 3500 cal. BP, charcoal 
abundance at these sites show increased fire activity. Lake Van 
(73) from eastern Turkey confirms this last period of fire activity 
increase which could be linked more to changes in human impact 
and land uses (Wick et al., 2003).

Materials and methods

Data sources

The regional analysis of charcoal records from the Mediterranean 
region was accomplished through exploring records contained 
within the Global Charcoal Database (Table 1, GCD version 1, 2 
and 3, http://gpwg.org). To improve the regional coverage of 
GCD version 1 (Power et al., 2008) an additional 25 sites were 
obtained from members of the Global Paleofire Working Group 
or digitized from the published literature (B. Vannière and 
M. Power) and have been incorporated into a new version of the 
GCD (version 2). An additional three records were recently added 
to the GCD and will be incorporated into GCD version 3. The 
GCD contains charcoal records from a variety of site types. 
Records from marine sediments, alluvial fans and soils were 
excluded because these records generally have lower temporal 
resolution than lakes and bogs and can be biased toward local 
(soils, alluvial deposits) or continental (marine) fires and the 
effect of preservation on charcoal, and are less well-suited for 
reconstructing biomass burning at regional scale. Archaeological 
charcoal records were also excluded because these often reflect 
anthropogenic or cultural choices in fuel wood and not the effects 
of naturally occurring fire on the landscape. Records with low 
sampling resolution, less than 1 sample every 400–500 years, 

were also excluded as they correspond more to discrete data than 
time series. Six others series, published in the literature have been 
kept out of this synthesis as they were outside our chronological 
window (8500–2500 cal. BP): Krimda (Morroco, Damblon, 
1991), Sebkha Mhabeul (Tunisia, Marquer et al., 2008), Guallar 
(Spain, Davis and Stevenson, 2007), Pian Segna (Switzerland, 
Valsecchi, 2005), Bereket Basin (Turkey, Kaniewski et al., 2008) 
and Nar (Turkey, Turner et al., 2008).

Age controls

The radiocarbon corpus for the group of 36 records included 
in this study contains 168 dates (Figure 4). A maximum of 18 
radiocarbon ages are available for the period 6000–6500 cal. 
BP, and eight radiocarbon dates per 500 years time-span is the 
minimum reached for the 8500–2500 time-window consid-
ered. The chronological framework of this synthesis seems to 
be well supported and appropriate for a time-reconstruction of 
fire activities changes with an uncertainty ± 150 years which is 
1.5× the mean of calibration interval from all radiocarbon ages 
available.

All charcoal records used in this synthesis have been con-
verted to a common time scale, in calibrated years BP (cal. BP) 
using either the original authors’ published chronology or newly 
created age models from calibrated 14C dates. Age models were 
constructed using all available calibrated ages, including dated 
tephra layers, and the ‘best fit’ age model was selected for 
individual records, based on goodness-of-fit statistics and the 
appearance of the resulting curve (Power et al., 2008, 2010).

Data analysis

A number of issues could influence the fidelity of overall char-
coal influx as an indicator of fire activity. Particularly, the large 
variability in natural processes involved in sedimentary charcoal 
deposition within lake or mire basins and in the methods used to 
quantify charcoal, results in a wide range in individual data 
values within and between sites. To make possible meaningful 
comparisons within and between records, a protocol was used for 
the transformation and standardization of individual records 
(Power et al., 2010). This protocol included: (1) rescaling the 
values using a minimax transformation, (2) transforming and 
homogenising the variance using the Box-Cox transformation, 
and (3) rescaling values once more to Z-scores (Figure 5). The 
minimax transformation rescales charcoal values from each record 
to a range between 0 and 1 by subtracting the minimum charcoal 
value in the record from each charcoal value, and dividing by the 
range of values:

 
′ = −( ) −( )c c c c c
i i min max min/  (1)

where ′c
i  is the minimax-transformed value of the i-th sample in 

a particular record, ci ,  and cmax  and cmin  are the maximum and 
minimum values of the ci’s . The minimax transformation does 
not alter the pattern of variability or change the distribution of the 
data values through time in a particular record, but it permits 
records with different ranges of values to be compared on a 
common scale.

The generally skewed distribution of charcoal values, with 
a long, or heavy, upper tail, would produce a disproportionate 
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number of negative anomalies (or deviations from the mean of 
a particular base period) without further transformation. The 
rescaled values were thus transformed using the Box-Cox 
transformation:

 c
c
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log( )
=
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′ +
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where ci
*

 is the transformed value, λ  is the Box-Cox transforma-
tion parameter and α  is a small positive constant (here, 0.01) 
added to avoid problems when ′c

i  and λ  are both zero. The trans-
formation parameter λ  is estimated by maximum likelihood 
using the procedure described by Venables and Ripley (2002). In 
practice, the optimization involved in selecting λ  can be seen as 
an attempt to produce data values that are normally distributed, 
with few unusual or outlying points. The Box-Cox transformation 
is also known as a variance-stabilizing transformation because it 
usefully reduces the dependence of variability in the data on the 
level of the values (see Emerson and Stoto, 1983). Note that Box-
Cox transformations of both the ‘raw’ and mimimax-rescaled data 
produce the same results. Because the specific combination of 
values being transformed and the transformation parameter λ  
can result in negative values in the transformed data, and because 
these values may seem counterintuitive, the transformed data can 
be rescaled again using the minimax transformation. For instance, 
Figure 5 shows that the impact of the Box-Cox transformation on 
the charcoal influx data from one site, Lago dell’Accesa, is rela-
tively modest overall (Figure 5). A comparison of raw charcoal 
influx (Figure 5B) and transformed charcoal influx (using the 
whole Holocene as the base period, Figure 5B) shows a curvilin-
ear relationship, as would be expected for a power-function trans-
formation like the Box-Cox. The impact of the transformation and 
the distribution (Figure 5C) of the data do not affect the overall 

trends or pattern of variability within the data. Note that the 
optimal value of λ  (0.02 here) ‘normalizes’ the distribution, 
and makes the variability of the data less dependent on the local 
level.

Paleoenvironmental time series, expressed as anomalies, 
or deviations from some long-term average, often provide a 
meaningful context for interpreting past environmental change. 
The conventional approach to create such anomalies is to stand-
ardize the data, expressing the values as Z-scores:

 
z c c s
i i c

= −( ) /*
(
*

(
*

4ka) 4ka)  (3)

where, for example, c(
*
4ka)  is the mean minimax-rescaled and 

Box-Cox transformed charcoal value over a predefined base 
period, such as the interval 4000 to 200 cal. BP, and sc(

*
4ka)  is the 

standard deviation over the same interval. The resulting Z-scores 
have a mean of 0.0 and standard deviation of 1.0 (over the base 
period), which provides an intuitive interpretation of individual 
values as above or below the long-term mean. When the data are 
approximately normally distributed, the relative frequency of val-
ues of different magnitude can also be inferred. Because the res-
caling is linear, the appearance of the standardized time series is 
identical to the transformed series.

Results

Four criteria were used for delineating several key fire history 
regions within the Mediterranean basin (Figure 1), including: 
(1) Mediterranean climate zones (e.g. number of dry month per 
year, see ‘Study area’ above), (2) biogeographic vegetation 
classes (e.g. evergreen-broadleaf vegetation dominance), (3) current 
knowledge of fire history (see ‘Current state-of-the-art on 
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Mediterranean fire history, above), (4) and the quality and quan-
tity of available charcoal records. Four groups of sites were 
defined: a west–east partition of the Mediterranean region was 
used to group all records from southwestern Asia (Turkey, Syria 
and Israel) and second, a north–south partition based on 40°N 
latitude was used to separate southern Spain and southern Italy 
from northern Spain and central Italy (Figure 1 and Table 1). The 
group of sites above 45°N latitude corresponds to sites in the fire-
prone submediterranean zone (northern Italy, Slovenia and Italian 
Switzerland), which, similar to other submediterranean areas in 
Europe (e.g. northern Spain, southwestern France), is outside the 
limit of the Mediterranean region stricto sensu (Quézel and 
Médail, 2003; Figure 1). The 36 transformed charcoal records 
from the Mediterranean region (Figure 6) are presented in a 
Hovmöller diagram (Hovmöller, 1949). Each region is well docu-
mented, except the northern part of Spain (‘Med. West 40–45’) 
for the period after 5000 cal. BP and to a lesser extent the ‘Med. 

East’ region where Eski Acıgöl is the only high-resolution series. 
Colour areas reveal homogeneous Z-scores’ periods (mainly 
positive or negative) which confirm common regional patterns in 
fire activity changes over the studied period.

Regional groupings of 250 year smoothed Z-scores of trans-
formed charcoal influx are used to reconstruct regional trends in 
fire activity for the period 8500–2500 cal. BP (Figure 7). ‘Med. 
All’ represents all records included in this study (n = 36, see
Table 1). ‘Med. stricto sensu’ relates to those charcoals records 
occurring within the Mediterranean stricto sensu zone (n = 25). 
These two reconstructed curves appear quite similar, and values 
fluctuate around the average throughout the period. Two periods 
of above average values can be identified between 8000 and 5300 
cal. BP and between 4500 and 2800 cal. BP, interrupted by a sharp 
decrease c. 5300–5000 cal. BP. Several departures toward lower 
values mark general trends at c. 8200, 6700, 5900, 4200 and 3100 
cal. BP. Except for the 8200 cal. BP event, records of these 
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centennial-scale changes in fire activity, presented as a composite 
of Z-score of transformed charcoal influx, show fairly broad con-
fidence intervals, i.e. changes are less than the range of variability 
seen by the upper and lower Z-score confident intervals (see 
shaded areas in Figure 7). In these cases, the pattern arises from 
strong fluctuations at particular sites and a regional interpretation 
appears difficult. The uncertainty may be related to the composit-
ing of several low-resolution records with several detailed time 
series (e.g. Pian di Gembro, Lago di Fimon or Lago dell’Accesa), 
suggesting the above centennial-scale decreases in fire activity 
may persist as more detailed series become available.

‘Med. East’ is the smallest group with only five records avail-
able between 8500 and 2500 cal. BP (which leads to a large uncer-
tainty envelope). This Z-score curve shows the greatest variability. 
Before 8000 cal. BP values appear relatively high, and then 
decrease reaching a first minimum c. 7400 cal. BP. A general 
increasing trend is observed until c. 5700 cal. BP, abruptly fol-
lowed by a strong decrease to reach the lowest values of the 

analysed period c. 4500 cal. BP. A new trend toward positive val-
ues begins after 4500 cal. BP.

Fire activity from the north 45°N latitude group of sites 
(‘North 45’, n = 11) presents a pattern characterized by multimil-
lennial trends of increasing fire over the entire period punctuated 
by relatively high magnitude negative events. Z-scores from char-
coal data have their lowest values (−0.4) c. 8200 cal. BP and other 
negative excursions are recorded c. 6600, 5900, 4200 and 3400 
cal. BP. A strong shift is also observed c. 5200 cal. BP after a first 
maximum (+0.7), and values reach a second maximum at the end 
of the study period.

The group of sites located in the western part of the Mediter-
ranean basin and between 40°N and 45°N latitudes show a bimo-
dal pattern of fire activity (‘Med. West 40–45’, n = 11). After a 
short negative event recorded c. 8200 cal. BP, increasing Z-scores 
of transformed charcoal influx indicate high fire activity between 
7500 and 5300 cal. BP with a brief decrease c. 6000–5800 cal. BP. 
An abrupt change is recorded just before 5000 cal. BP (the 
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uncertainty range is relatively good for this period). Afterwards, 
Z-score values appear very low (uncertainty range is relatively 
large, reflecting a high variability between records) until 3500 cal. 
BP, when a slight increase occurs. Two other periods of decreased 
fire activity are noted at c. 4200 and 2900 cal. BP.

The composite charcoal curve for the southwestern group (‘Med. 
West South 40’, n = 9) suggests an inverse pattern to the Med. West 
40–45 region. After an initial period of high charcoal influx values 
c. 8000 cal. BP, a decreasing trend is recorded. A relatively long 
period of low fire activity occurs between 7500 and 5000 cal. BP, 
with lowest values reached c. 6000–5500 cal. BP. Conversely, val-
ues show a progressive trend towards high fire activity between 
5000 and 3000 cal. BP. Short, rapid negative fluctuations c. 4500, 
3600 and 3200 cal. BP temporarily break this general tendency.

To summarise, several common features can be mentioned 
from these results or reconstructed fire activity (Figure 7):

xx A general trend toward increasing fire activity is recorded 
during the entire period studied in the submediterranean 
region above 45°N latitude (Figure 7, ‘North 45’).

xx Western Mediterranean sites located north 40°N latitude 
record an increasing trend after 8000 cal. BP which reached a 
maximum between 6000 and 5500 cal. BP.

xx Changes observed in eastern Mediterranean fire activity are 
more or less similar to those observed in the higher latitudes.

xx There is an opposite pattern between areas south and north of 
40°N–43° latitude in the central and western part of the Medi-
terranean basin.

xx A centennial-scale decrease in fire activity (lowest values 
reached within trends) is identified within all records above 
40°N latitude at c. 8200 cal. BP.

xx In all regions a strong reversal is identified c. 5500–5000 cal. 
BP.

xx After 4500–4000 cal. BP, all regions appear to be affected by 
enhanced fire activity, except ‘Med. West 40–45’ where Z-score 
of charcoal influx remain below the long-term average.

xx Several brief decreases in fire activity (lowest values reached 
within trends) are observed within all records north of 40°N 
latitude at c. 5900, 4200 and 2900 cal. yr BP.

This can be supported by Figure 8, where 500-year mean 
Z-score values for each region are mapped at a Mediterranean 
scale. The north–south opposition is particularly apparent between 
c. 8000–8500 and 7000–5000 cal. BP. A general, low fire activity 
is recorded between c. 4500 and 4000 cal. BP. Maximum fire 
activity occurred in the east and north of 40°N latitude between 
5500 and 5000 cal. BP and after 4000 and 3000 cal. BP.

Discussion

Forcing factors of Mediterranean fire activity

It appears that there is spatial coherency in fire histories within 
different parts of the Mediterranean (Figures 6 and 7), however, 
Figure 8 shows that there are also inconsistencies between areas. 
These regional differences might be explained by several differ-
ent causes.

(i) Contrasting climatic histories within the Mediterranean basin.  

If all Mediterranean vegetation types had similar controls on 
their fire activity, and if climate was the principal agency 

determining changes in fire activity during the period from 
8500 to 2500 cal. BP, then inter-regional contrasts in fire history 
should reflect different histories of climate and seasonality 
(e.g. on a north–south gradient). The possibility of such a 
paleoclimatic contrast was raised by Magny et al. (2007a) in 
respect of southern and northern Italy using paleohydrological 
lake indicators. In a similar way, but based on lake-isotope 
data, Roberts et al. (2008) suggest a contrast between a wetter 
southeastern and a drier northwestern Mediterranean during the 
early Holocene. Climatic reconstructions from vegetation data 
focusing on the mid-Holocene climate (6000 BP) for Europe 
show a latitudinal gradient (Cheddadi et al., 1997; Davis et al., 
2003) and/or a north–south partition around 40°–43°N latitude. 
Latitudinal temperature anomaly reconstructions in the Afro-
European sector indicate negative values at lower latitudes 
and positive or near zero values at high latitudes (Davis and 
Brewer, 2009). This partition of the Mediterranean area may 
also be observed from most of the simulated distribution of 
biomes (with a northern zone of cool/temperate/broadleaf open 
woodlands and a southern warm/temperate open woodlands) 
and the soil water availability simulation (Brewer et al., 2009). 
Brayshaw et al. (2011, this issue) using a numerical simulation 
model of Mediterranean paleoclimate, confirm that there 
could have been significant spatial heterogeneity in patterns 
of precipitation change during the early and mid Holocene. 
A negative fire signal is observed c. 8200–8000 cal. BP in 
the records above 40°N latitude which could be linked with 
the cold 8.2 ka BP event (Alley et al., 1997; Magny et al., 
2003; Wick and Tinner 1997) well known in North Atlantic 
region. Conversely, fire activity seems to be high in southern 
Mediterranean areas and in dry western Mediterranean regions 
including the Ebro valley, Spain (Davis and Stevenson, 2007). 
This is in accordance with the paleohydrological pattern at 
this time. Dry conditions in the Mediterranean South of 43°N 
latitude seems to coincide with cold and wet phases in and 
around the Alps (Magny et al., 2003, Marchetto et al., 2008). By 
c. 7500 cal. BP, fire activity increased (decreased) in northern 
(southern) Mediterranean regions. An inverse situation is 
documented after 5000 cal. BP.

(ii) Similar climatic histories but contrasting fire responses in 

different types of vegetation/land use. Because Mediterranean 
vegetation varies from deciduous and evergreen woodland to 
scrub and semi-desert, different regional plant functional types 
and or species composition have differing controls on fire activity. 
Most forest ecosystems are not fuel-limited, so that fire increases 
during periods of dry climate (e.g. Vannière et al., 2008). In regions 
with more open vegetation (e.g. grassland), fire is potentially 
fuel-limited and likely to increase during wet climate phases 
(e.g. Turner et al., 2008). Overall, northern Mediterranean sites 
are more forested, especially in Italy. If biomass were the only 
control on paleofire activity, we might expect the same climatic 
history to result in a contrasting pattern of burning between wetter 
(northern) and drier (southern) regional sequences. In reality, this 
explanation does not seem to apply to the north–south paleofire 
gradient in the western-central Mediterranean in any simple way. 
For example, even at lowland and upland southern sites (e.g. Siles, 
Carrión, 2002; Gorgo Basso, Tinner et al., 2009; Figures 3A, B 
and 9) the period of lowest fire activity is linked to maximum mid- 
Holocene forest development. By contrast, burning appears to 
have been biomass-limited in eastern Mediterranean sites, where 
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Z-score maxima coincide with the period of greatest woodland 
development in the mid Holocene (Turner et al., 2008, 2010; 
Figures 3 and 8). This may also apply to some lowland southwestern 
Mediterranean sites with a strong moisture deficit, such as Navarrés 
(Spain) which experienced increased fire frequencies during the 
mid-Holocene with increased precipitation (Carrión and Van Geel, 
1999). This indicates strong regional-scale differences in terms 
of species composition and vegetation structure/funtional types, 

expecially between the western and central Mediterranean and since 
the early Holocene which are not explainable by land-use only. 
For instance, in Spain, Pinus sp. has played a dominant role in 
long-term forest development. In Italy instead, rather mesophilous 
taxa like Ostrya, Abies, Fagus, and Carpinus were more important
(e.g. de Beaulieu et al., 2005). Differences in dominant species 
observed in palynological records across a west–east gradient 
have not affected the regional fire history as common trends have 
emerged between charcoal series from Italy and Spain (‘Med. West 
40–45’ and ‘Med. West South 40’). Table 1 presents the vegetation 
and bioclimate surrounding each site, from this table and from 
Figure 6 (results data), it appears that regrouping records according 
to vegetation type does result in common trends in fire activity.

(iii) Human intervention in burning activity. It is well-known 
that fire was used as a principal means of forest clearance for 
agriculture and pastoralism since Neolithic times (e.g. Rius 
et al., 2009; Tinner et al., 1999; Vannière and Martineau, 2005). In 
densely forested Mediterranean landscapes, the first ‘Landnám’ 
clearance horizon is usually associated with a reduction in tree 
pollen, and an increase in charcoal and anthropogenic pollen 
indicators (e.g. Noti et al., 2009). Evidence of forest clearance 
first appears as early as c. 8000 cal. BP at sites in central and 
northern Italy, such as Lago di Massaciuccoli and Lago 
dell’Accesa (Colombaroli et al., 2007, 2008). In records from the 
southern and eastern Mediterranean, the early anthropogenic use 
of fire is more difficult to be distinguished from paleoecological 
data, because landscapes were less densely forested and pollen 
types of crops and weeds such as Cerealia-type and Plantago 
lanceolata-type are not necessarily diagnostic of human activity. 
The spread of agriculture in the Mediterranean area probably 
proceeded in leaps, outwards from the ‘Fertile Crescent region’ 
(eastern Mediterranean) and westwards into Greece, southern 
Italy and then beyond to central and northwestern Europe. The 
different leaps are dated to c. 12000, 8700–8100 and 8100–7000 
cal. BP, corresponding to the crossing of the Taurus Mountains 
(Turkey), the southern Adriatic Sea (Greece–Italy) and western 
Mediterranean basin (Bocquet-Appel et al., 2009), respectively. 
But it is only from 4000–3500 cal. BP onwards, that large-
scale land-use conversion by Bronze Age and later cultures 
permanently changed biomass availability and burning activity 
across the Mediterranean (Carrión et al., 2007; Sadori et al., 2004, 
2008; Vannière et al., 2008) and most particularly in the northern 
Mediterranean region (southern Alps, Cruise et al., 2009; Favilli 
et al., 2010; Finsinger and Tinner, 2006; Tinner et al., 2005; 
Valsecchi et al., 2006). Therefore, after this time, it is difficult 
to attribute trends in paleofire activity to climatic control with 
absolute confidence. Prior to 4000–3500 cal. BP, on the other 
hand, climate appears to have acted as the main pacemaker for 
the regional-scale timing of biomass burning regardless if human 
activity was recorded at specific sites (Turner et al., 2010; Vannière 
et al., 2008) or not. From Figures 8 and 9, the synchronicity 
of short-term decreases in fire activity c. 8200, 5900, 4200 cal. 
BP and the shift c. 5500–5000 cal. BP observed in all regions 
provides a good supporting argument for this hypothesis.

Climatic conditions and mid- to late-Holocene 

fire activity

Sea surface and summer temperature reconstructions suggest that 
the Holocene Thermal Maximum in the Northern Hemisphere 

Med. East

Med. West South 40

Med. Stricto Sensu

Med. All

Med. West 40-45

North 45

-0.8

-0.4

0

0.4

0.8

-0.8

-0.4

0

0.4

0.8

-0.8

-0.4

0

0.4

0.8

-0.8

-0.4

0

0.4

0.8

-0.8

-0.4

0

0.4

0.8

-0.8

-0.4

0

0.4

0.8

Z
-s

co
re

s 
o

f 
tr

a
n

sf
o

rm
e

d
 c

h
a

rc
o

a
l i

n
fl

u
x

Z
-s

co
re

s 
o

f 
tr

a
n

sf
o

rm
e

d
 c

h
a

rc
o

a
l i

n
fl

u
x

8000 7000 6000 5000

cal yr BP

4000 3000

8000

250 yr smoothing window / 1000 yr bootstrap

7000 6000 5000

cal yr BP

4000 3000

Figure 7. Average Z-scores of transformed charcoal influx per 

region (250 yr smoothing window/1000 yr bootstrap). Grey 

envelopes represent the upper and lower 95% confidence intervals 

from the bootstrap analysis. White arrows underline tendencies 

and grey ones mark short events. The dotted line corresponds to 

the mean values of the base period: 21 000–200 cal. yr BP

 at Universidad de Murcia on March 4, 2011hol.sagepub.comDownloaded from 

http://hol.sagepub.com/


66  The Holocene 21(1)

occured between c. 8000 and 5000 cal. BP (Calvo et al., 2002; 
Renssen et al., 2009, respectively). By c. 6000 cal. BP, seasonality 
was 20–30 W/m² higher than present in the Northern Hemisphere 
and gradually decreased toward present. Fom Scandinavia, gla-
cier variations suggest a three-partite Holocene: an early Holocene 

before 9500 cal. BP marked by enlarged glaciers, a mid Holocene 
between 9500 and 5000 cal. BP, characterized by relatively small 
or absent glaciers, and a late Holocene Neoglacial period, with 
glacial re-advances (Matthews and Dresser, 2008). In the same 
way, during the Holocene, three periods of glacier recession were 
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detected in the eastern Swiss Alps at 9200, between 7450–6650 
and 6200–5650 cal. BP (Joerin et al., 2008). This implies a sum-
mer temperature increase of about 1.8°C assuming unchanged 
precipitation or of about 1°C taking into account a precipitation 
decrease of 250 mm/yr, or 2.5°C with a precipitation increase of 
250 mm/yr. All these data attest to the importance of higher-than-
present seasonality and summer drought, which is regionally 
coherent with a gradual increase in fire activity beginning at c. 
8000 cal. BP in the northern (40°N) latitude Mediterranean zones 
and particularly in the ‘Med. West 40–45’ region (Figures 8 

and 9). Glacial dynamics are also in accordance with regional 
fire reconstructions with fire activity increasing up to a maximum 
at c. 5300 cal. BP, being briefly interrupted by lower values
c. 6000–5500 cal. BP. In a similar way, pollen-based biome recon-
structions are characterized by a general expansion of woodland dur-
ing the early to mid Holocene in Europe (Davis et al., 2003). 
Generally, fire activity depends on fuel-moisture levels, which are 
the result of the ratio between precipitation and evapotranspira-
tion as related to temperature. Within this context, simulations of 
soil-water availability suggest negative anomalies in the northern 
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part of the Mediterranean (Brewer et al., 2009) which might have 
promoted increased fire activity in the region north of 40°N lati-
tude during the mid Holocene. Therefore, between 8000 and 6000 
cal. BP, vegetation distribution suggests a reduced north–south 
gradient in climate over Europe and a lowering of the Earth’s 
Latitudinal Temperature Gradient (LTG), particularly during 
summer (Davis and Brewer, 2009; Figure 9). The subsequent 
decreasing (increasing) trend in summer temperature in the 
north (south) implies a progressive change toward an enhanced 
summer LTG. These geographical partitions and temporal tendan-
cies in summer temperature may help explain the observed time-
transgressive changes in fire activity from the northern to southern 
Mediterranean region (Figure 9).

In opposition to the northern Mediterranean region, a period of 
low fire activity from c. 7500 to 5000 (begining of the fire activity 
increase) cal. BP in the ‘Med. West South 40’ region (Figures 8 
and 9) corresponds to a humid climate period. On the basis of 
high lake-levels in the uplands of southern Spain (Carrión, 2002; 
Reed et al., 2001) and expansion of evergreen-broadleaf forest in 
coastal Sicily (Tinner et al., 2009), this period has been inter-
preted as characterized by increased precipitation in the southern 
Mediterranean region. In agreement with mid-Holocene recon-
structions from the Iberian Peninsula, pollen data from the south-
ern coast of Sicily suggests expanded shrub and forest cover 
occupied areas previously dominated by Mediterranean scrubs 
and grasslands after 7000 cal. BP (Tinner et al., 2009). Similarly, 
mid-Holocene lake-level maxima in the northern latitudes of 
Africa are consistent with widespread evidence of wetter-than-
present climate conditions at c. 6000 cal. BP (Gasse, 2002). 
Decreased fire activity between 7500 and 5200 cal. BP in the 
‘Med. West South 40’ region suggests the southern Mediterranean 
experienced significantly different environmental conditions 
compared with present. Pollen and fire records both suggest cli-
mate became wetter than present during the mid Holocene not in 
response to the northward extension of the monsoon (see the 
review by Tzedakis, 2007), but from precipitation originating 
within the Mediterranean (Arz et al., 2003; Bar-Matthews et al., 
2000) and/or, in the western part of the region, from advection of 
Atlantic moisture.

In the Northern Hemisphere tropics, the most significant envi-
ronmental change during the early Holocene was the intensifica-
tion and subsequent decline of the African and Asian Monsoons 
(e.g. Adkins et al., 2006; Morrill et al., 2003; Figure 9). Mid-
Holocene climate change is attributed to a weakening of orbital 
forcing in the Northern Hemisphere summer, which led to a tran-
sition from humid to arid conditions in North Africa (Cole et al. 
2009; deMenocal et al., 2000), and a cooling trend over northern 
continental land masses (Renssen et al., 2009) and the North 
Atlantic (Kim et al. 2004; Marchal et al., 2002). At latest after 
5500 cal. BP, the redistribution of insolation (an orbitally driven 
decrease of summer insolation in the Northern Hemisphere) was 
responsible for the southward migration of the ITCZ and contin-
ued weakening of the Afro- and Asian-monsoon system (Broccoli 
et al., 2006; Fleitmann et al., 2003; Haug et al., 2001; Figure 9). 
In fact, evidence suggests by 8000 cal. BP, as seasonality 
decreased, the weakening of the Afro-Asian summer monsoon 
had already caused widespread aridity in subtropical Africa and 
Asia, and became ineffective as a dominant climatic control by 
5500–5000 cal. BP (Adkins et al., 2006; Cole et al., 2009; 
deMenocal et al., 2000; Fleitmann et al., 2003). In contrast to 
subtropical Africa and Asia, the Mediterranean region was not 

directly linked to the monsoon, but indirectly as an intensified 
meridional Hadley circulation, associated with the African mon-
soon strengthened the North Atlantic anticyclone and blocked 
moister advection eastward toward the Mediterranean. The weak-
ening of the African monsoon from 8000–5500 cal. BP and the 
resulting southward migration of the subtropical high-pressure 
field may have allowed westerlies to gradually deliver more 
humidity to the southern Mediterranean area (e.g. Spain, Sicily) 
during the mid Holocene (Tinner et al. 2009; Tzedakis 2007).

Between 5500 and 5000 cal. BP fire activity abruptly changed 
across the Mediterranean (Figures 8 and 9) as fire decreased in 
northern and eastern regions and a progressively increased in 
southern regions. Changes in fire activity in the northern Mediter-
ranean region may be linked to a long-term trend toward cooler/
wetter summers, related to the Neoglacial period, in central 
Europe, the nearby Alps and North Central Italy (Magny et al., 
2006, 2007b, 2009; Matthews and Dresser, 2008; Tinner, 2006). 
These findings stand in contrast to a well-documented progressive 
aridification of the central and southern Mediterranean regions 
(Carrión, 2002; Gasse, 2002; Magny et al., 2006; Peyron et al., 
2011, this issue; Reed et al., 2001; Sadori et al., 2008) although 
this trend appears to be absent in coastal Sicily and Tuscany, where 
conditions remained rather stable during the late Holocene 
(Colombaroli et al., 2007; Marchetto et al., 2008; Noti et al., 2009; 
Tinner et al., 2009). During the late Holocene, a reduction in 
winter precipitation may have resulted in drier conditions across 
the northern Mediterranean region, while wetter summers would 
explain decreased fire activity in areas North of 40°N latitude, 
through the promotion of moist habitats. The southern region, 
experiencing drier summers at this time, would not have been 
affected by increased precipitation. On the contrary, an increase in 
summer temperature (Davis and Brewer, 2009; Figure 9), may 
have favoured increased evapotranspiration, fire activity and 
aridity. Despite climatic controls, the late Holocene was a period 
of increased vegetation disturbance with the development of 
pine forests (some planted), a partial (human-induced) spread of 
drought-adapted plant communities and an overall increase in land 
use (Carrión et al., 2007; Cruise et al., 2009; Favilli et al., 2010; 
Sadori et al., 2004, 2008; Vannière et al., 2008). Anthropogenic 
disturbance associated with demographic population expansion 
likely explains at least part of the increasing trend toward greater 
fire activity in the Mediterranean around 4000 to 3000 cal. BP.

Between 8500 and 2500 cal. BP, several transient declines in 
fire activity were observed above 40°N latitude, including 
decreases at 8200, 6600, 5900, 4200 and 2800 cal. BP (Figures 8 
and 9). Continental and marine paleoecological studies have 
emphasized the importance of rapid climate oscillations, originat-
ing in the North Atlantic, and their downstream impacts on the 
Mediterranean ecosystems during the Holocene (Cacho et al., 
2001; Incarbona et al., 2008; Kotthoff et al., 2008; Magny et al., 
2007a, 2009; Rodrigues et al., 2009). These apparently short-
lived oscillations may be related to climatic mechanisms driving 
Bond cold events first identified in the North Atlantic (Bond et al., 
2001). Increased moisture availability, mainly driven by a change 
in the westerlies at high latitudes, was likely modulated by an 
NAO-like climate mechanism (Frigola et al., 2007; Piva et al., 
2008; Figure 2). For instance, c. 4000 cal. BP the entire Mediter-
ranean experienced a period of low fire activity, with the excep-
tion of a few southern sites (e.g. Lake Siles, Figure 3A, Carrión, 
2002; Figure 8). Lower-than-present fire activity may also be 
connected with a prolonged wet phase from 4300 to 3800 cal. BP, 
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identified from central Italy to the Alps and recently discussed by 
Magny et al. (2009).

Conclusion

Motivation for this research was to identify possible patterns 
and causes of changing fire activity in the Mediterranean 
region. Even if the role of human in fire occurrences is clearly 
attested, the regional synchronicity among reconstructed fire 
histories and climate support the prominent role of climate in 
shaping the Mediterranean fire environment during most of the 
Holocene. The human influence on fire activity seems insig-
nificant at continental to regional scales before c. 4000–3000 
cal. BP. In a similar way, vegetation, which differs between 
sites from within the same region (e.g. vegetational zones along 
elevational gradients), appears to have a limited influence on 
regional fire activity. This analysis also suggests fire activity 
was regionally coherent within the Mediterranean bioclimate 
zone, including: the submediterranean region (mostly located 
above 45°N latitude), the mesomediterranean region (mostly 
located between 40° and 45°N latitude), the thermomediterra-
nean region (mostly located below 40°N latitude) and eastern 
Mediterranean forest-steppe biome.

Beyond state-of-the-art paleoecological results, as presented 
in section ‘Current state-of-the-art on Mediterranean fire history’, 
this study highlights the importance of adopting a regional 
perspective to understand the linkages among Holocene fire 
activity, ecosystem dynamics and climate variability. While 
northern Mediterranean regions were fire prone during most of 
the mid-Holocene ‘Thermal Maximum’, the southern Mediterra-
nean generally experienced reduced fire activity associated with 
wetter-than-present summers. This north–south climatic bound-
ary occurs between 40° and 43°N latitude in the central and west-
ern Mediterranean. The 8200 cal. BP event is well documented by 
this regional fire reconstruction and is characterized by a north–
south partition with higher fire activity in the south and an abrupt 
decrease in the northern Mediterranean region. This study also 
suggests that millennial-scale trends in fire activity were abruptly 
interrupted c. 5000 cal. BP by a widespread centennial-scale cli-
mate shift characterized as a mid- to late-Holocene fire-climate 
transition. After c. 5000 cal. BP, with the onset of the Neoglacial 
cooling in the Northern Hemisphere, a weakening (enhancement) 
of fire activity was observed in the northern (southern) regions of 
the Mediterranean. The decrease in fire activity in southern Medi-
terranean area from 8000 to 7500 cal. BP may be linked to a 
weakening of Asian and African monsoon driven by the orbitally 
induced summer cooling trend. We hypothesize the relatively 
abrupt changes in fire activity between c. 5500 and 5000 cal. BP 
are linked to a threshold response reached in the southward migra-
tion of the ITCZ and of the collapse of the Afro- and Asian- 
monsoon system. At centennial timescales, several abrupt and/or 
short-lived negative excursions in fire activity were observed in 
the western Mediterranean and may be related to climatic mecha-
nisms driving Bond cold events, but require further investigation. 
This analysis of Mediterranean fire activity has been possible by 
compositing many existing and new charcoal records from the 
Mediterranean and southern Alpine regions and should serve as 
point-of-departure for future synthesis efforts.

Finally, this synthesis of Mediterranean fire activity from 8500 
to 2500 cal. BP offers five major contributions to understanding 
fire–climate linkages in the region:

(1) Climate change appears to dominate the fire record, at least 
in the western Mediterranean in the mid Holocene and fire 
activity reveals seasonal timing and availability of moisture 
changes during.

(2) There are long-term teleconnections between the Mediter-
ranean area and other climatic regions, in particular the 
North Atlantic and the low latitude monsoon regions, which 
strongly influenced past fire activity.

(3) Gradual climate forcing, such as changing orbital parameters, 
may trigger abrupt shifts in fire activity, either directly or indi-
rectly through these teleconnections.

(4) Regional fire reconstructions contradict former notions of a 
gradual Holocene aridification of the entire region due to cli-
mate and/or human activities and the importance of shorter-
term (i.e. decadal) events occurring across space and time 
during the mid to late Holocene.

(5) Fire activity appears highly reactive to climate dynamics and 
could be considerably impacted by future climate changes 
especially in the Mediterranean area where increasing 
drought is expected.
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