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ABSTRACT

We present three-dimensional simulations with nested meshes of the dynamics of the gas

around a Jupiter mass planet with the JUPITER and FARGOCA codes. We implemented a radiative

transfer module into the JUPITER code to account for realistic heating and cooling of the gas. We

focus on the circumplanetary gas flow, determining its characteristics at very high resolution

(80 per cent of Jupiter’s diameter). In our nominal simulation where the temperature evolves

freely by the radiative module and reaches 13000 K at the planet, a circumplanetary envelope

was formed filling the entire Roche lobe. Because of our equation of state is simplified and

probably overestimates the temperature, we also performed simulations with limited maximal

temperatures in the planet region (1000, 1500, and 2000 K). In these fixed temperature cases

circumplanetary discs (CPDs) were formed. This suggests that the capability to form a CPD

is not simply linked to the mass of the planet and its ability to open a gap. Instead, the

gas temperature at the planet’s location, which depends on its accretion history, plays also

fundamental role. The CPDs in the simulations are hot and cooling very slowly, they have

very steep temperature and density profiles, and are strongly sub-Keplerian. Moreover, the

CPDs are fed by a strong vertical influx, which shocks on the CPD surfaces creating a hot

and luminous shock-front. In contrast, the pressure supported circumplanetary envelope is

characterized by internal convection and almost stalled rotation.

Key words: hydrodynamics – methods: numerical – planets and satellites: formation – planet–

disc interactions.

1 IN T RO D U C T I O N

The importance of studying the circumplanetary disc (CPD) formed

around massive giant planets is twofold: this subdisc regulates the

growth of the planet in the last stages (e.g. Lissauer et al. 2009;

Rivier et al. 2012; Szulágyi et al. 2014), and it is the birth-nest for

satellites to form (Canup & Ward 2002, 2006; Mosqueira & Estrada

2003a,b). Currently there is no unambiguous detection of CPD

from observations, although extended thermal emission was de-

tected around the planetary candidates of LkCa15 (Kraus & Ireland

2012), HD100546 (Quanz et al. 2013, 2014), HD 169142 (Reggiani

et al. 2014), and the upper limit of CPD masses were measured in

the system of GSC 6214-210 (Bowler et al. 2015) with the Ata-

cama Large Millimeter Array. Until sufficiently resolved CPDs are

observed, hydrodynamic simulations of these subdiscs are the only

tool to understand and reveal their characteristics. As computers

evolve, more and more complex (and accurate) physical models are

⋆ E-mail: judit.szulagyi@phys.ethz.ch

used in the hydrodynamic simulations as well. But resolving well

the CPD is challenging even in numerical simulations. One way to

do simulations of the CPD is to perform 2D calculations (such as

Lubow, Seibert & Artymowicz 1999; D’Angelo, Henning & Kley

2003; Kley & Dirksen 2006; Rivier et al. 2012), where sufficiently

high resolution can be achievable due to the limitations on two spa-

tial directions. However, e.g. Bate et al. (2003), Tanigawa, Ohtsuki

& Machida (2012), Morbidelli et al. (2014), Szulágyi et al. (2014),

Paardekooper & Mellema (2008) and Gressel et al. (2013) showed

that the third dimension really changes the whole picture on the ac-

cretion flow of gas to the planet, thus also on the role of the subdisc,

regardless the equation of state (EOS) used. In three-dimensional

simulations, another possible way to resolve the CPD is to limit

the simulation box size. Instead of simulating the entire circumstel-

lar disc, one can define a box in the vicinity of the planet, where

the simulation is performed. These are the so-called shearing sheet

box simulations, such as Machida et al. (2010) and Tanigawa et al.

(2012). However, this way the planetary gap is not deep enough,

and the CPD is missing the feedback from the circumstellar disc. In

Morbidelli et al. (2014) and in Szulágyi et al. (2014), it is described

C© 2016 The Authors

Published by Oxford University Press on behalf of the Royal Astronomical Society

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
6
0
/3

/2
8
5
3
/2

6
0
9
4
3
2
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2

mailto:judit.szulagyi@phys.ethz.ch


2854 J. Szulágyi et al.

that the accretion on to the CPD is a free-fall flow arising from the

top layers of the circumstellar disc, which is part of an entire merid-

ional circulation flow between the CPD and the circumstellar disc.

With a shearing sheet box simulation, this meridional circulation

is missed, therefore the accretion and the CPD dynamics are not

correctly addressed. Hence, our approach in this paper is to do a

global disc simulation featuring the entire circumstellar disc, and

using so-called nested meshes, i.e. high-resolution grids around the

planet, to zoom on to the planet’s vicinity. We also added a com-

plex radiative module to our JUPITER code, incorporating the thermal

processes (viscous heating, stellar irradiation, and cooling through

radiation), assuming a uniform dust-to-gas ratio. The JUPITER code

is based on a shock capturing method, therefore sharp details can

be observed in the flow around the planet, which were never shown

before.

Previous non-isothermal simulations addressing the subdisc (e.g.

D’Angelo et al. 2003; Ayliffe & Bate 2009a,b; Gressel et al. 2013;

D’Angelo & Podolak 2015) have already pointed out that the CPD

is hot, its inner part is optically thick, and it has a steep radial

temperature profile. Works of D’Angelo et al. (2003), Ayliffe &

Bate (2009a), and Gressel et al. (2013) also agree that, due to the

high temperatures, the spiral density wake in the CPD is less promi-

nent than in isothermal simulations, suggesting a reduced stellar

torque, that can alter accretion. To characterize the CPD, apart from

a proper thermal model, it is also important what resolution the

simulations use and what is the applied smoothing technique for the

gravitational potential of the planet, since these factors highly affect

the resulting temperatures. With our new code, we examine here the

circumplanetary material around a 1 MJup planet with maximal res-

olution of ∼80 per cent of Jupiter-diameter, but with smoothening

of the planetary potential which accounts for almost five Jupiter-

diameter. We also compare our results with a previously existing

hydrocode with radiative module, called FARGOCA (Lega et al. 2014).

2 PH Y S I C A L M O D E L A N D N U M E R I C A L

M E T H O D S

Our study is based on three-dimensional, grid-based hydrodynamic

simulations with the JUPITER code (de Val-Borro et al. 2006; Szulágyi

et al. 2014), originally developed by F. Masset. This code is based

on a higher order Godunov scheme and has nested meshes, which

allows us to zoom on to the planet’s vicinity with high resolution.

The original code included only a locally isothermal EOS; here, we

implemented an energy equation (so called adiabatic EOS) and a

simplified radiative transfer module to account for realistic heating

and cooling. The radiative module follows a two-temperature ap-

proach in the grey approximation (one group of photons) and uses

fluxes limited diffusion (FLD), according to the governing equations

of Bitsch et al. (2013, 2014). The multilevel strategy for the radiative

transfer is that of Commerçon et al. (2011), using Dirichlet bound-

ary conditions for the coarse-to-fine and fine-to-coarse interfaces.

Apart from the equations of the mass and momenta conservation,

the code now solves the energy equation on the total energy, and

accounts for the coupling between the thermal energy and radiation

energy (ǫrad). The full set of governing equations reads therefore:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

∂(ρv)

∂t
+ ∇ · (ρv ⊗ v) + ∇P = −ρ∇� + ∇ · ¯̄τ (2)

∂E

∂t
+ ∇ ·

[(

P ¯̄I − ¯̄τ
)

· v + Ev

]

= ρv · ∇� − ρκRc

[

B(T )

c
− ǫrad

]

(3)

∂ǫrad

∂t
= −∇ · Frad + ρκRc

[

B(T )

c
− ǫrad

]

, (4)

where ρ is the gas density, E is the gas total energy (sum of the

internal and kinetic energies), v stands for the velocity-vector, and

P indicates the pressure. Moreover, � is the gravitational potential, c

indicates the speed of light, and B(T) defines the thermal blackbody:

4σT4 – here σ symbolizes the Stefan–Boltzmann constant, while T

stands for the temperature. The Planck mean opacity, κP, is defined

as equation 13 in Bitsch et al. (2013). Equation (3) contains the unit

matrix (¯̄I) and the stress-tensor ( ¯̄τ ), which is defined as

¯̄τ = 2ρν

[

¯̄D −
1

3
(∇ · v) ¯̄I

]

, (5)

where ν is the kinematic viscosity, and ¯̄
D is the strain tensor. Fur-

thermore, Frad in equation (4) is defined as

Frad = −
cλ

ρκR

∇ǫrad, (6)

where λ is the flux limiter taking care of the smooth transition be-

tween optically thin and thick domains. For its definition and usage,

see Kley (1989) and Bitsch et al. (2013). The parameter κR indi-

cates the Rosseland mean opacity, which is defined as equation 15

in Bitsch et al. (2013) and chosen to be equal to Planck mean opac-

ity. We assume a uniform dust-to-gas ratio (generally 0.01 but this

can be modified as an input parameter of the code), and use the Bell

& Lin (1994) opacity tables.

To close the system of equations, the EOS also needs to be

defined. We used an adiabatic EOS with the adiabatic index (γ )

equal to 1.43:

P = (γ − 1)ǫ, (7)

where ǫ is the internal energy of the gas, which is ǫ = ρcvT. The

different physical parts corresponding to the governing equations

(hydrodynamics and radiative transfer) are solved in succession

using operator splitting. Namely, a full update of the quantities over

a timestep consists of the following substeps.

(i) We solve for the interface fluxes (equations 1–3) using an

exact adiabatic Riemann solver, for which the left and right states

are obtained using the spatially second-order accurate scheme of

MUSCL-Hancock (Toro 2009, predictor step).

(ii) These fluxes are used to update the cell contents, in what

is called a ‘conservative update’ (because the fluxes are shared on

interfaces between adjacent cells, the scheme is conservative for the

corresponding quantities to platform accuracy). Prior to being used,

the momenta and energy fluxes are corrected (augmented) by the

viscous stresses.

(iii) Source terms (gravitational and fictitious forces) are applied

using a finite difference scheme.

(iv) In the radiative module, equation (4) is solved and the internal

energy is updated through the two-temperature approach explained

in Bitsch et al. (2013).

The primitive variables in the JUPITER code are the volume density,

the three components of the velocity, and the internal energy. In

each cell in the simulation, the values of density/energy/velocity

MNRAS 460, 2853–2861 (2016)

D
o
w

n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/m
n
ra

s
/a

rtic
le

/4
6
0
/3

/2
8
5
3
/2

6
0
9
4
3
2
 b

y
 U

.S
. D

e
p
a
rtm

e
n
t o

f J
u
s
tic

e
 u

s
e
r o

n
 1

6
 A

u
g
u
s
t 2

0
2
2



CPD or CPE? 2855

are all centred values, and thus defined at the coordinates of the cell

barycenters.

The new parts of the JUPITER code (energy equation, radiative

module) were heavily tested both separately and together with the

hydrokernel as well. This includes testing the adiabatic Riemann

solver, the inter-CPU and interlevel communications, testing the

radiative module against other hydrocodes with radiative transfer,

and checking the dimensional homogeneity of all the equations in

the entire code. For details of the testing, see Szulágyi (2015).

For comparison purposes, we carried out a simulation with the

FARGOCA code (Lega et al. 2014) as well, which is an improvement of

the FARGO code (Masset 2000) in 3D. FARGOCA is finite difference,

staggered mesh code based on an upwind method with van Leer’s

slopes. It solves the energy equation directly for the internal energy:

∂ǫ

∂t
+ ∇ · (ǫv) = Q+ − P∇ · v − ρκRc

[

B(T )

c
− ǫrad

]

, (8)

where Q+ = ( ¯̄τ∇) · v is the viscous heating. While JUPITER is based

on a shock-capturing method, FARGOCA solves the hydrodynamic

equations explicitly, thus it is not as well suited as JUPITER to treat

shocks. On the other hand, treating directly the equation for the

internal energy alleviates the so-called high Mach number problem

(Ryu et al. 1993; Trac & Pen 2004) faced in JUPITER, where the

internal energy is very small fraction of the total energy. The FAR-

GOCA code does not have nested meshes that are needed to reach the

same high-resolution around the planet as with JUPITER. Therefore,

we have implemented a manual refinement procedure in FARGOCA as

follows. First, for the gap-opening phase the global disc simulation

was performed on the same resolution as JUPITER’s coarsest mesh.

Then, a box around the planet was defined, where the resolution

was doubled, and the boundary conditions for all hydrodynamics

variables were set to the values found on the coarser mesh. After the

gas flow has stabilized on a given resolution, the box size around

the planet was reduced again, the resolution was doubled and the

same boundary procedure was adopted. This procedure was iterated

until we achieved a simulation box of size slightly larger than the

gap. This is the minimum box size which allows us to properly take

into account both the gap and the meridional circulation with the

circumstellar disc. In order to run simulations on a reasonable CPU

time1, we have used on this box a resolution which is half of the

resolution in JUPITER’s finest level.

3 SE T U P O F T H E S I M U L AT I O N S

3.1 Units, frame and grid

In our simulations, the coordinate system is spherical – with co-

ordinates of azimuth, radius, co-latitude – centred on to the star.

The mass unit is the mass of the central star (assumed to be so-

lar in numerical applications), the length unit is the radius of the

planetary orbit (rp), while the time unit is such that G, the gravita-

tional constant, is one. This implies that the planetary orbital period,

2π/� = 2π/
√

G(M∗ + Mp)/r3
p , is 2π. The frame is corotating

with the planet, so that the planet is at a fixed position throughout

the simulation. This position is at azimuth = 0.0, radius = 1.0, co-

latitude = π/2. Assuming the planet’s orbit is at Jupiter’s distance,

the length unit in the code is 5.2 au. The radial limits of the simula-

tion box are 0.4–2.4 code units (2.1–12.5 au), the azimuthal range is

1 45 d on 160 processors for 60 Jupiter’s orbits on about 82 million grid

cells.

from −π to +π , thus including the entire circumstellar disc, and the

co-latitude range is [1.442, π/2], with the mid-plane being on π/2.

This means a 7.◦4 opening angle for the circumstellar disc. To save

computational time, we simulated only the half of the circumstellar

disc, thus assuming symmetry relative to the mid-plane.

Due to the nested meshes, the resolution changes grid level

by grid level. On the coarsest mesh (level 0), the resolution was

680 × 215 × 20, which means dr = 0.009 code units = 0.048 au.

On the next level, the resolution was double of the previous, and

so on, till level 6. In other words, at each level refinement the

resolution doubled in each spatial direction. The highest level of

resolution (reached on level 6) was dr = 1.442 × 10−4code units =

7.498 × 10−4 au = 0.8 dJup where dJup is the diameter of Jupiter.

The borders of the nested meshes are described in Table 1. The

simulation began with only the coarsest mesh, and the successive

levels were added in sequence after a quasi-steady state was reached

on the previous level.

3.2 Boundary conditions

At the radial boundaries of the simulation box, we have used re-

flecting boundary conditions for the radial velocity. The azimuthal

velocity was extrapolated in the two ghost cells according to the

local Keplerian velocity. The density and energy values in the ghost

cells were set equal to the corresponding values of their images

among the active zones.

At the mid-plane (colatitude = π/2), a reflecting boundary con-

dition is applied. At the other edge in colatitude, above the cir-

cumstellar disc surface layer, we fix the temperature to 30 Kelvin

in the ghost cells to force the cooling. This accounts for the fact

that circumstellar discs are surrounded by the outer space and are

able to radiate away their heat. In the azimuthal direction, periodic

boundary conditions were used.

At the border between nested meshes, the flow should be smooth,

therefore the JUPITER code uses a complex ghost cell communication

with multilinear interpolation. This means that, in each direction,

two cells overlap with the cells of the previous level beyond the

border of the given mesh, and in these ghost cells the hydrodynamic

fields are linearly interpolated from the values available on the

previous level.

3.3 Disc physics

The circumstellar disc’s initial surface density was � = �0( r
a

)−0.5

with �0 = 6.76 × 10−4 code units. This density was chosen to be

close to the Minimum Mass Solar Nebula (MMSN; Hayashi 1981).

The initial disc aspect-ratio was chosen to be H/r = 0.05, where

H is the pressure scaleheight of the disc, but this changes as the

circumstellar disc cools and therefore contracts a bit towards the

mid-plane. All of our simulations have a constant viscosity with

value 10−5a2�p, which corresponds to approximately a value of

α of 0.004 at Jupiter’s orbit in the representation of Shakura &

Sunyaev (1973). We remind the reader that, like every numerical

simulation, ours are also affected by the numerical viscosity, in

particular close to the planet where the mesh is locally Cartesian,

while the flow has rather a cylindrical symmetry.

Because the opacity table accounts for the dust as well, one needs

to define the dust-to-gas ratio in the simulations. We used the inter-

stellar medium value of 1 per cent dust. The cooling happens through

radiation, therefore one should allow energy to escape through the

surface of the circumstellar disc. To minimize the CPU-time re-

quired to reach the initial thermal equilibrium of the circumstellar

MNRAS 460, 2853–2861 (2016)
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Table 1. Number of cells on different grid levels.

Level N◦ of cells N◦ of cells N◦ of cells Boundaries of the levels Boundaries of the levels Boundaries of the levels

in azimuth in radius in co-latitude in azimuth (rad) in radius (a) in co-latitude (rad)

0 680 215 20 [−π , π ] [0.400 05, 2.3845] [1.4416, π/2]

1 120 120 34 [−0.277 35, 0.277 35] [0.722 64, 1.277 35] [1.451 041, π/2]

2 120 120 62 [−0.138 675, 0.138 675] [0.861 325, 1.138 675] [1.471 37, π/2]

3 120 120 86 [−0.069 3375, 0.069 3375] [0.930 6625, 1.069 3375] [1.501 4588, π/2]

4 120 120 86 [−0.034 668 75, 0.034 668 75] [0.965 331 25,1.034 688 75] [1.536 1276, π/2]

5 120 120 86 [−0.017 334 375, 0.017 334 375] [0.982 665 62, 1.017 334 375] [1.553 462, π/2]

6 120 120 86 [−0.008 667 1875, 0.008 667 19] [0.991 332 81, 1.008 667 1875] [1.562 1291, π/2]

7 120 120 86 [−0.004 333 5938, 0.004 333 59] [0.995 666 41, 1.004 333 5938] [1.566 462 737, π/2]

disc, we run initially the simulation only with the circumstellar disc

(i.e. without a planet). Since the circumstellar disc is azimuthally

symmetric, we defined only two cells in azimuth, run the simu-

lation until thermal equilibrium was reached, we divided the two

azimuthal cells into the final amount of 680 cells. From this point

on, we started to build up the planet increasing its mass over 30

orbits (see below), and run the simulation for another 120 orbits

to reach an equilibrium after the gap opening. Only after this, we

started to add the nested meshes.

3.4 Planetary potential

To allow the gas flow to adapt to the presence of our heavy planet,

we increased its mass gradually over 30 orbit as

Mp(t) = Mpfinal
sin2

(

t

120

)

. (9)

This meant that the final planet mass was reached after the first 30

orbits of the simulation time. In all our simulations, Mpfinal
is 10−3

code unit, which corresponds to a Jupiter mass planet around a solar

mass star.

In the simulations the planet is a point-mass, in the corner of

eight cells (of which only four are considered as active cells and

four ghost cells due to the symmetry relative to the disc’s mid-

plane). This means that there is only a potential-well and no physical

sphere is modelled for the planet. Hence, no boundary condition is

needed around the planet. However, to avoid the singularity of the

gravitational potential, we applied the traditional smoothing of the

potential on a length rs:

Up = −
GMp

√

x2
d + y2

d + z2
d + rs

2
, (10)

where xd = x − xp, yd = y − yp, and zd = z − zp are the distance-

vector components from the planet in Cartesian coordinates. Our

smoothing length rs was set equal to three times of the cell diagonal

on levels 0–5, and six cell diagonals on level 6. In other words, the

potential well was not deepened on level 6 relative to the previous

value on level 5. Because the smoothing length changes on every

level to avoid the harsh transition of smoothing length when adding

a new level, we gradually reduced the smoothing length as rs(t) =

0.5
(

rsprevious
cos2

(

t−t0
4

)

+ rsprevious

)

, where rsprevious
is the value of rs

on the previous level and t0 is the time at which the new level has

been introduced. Thus, the new smoothing length – half of the value

on the previous, coarser level – is reached after one orbit.

3.5 Simulation sets

We performed altogether five simulations, four of them are carried

out with the JUPITER code, one is with the FARGOCA code. In our

nominal simulations performed with both codes, the temperatures

evolve freely according to the governing equations (equations 3 and

4) also on the planet. We refer as ‘planet’ the set of 32 cells around

the point-mass location at [0,1,π/2] (two cells in each coordinate

direction). The side of this cubic region is about 3.6 diameters of

Jupiter. This is motivated by the fact that Metis, the innermost satel-

lite of Jupiter, presently orbits at 1.8 RJup, and that the contraction

time-scale of Jupiter is of the order of 1 Myr for this planetary size

(Guillot et al. 2004). The nominal simulations resulted in very high

gas temperature: 13 000 K at the planet location. This is probably

an overestimation because the EOS does not include dissociation

and ionization; see more in Section 5. Therefore, we decided to fix

the maximal temperature of the gas at the planet location (in the

innermost 32 cells), by launching three other simulations with the

JUPITER code with 1000, 1500and 2000 K ceiling temperatures in

this area. This means that at the beginning of the simulations, we

let the temperature on the planet evolve according to the radiative

module, but when the temperature rises above the ceiling tempera-

ture, we reset it at the ceiling value, preventing it to climb further.

Even though fixing the temperature violates energy conservation,

similarly to sink-cell methods, it is still a valid detour of the prob-

lem of overheating due to the simplistic EOS which cannot include

dissociation and ionization. Note that if a real planet was occupy-

ing these cells, it would absorb radiations from the gas, and radiate

according to its own photosphere’s temperature effectively acting

as an energy sink.

4 R ESULTS

4.1 CPD or CPE?

Previous works have suggested that the formation of a CPD is linked

to the mass of the planet and the gap-opening process (e.g. Ayliffe &

Bate 2009a,b): small planets, which are unable to open gaps in

the circumstellar discs are thought to have some circumplanetary

material in the form of an envelope; instead, planets capable to

carve deep enough gaps should form CPDs. However, we have

found that the situation is more complex. Precisely, if the central

gas temperature is high, such as in our nominal simulation, even

a gap-opening, Jupiter-mass planet is forming a circumplanetary

envelope (CPE) instead of a disc (see Fig. 1 left-hand column).

In Fig. 1, we show vertical slices at azimuth = 0 of the density

(first row) and of the temperature (second row). Each column cor-

responds to a different simulation: from left to right we show the

nominal case, then the fixed central temperature cases, where the

gas temperature on the planet location was fixed to 2000, 1500, or

1000 K. Since we have small fluctuations between the different out-

put files, we have averaged the fields over the last 3.5 orbits of the

simulations (71 outputs averaged). In the first column, we clearly

MNRAS 460, 2853–2861 (2016)
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CPD or CPE? 2857

Figure 1. Matrix of figures summarizing the four different simulations (nominal, central temperature of 2000, 1500, 1000 K, respectively, from left to right).

The first row shows the density maps, while the second shows the temperatures on a vertical slice cut through the planet along the radial direction. We can

see that in the nominal simulation, where the peak temperature is over 13000 K, a CPD cannot form; the circumplanetary material is in a spherical envelope

around the Jupiter-mass planet. Instead, when we fix the central gas temperature at the planet location to 1000–2000 K, always a CPD forms.

Figure 2. Simulation of the nominal case made with the FARGOCA code. Left is the density map around the planet, right the temperature map. The comparison

of the results of JUPITER is very good (see the first column of Fig. 1).

observe a spherical envelope. The gas temperature at the planet lo-

cation is peaking at 13 000 K. However, in all the cases with fixed

central temperature a CPD develops (columns 2–4). Hence, the gas

temperature at the planet location seems to determine whether an

envelope or a disc forms around the planet. In fact, the higher is the

temperature, the more pressure supported is the disc, and the larger

is its scaleheight.

Furthermore, plotting the density maps on the mid-plane revealed

that higher temperatures weaken the trace of the spiral wake in the

CPD. The difference is especially striking when comparing our

locally isothermal simulations in Szulágyi et al. (2014) with the

simulations in this work. The isothermal simulations have the lowest

temperature in the circumplanetary region among all the simulations

we have performed, therefore the spiral wake is the strongest. The

dependence of the strength of the spiral wake on the temperature of

the simulations was already pointed out in previous works e.g. by

Paardekooper & Mellema (2008) and Ayliffe & Bate (2009a).

On the temperature plots (second row on Fig. 1) one can see

that in the disc cases, there are two small regions of bright yellow

colour (i.e. high temperature), just above and below the central part

of the CPD. We interpret these to be due to a shock between the gas

infalling from the vertical direction and the disc.

We made a simulation with the FARGOCA code as well, which

corresponds to the nominal simulation with JUPITER. On Fig. 2, we

show the density map (left) and temperature map (right), which are

quite similar to left-hand column of Fig. 1. The two codes with the

same initial parameter file gave qualitatively similar results, namely

the planet has a hot CPE. We recall, that the simulation made with

the FARGOCA code has a resolution, which is half of the simulation

made with JUPITER.
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Figure 3. Radial profiles of density (left) and temperature (right) at the mid-plane of the circumplanetary region for our four simulations with the JUPITER code,

and one simulation with the FARGOCA code (as labelled). Notice that the temperatures of CPDs in the fixed central temperature simulations reach a maximum at

a distance ∼10 per cent RHill.

On Fig. 3, the radial profiles of the CPD/CPE obtained in the

JUPITER simulations are compared for the densities (left) and for

the temperatures (right). The density profiles are all very steep.

The fixed central temperature cases almost match each other, their

power-law index in the outskirts of the CPD is approximatively

−2.6. The nominal simulation’s envelope shows a very different

radial profile, which is due to geometrical reasons (the gas in the

envelope has a nearly spherical symmetry). Here, the region within

0.1RHill contains a larger total mass than in the fixed temperature

(discy) cases. However, the innermost few cells around the planet

are always more massive in the fixed central temperature cases (due

to the smaller temperatures, which allow a higher compression of

the gas), than in the nominal simulation. The temperature profiles

(right-hand panel on Fig. 3) shows that the nominal simulation

leads to temperatures higher than those in the fixed central tem-

perature simulations in the whole domain. Even at 0.5 RHill away

from the planet, the nominal case’s envelope is still ∼400 K hotter

than the fixed central temperature cases. This difference increases

up to 7000 K close to the planet. In all cases, the circumplanetary

material is optically thick, and the temperatures in the CPD/CPE

within ∼10–20 per cent of the Hill-sphere are over the dust subli-

mation threshold, so the opacity here is set by the gas opacities. In

the fixed central temperature cases, the inner part (within a distance

of 0.01–0.02 Hill radii) of the CPD is surprisingly much hotter than

the gas at the location of the planet (within 0.005 Hill radii). This

is because of the prescribed cooling with fixing the gas temperature

at the planet’s location. Instead, far enough from the planet this

cooling effect vanishes, and the viscous heating, together with the

adiabatic compressional heating can heat the CPD to be hotter than

the ceiling temperature. It is also interesting that the temperatures in

the three fixed central temperature cases match beyond 0.02 RHill.

The power-law index of the temperature beyond this distance is

around 0.6, so the discs are flared (a disc with constant aspect ratio

would have a temperature proportional to 1/r).

Comparing the nominal simulation of JUPITER and FARGOCA codes,

the radial profiles are in good quantitative agreement for distances

from the planet larger than 0.01 RHill. This result is quite satisfac-

tory considering that the two codes have different solvers, different

energy equations (JUPITER solves the total energy, while FARGOCA the

internal energy) and that JUPITER has proper nested meshing while

FARGOCA has manual refinement. For distances to the planet below

0.01 RHill the results are in a qualitative agreement, the quantitative

difference is possibly due to the resolution (the potential well is

more coarsely sampled in FARGOCA) or to one of the points listed

above.

In summary, these findings suggest that even in the case of large

mass gas-giants, the gap-opening capability does not account for

whether a CPE or a disc forms around the planet; but the gas

temperature at the planet location is the most critical factor. The

characteristics of the circumplanetary material – density and tem-

perature profiles, rotation – are strongly dependent on the central

temperature we account for.

4.2 Velocity and angular momentum

The nominal simulation and the fixed central temperature simu-

lations show completely different normalized angular momentum

fields. The normalization of the angular momentum is based on the

local Keplerian velocity, i.e. we divide the z-component of the an-

gular momentum per unit mass that we measure in each cell of the

simulation relative to the planet by
√

GMpd where d is the radial

distance of the cell from the planet in cylindrical coordinates. The

angular momentum is measured in a non-rotating frame centred

on the planet. Fig. 4 shows the above defined z-component of the

normalized angular momentum for the nominal case (left) and for

a fixed central temperature case (Tp = 2000 K case on the right)

through a vertical slice. The values are azimuthally averaged (so

the planet is in the left-bottom corner), and time averaged on 71

MNRAS 460, 2853–2861 (2016)
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Figure 4. Azimuthally averaged normalized angular momentum (z-component) from the average of 71 outputs over the last 3.5 orbits of the simulations

in a non-rotating frame. The normalization of the angular momentum was performed based on the local Keplerian velocity. The coordinates of the plots are

cylindrical, planetocentric, so that the planet is in the left-bottom corner of each figure. The dotted areas symbolize the positive normalized angular momentum

values. Left is the nominal case, with a slightly retrograde inner envelope (within 0.1 RHill mostly negative angular momentum), and slightly prograde outer

envelope, but overall the rotation of the envelope is almost stopped. On the right-hand panel, a fixed central temperature (Tp = 2000 K) case is shown with

positive normalized angular momentum values, with a maximum of 80 per cent Keplerian rotation.

output files over the last 3.5 orbits of the simulations. The dotted

areas represent the positive angular momentum values (i.e. coun-

terclockwise rotation of the gas around the planet). One can see on

the right-hand panel that the CPD is sub-Keplerian; it rotates with

80 per cent of the local Keplerian velocity (bright yellow colours).

Above the disc, the gas which – as we will see below – falls towards

the mid-plane, has a very low angular momentum. This means that

as it hits the disc, it slows down the disc rotation. Between the

three fixed central temperature cases there is not a large difference,

therefore we show only one example on Fig. 4. However, as the

temperature rises, the scaleheight of the CPD is larger, and the ro-

tation of the disc is slower (lower normalized angular momentum

values).

On the left-hand panel of Fig. 4, the inner envelope (until 0.1 RHill)

has mostly negative normalized angular momentum. This means,

that it rotates to the retrograde direction. The retrograde rotation,

however, is very slow, with a maximum of 4 per cent of the Keplerian

rotation speed. Beyond 0.1 RHill, the envelope within the Roche lobe

is rotating prograde, but again very slowly (maximum ∼30 per cent

of Keplerian rotation). Overall, it can be said that the rotation of the

envelope is almost stalled.

One could also derive the centrifugal radius (Rcent =
(Jenvelope/Menvelope)2

GMp
), where Jenvelope is the angular momentum of the

envelope, whose mass is Menvelope. This radius would correspond to

the one after the envelope collapsed into a ring, while conserving its

angular momentum. According to our computation ∼0.5RHill (i.e.

on the last three refined level), this radius is one order of magni-

tude smaller than Jupiter’s radius, therefore there would be no disc

formed after this envelope has collapsed. It is important to highlight

though the limitations of our simulations, e.g. the lack of a rotating

planet in the middle, the overestimated temperature which reduces

rotation, etc. It is difficult to imagine that Jupiter in our Solar sys-

tem went through the same phase. Our envelope possibly would not

be able to produce the extended, prograde system of the Galilean

moons. Our fixed temperature simulations show that there is a way

to form a quasi-Keplerian disc but then, by accreting material from

that disc, Jupiter would acquire a very rapid rotation. We speculate

that the temperature of Jupiter was below our gas temperature at the

planet location, but larger than 2000 K, so that it was surrounded

by a prograde and sub-Keplerian, puffed-up disc.

The velocity fields in the nominal simulation and the fixed cen-

tral temperature simulations are compared in Fig. 5. This figure

shows the time averaged (71 outputs over 3.5 orbits), azimuthally

averaged, mass-weighted, planetocentric radial velocities and verti-

cal velocities in cylindrical coordinates for the nominal simulation

(left-hand column) and for the Tp = 2000 K simulation (right-hand

column). Since all the fixed temperature simulations look quite

alike, we show here only the Tp = 2000 K case for brevity. In

the nominal simulation, we see near the planet (which is placed

at the left-bottom corner at 0,0 co-ordinates) alternate regions of

positive and negative velocities in both the radial and vertical di-

rections, which suggest the existence of convective motion. The

convective zone is surrounded by a radiative outer layer up until the

edge of the Roche lobe. Comparing the velocity values to the fixed

central temperature simulation’s velocities, the difference is one to

two order of magnitude. We also compared the velocity field of the

FARGOCA simulation with JUPITER’s. The same circulation pattern was

found.

The radial velocities of the fixed central temperature simulations

(see Fig. 5 bottom-right insert) show a typical accretion-disc pattern:

negative radial velocities on the upper layer of the CPD, so the flow

is rushing towards the planet, and positive values below the upper

layer (dotted area on the bottom-right panel) meaning a receding

motion from the planet. The vertical velocities on the upper-right

plot on Fig. 5 show the strong vertical influx towards the planet,

which shocks on the upper layer of the CPD above the planet. In

fact, the contrast in vertical velocity between the infalling gas and

the disc is about three times higher than the local sound speed.

The effect of the very strong shock front was clearly visible on the

temperature plots of Fig. 1, where the shock heating highlighted this

front in the upper layers of the CPD, close to the planet. In various

slices on non-averaged fields we found that the vertical influx hits

the shock-front so strongly, that some of it is reflected back. The

angle of the vertical influx is not exactly vertical as it hits the CPD, it

is slightly tilted, therefore the bounced flow escapes in the opposite

direction at about the same angle. Nevertheless, most of the vertical

influx will end up in the CPD and will either be accreted to the
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Figure 5. Azimuthally averaged velocities, from the average of 71 outputs over the last 3.5 orbits of the simulations. The first row shows the vertical velocities

in cylindrical, planetocentric coordinates, the second row corresponds to the radial velocities for the nominal (left-hand column) and for the fixed central

temperature (Tp = 2000 K) simulations. The planet is the left-bottom corner in each plot. The positive velocity areas are dotted. In the nominal simulation,

where an envelope formed around the Jupiter-mass planet, the sign changes in the velocities indicate a possible inner convective inner layer (until about

0.15 RHill), surrounded with a radiative zone. On the other hand, the fixed central temperature simulation formed a disc around the planet; here, the radial

velocities show clearly an inflow near the surface layer of the disc (negative vrad), and a radial outflow near the middle of the CPD (positive vrad, dotted area).

The vertical velocities show a strong vertical influx (negative vz), which shocks on the top of the CPD and above the planet.

planet or leave the disc in the middle regions below the surface

layer. How far from the mid-plane, the vertical influx shocks is also

determined by the local pressure, therefore the gas temperature at

the planet location. Simulations with hotter central temperatures

have the shock-front further away from the mid-plane.

As Szulágyi et al. (2014) and Morbidelli et al. (2014) pointed

out, the vertical influx is part of a larger circulation which connects

the circumstellar disc with the CPD. Even though those simulations

were isothermal, one can see the same process happening in our

radiative simulations as well. As the circumstellar disc upper layers

try to close the gap opened by the planet, gas enters into the gap,

and free-falls on to the planet due to its gravity. This influx hits the

CPD and the planet as well. In fact, the CPD is mostly fed by this

vertical influx as was pointed out in Szulágyi et al. (2014). Then,

the gas which is not accreted on to the planet leaves the CPD in the

outflow near the mid-plane.

5 C O N C L U S I O N S A N D D I S C U S S I O N S

In this paper, we have studied the circumplanetary flow around a

1 MJupiter planet with hydrodynamic simulations in 3D. Thanks to

the nested meshes technique, we had an entire circumstellar disc in

low resolution and very high resolution (80 per cent of the Jupiter-

diameter) grid around the planet. We also implemented the energy

equation and a radiative module into the JUPITER code, which ac-

counts for both the gas and dust opacities (dust assumed to be

1 per cent of the gas by mass). The heating is due to viscous heat-

ing and adiabatic compression; the cooling is due to radiation and

adiabatic expansion. To check our findings, we made a comparison

simulation with the code FARGOCA, which also has the radiative mod-

ule following the same logic, but the hydroparts are solved through

different mathematical methods.

We performed four simulations with the JUPITER code. In our nom-

inal simulation, the temperature was allowed to evolve according to

the energy equations, without further constraints (resulting in a peak

temperature of ∼13 000 K at the planet location). In the other three

simulations, we enforced a 1000, 1500 and 2000 K ceiling tem-

peratures in the 32 cells around the point-mass planet. This change

resulted in a large difference on the circumplanetary flow between

the nominal and fixed temperature cases.

While in the fixed temperature simulations a prograde rotating

CPD formed, the nominal case resulted in a very hot spherical

envelope, even around this 1 MJupiter planet. Therefore, this find-

ing suggests that the characteristics (temperature, mass, rotation,

etc.) of circumplanetary material is mostly determined by the gas

temperature at the planet location rather than the planetary mass.
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Moreover, the ability to form a CPD does not depend simply on the

ability of the planet to open a gap in the circumstellar disc, since

even a gap-opening 1 MJupiter planet can form a circumplanetary

envelope, like the low-mass planets, if the central gas temperatures

are very high.

We overall found that higher temperatures reduce the disc’s ro-

tation and weaken the trace of the spiral wake in the subdisc,

that can alter accretion, in accordance with previous works (e.g.

Paardekooper & Mellema 2008; Ayliffe & Bate 2009a). In all of

our simulations, the circumplanetary material is optically thick with

very steep temperature and density profiles. Moreover, the nominal

case with the CPE has an internal convection layer of 0.15 RHill,

surrounded by a radiative layer extended up to the edge Roche

lobe. This envelope has a very limited rotation. In the fixed central

temperature simulations, however the subdisc shows moderately

sub-keplerian, prograde rotation and it is fed by a strong, vertical

influx arising from the top layers of the circumstellar disc and the

walls of the gap, which then shocks on the CPD surface.

The used EOS in this work, however, overestimates temperatures

by neglecting dissociation and ionization of hydrogen. In order to

estimate the magnitude of this effect, we compared the changes in

specific entropy at the location of the planet in our nominal sim-

ulation to those recalculated from our pressures and temperatures

using a realistic EOS (Saumon, Chabrier & van Horn 1995) that

accounts for dissociation and ionization. From this test, we could

conclude that the temperatures are indeed overestimated, and that

the specific entropies are high enough to be consistent with the

‘hot start scenario’ of planet formation (e.g. Marleau & Cumming

2014). However, dedicated simulations are needed to investigate

this in detail which will be part of a future publication.
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Morbidelli A., Szulágyi J., Crida A., Lega E., Bitsch B., Tanigawa T., Kana-

gawa K., 2014, Icarus, 232, 266

Mosqueira I., Estrada P. R., 2003a, Icarus, 163, 198

Mosqueira I., Estrada P. R., 2003b, Icarus, 163, 232

Paardekooper S.-J., Mellema G., 2008, A&A, 478, 245

Quanz S. P., Amara A., Meyer M. R., Kenworthy M. A., Kasper M., Girard

J. H., 2013, ApJ, 766, L1

Quanz S. P., Amara A., Meyer M. R., Girard J. H., Kenworthy M. A., Kasper

M., 2015, ApJ, 807, 64

Reggiani M. et al., 2014, ApJ, 792, L23

Rivier G., Crida A., Morbidelli A., Brouet Y., 2012, A&A, 548, A116

Ryu D., Ostriker J. P., Kang H., Cen R., 1993, ApJ, 414, 1

Saumon D., Chabrier G., van Horn H. M., 1995, ApJS, 99, 713

Shakura N. I., Sunyaev R. A., 1973, A&A, 24, 337
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