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Abstract— We consider the downlink of a cellular multiple input
single output (MISO) system with multiple users per cell. Fast
scheduling and spatial signal processing at the base stations result
in unpredictable non-stationary intercell interference when the
base stations do not cooperate. We show how the per cell sum-rate
can be increased when Kalman filters are employed to forecast the
interference power for the next transmission. We compare these
results for dirty-paper coding and beamforming to systems where
the intercell interference powers are perfectly known through
feedback channels or cooperating base stations and to systems
where outdated information is used.

I. INTRODUCTION

Future wireless communication standards will merge two
techniques: cellular network architectures, like IS-95 or GSM,
which enable anytime anywhere connectivity as well as spatial
multiplexing and fast scheduling, like IEEE 802.11n and IEEE
802.16, which facilitate high data rates. The employment of
temporal scheduling and spatial multiplexing using multiple
transmit antennas in the downlink induces non-stationary
variations in the intercell interference that is different for
each user and unpredictable for the base stations of a multi-
cell network. The costliness of bandwidth as a resource also
demands for a universal frequency reuse, which aggravates the
effects of intercell interference further.

The downlink of a cellular multiple input multiple output
(MIMO) channel was considered in [1], [2] for both linear and
non-linear processing at both the transmitting and receiving
end. In [3], [4], intercell interference was reduced by mini-
mizing the transmit power given a target signal-to-interference-
plus-noise ratio. Opportunistic beamforming approaches were
analyzed in [5], [6] and dirty-paper coding was considered in
[1], [7]–[9]. All these papers assume cooperation between the
base stations, which was first introduced in [10]. Limitations
in the backhaul network connecting the base stations were
recently analyzed in [11], [12].

Addressing the problem of intercell interference in a cellular
network by assuming cooperation between the base stations
increases costs, delays, and complexity. On the other hand,
unknown non-stationary interference may increase outage
and reduce data throughput. In this paper, we propose the
employment of Kalman filters at the transmitting end to
predict the interference power a user will experience when it
decodes a codeword. Accordingly, system performance can be
improved without the need for base station cooperation. We

shall investigate three different precoding schemes, namely,
dirty-paper coding, opportunistic and coherent beamforming,
and compare their maximum per cell sum-rates and outage
performances for different degrees of “interference blindness”
at the base stations.

The system model is introduced in Section II and an exten-
sive problem formulation is given in Section III. Section IV
establishes a state-space model for the non-stationary intercell
interference to which a Kalman filter can be applied. In
Section V, we define the precoding schemes that we simulate
and compare in Section VI. The paper concludes its results in
Section VII.

Notation: Vectors and matrices are denoted by bold lower and
upper case letters, respectively. E[•], j, 1M , ‖ • ‖2, (•)∗, (•)T, and
(•)H denote expectation, imaginary unit, M × M identity matrix,
Euclidean norm, complex conjugation, transposition, and conjugate
transposition, respectively. ei is the i-th column of 1M , M given by
the context.

II. SYSTEM MODEL

We are investigating network topologies like the one de-
picted in Fig. 1, where three base stations (“•”) are co-located
and the users (“×”) are uniformly distributed within the cell
area. Each of the B base stations serves K users in a dedicated
hexagonal cell, i.e., users cannot benefit from macro-diversity
offered through adjacent base stations. Each base station is
equipped with a uniform linear array of Na antennas with
half-wavelength spacing.

The respective transmission chains for the K users in cell b
are depicted in Fig. 2. The data stream sb,k[n] ∈ C intended
for the k-th user in cell b is weighted with

√

P
[m]
b,k and then

multiplexed on the Na transmit antennas through the unit-norm
vector t

[m]
b,k ∈ CNa . The superposition of all transmit signals

per cell results in the transmitted signal xb ∈ CNa of the b-
th base station. The scheduling decisions are assumed to be
synchronized among the base stations and are labeled with the
time index [m]. The MISO vector channel from the b′-th base
station to user k in cell b is denoted by hb,k,b′ ∈ CNa with

eT
ζ hb,k,b′ =

M
∑

ξ=1

√

ρ(db,k,b′ , θb,k,b′ + ϕξ)

M
×

exp {j [π(ζ − 1) sin(θb,k,b′ + ϕξ) + ψb,k,b′,ξ]} ,
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Fig. 1. Cellular network with base station sectorization.
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Fig. 2. Block diagram of a cellular multiple input single output system.

where ϕξ models the angular spread of M unresolvable
sub-paths.1 The function ρ(d, θ) incorporates the maximum
antenna gain in boresight direction Â (in dB), the path-loss,
the log-normal shadowing, and the antenna beam pattern A(θ)
and is given by

ρ(d, θ) = 100.1Â ·

(

λ

4π

)2

· d−γ · 100.1χ · 100.1A(θ),

where λ and γ are the carrier wavelength and the path-loss
exponent, respectively, and

A(θ) = −min

{

12

(

θ

70◦

)2

, 20

}

in dB.

χ is Gaussian distributed with zero mean and variance equals
36, and ψb,k,b′,ξ is uniformly distributed within [−π, π). db,k,b′

and θb,k,b′ are the distance and the angle to base station
b′ (w.r.t. its boresight direction) for the k-th user in cell b,

1We assume M = 20 and take ϕξ as specified in the 3GPP Spatial Channel
Model for MIMO simulations for an urban macro-cell [13].

respectively. In order to not violate the far-field assumption,
we also have min db,k,b′ ≥ 200λ. See [8], [13] for details.

The signal ŝb,k[n] ∈ C that the k-th user in the b-th cell
receives is thus given by

ŝb,k[n] = hT
b,k,bt

[m]
b,k

√

P
[m]
b,k sb,k[n] +

K
∑

i=1

i6=k

hT
b,k,bt

[m]
b,i

√

P
[m]
b,i sb,i[n]

+

B
∑

b′=1

b′ 6=b

K
∑

i=1

hT
b,k,b′t

[m]
b′,i

√

P
[m]
b′,i sb′,i[n] + ηb,k[n].

ηb,k[n] is a stationary zero-mean additive white Gaussian noise
process with variance σ2

η .

III. PROBLEM FORMULATION

Let ib,k[n] be the additive noise plus out-of-cell interference
for user k in cell b, viz.,

ib,k[n] = ηb,k[n] +
B

∑

b′=1

b′ 6=b

K
∑

i=1

hT
b,k,b′t

[m]
b′,i

√

P
[m]
b′,i sb′,i[n].

Then, ib,k[n] is Gaussian distributed with zero mean and
variance

σ2
ib,k

[m] = σ2
η +

B
∑

b′=1

b′ 6=b

K
∑

i=1

hT
b,k,b′P

[m]
b′,i t

[m]
b′,it

[m],H
b′,i h∗

b,k,b′

assuming independent and identically distributed (i.i.d.) sta-
tionary Gaussian symbols sb,k[n] with zero mean and unit
variance. Because of the fast scheduling at the base stations,
the precoders p

[m]
b,i =

√

P
[m]
b,i t

[m]
b,i vary much faster in time

than the vector channels, which we will therefore consider to
be constant (“block fading” assumption). On the other hand,
the intercell-interference-plus-noise power σ2

ib,k
[m], which is

usually not assumed to vary over time (stationarity assump-
tion), will heavily vary over time. To account for that, let us
define a random variable zb,k[m] as the conditional expectation
conditioned on the scheduling decisions at the interfering base
stations,

zb,k[m] := σ2
ib,k

[m] = E

[

|ib,k[n]|
2

∣

∣

∣

∣

{

P
[m]
b′,i , t

[m]
b′,i

}B,K

b′=1,b′ 6=b,i=1

]

.

The index m emphasizes the time series character of zb,k[m]
and one can clearly see that intercell interference is a non-
stationary phenomenon even with constant channels when
scheduling and spatial filtering are performed at the senders!
Thus, we are facing the problem that the optimum transmit
covariance structure Q

[m]
b at base station b,

Q
[m]
b := E

[

xb[n]xH
b [n]

]

=
K

∑

i=1

P
[m]
b,i t

[m]
b,i t

[m],H
b,i ,

depends on the transmit processing at the B − 1 other base
stations in the network,

{

Q
[m]
b′

}B
b′=1

b′ 6=b

, through the intercell



interference

zb,k[m] = σ2
η +

B
∑

b′=1

b′ 6=b

hT
b,k,b′Q

[m]
b′ h∗

b,k,b′ .

In other words, the maximal achievable sum-rate Rb in cell b
is a function of all transmit covariance matrices

{

Q
[m]
b

}B

b=1
in

the entire network. If the base stations do not cooperate, they
have no means to predict zb,k[m] for the next transmission
frame and system performance will suffer in terms of sum-
rate and outage.

IV. MODELING OF NON-STATIONARY INTERCELL
INTERFERENCE AND STATE-SPACE REPRESENTATION

To predict future realizations of the random variable2 z[m],
a good model for the underlying random process is crucial. To
this end, we will first review autoregressive integrated moving
average (ARIMA) models. We will then define a state-space
model to which a Kalman predictor can be applied to predict
the intercell interference power a user will experience in the
next time frame based on previous measurements.3

It is well known [15] that autoregressive moving average
(ARMA) processes can be used to model a stationary time
series w[m]:

φ(B)w[m] = θ(B)a[m], (1)

where a[m] is a stationary zero-mean Gaussian distributed
random variable with variance σ2

a. φ(B) and θ(B) are poly-
nomials in B of order p and q and given by

φ(B) = 1 − φ1B − . . .− φpB
p,

θ(B) = 1 − θ1B − . . .− θqB
q .

B is called the backward shift or lag operator with Bιw[m] =
w[m− ι]. We also define the backward difference operator ∆
by ∆δw[m] = (1−B)δw[m], e.g., ∆w[m] = w[m]−w[m−1].
The roots of φ(B) must lie outside the unit circle such that it
is invertible.

Now, assume the δ-th difference of the non-stationary
process z[m] can be modeled by a stationary process w[m],
viz. w[m] = ∆δz[m]. Then, from (1),

φ(B)∆δz[m] = ϕ(B)z[m] = θ(B)a[m] (2)

with ϕ(B) = φ(B)∆δ . Furthermore, for a stationary process
w[m] [16],

w[m] =

∞
∑

j=0

ψja[m− j] = ψ(B)a[m], (3)

where ψ(B) = 1 + ψ1B + ψ2B
2 + . . . is a stable filter.

Combining (2) and (3), we obtain

ϕ(B)z[m] = ϕ(B)ψ(B)a[m]
!
= θ(B)a[m] (4)

2For notational convenience, we drop the indices b and k in this section.
3This section closely follows the treatment in [14] to which we refer for

particulars.

and the ψj can recursively be obtained from equating the
coefficients of the last equality in (4) with ψ0 = 1 and ψj = 0
for j < 0. The solution to the difference equation (2) can
be split in a homogeneous part ϕ(B)Ck [m − k] = 0 and a
particular part ϕ(B)Ik [m− k] = θ(B)a[m] such that4

z[m] = Ik[m−k]+Ck[m−k]
!
= ψ(B)a[m] =

∞
∑

j=0

ψja[m−j],

where

Ik [m− k] =

m−k−1
∑

j=0

ψja[m− j],

Ck [m− k] =
∞
∑

j=m−k

ψja[m− j].

We define the minimum mean square error (MMSE) predictor

ẑm[`] := Em [z[m+ `]] := E [z[m+ `]|z[m], . . . , z[1]]

by5 ẑm+1[`] = ẑm[`+ 1] +ψ`a[m+ 1] and the time-invariant
state-space model by

Y [m] = ΦY [m− 1] + Ψa[m] state equation,
z[m] = HY [m] observation equation.

Y [m], z[m], Φ, H , and a[m] are the unobservable state vec-
tor, the noise-free measurement, the time-invariant transition
matrix, the time-invariant observation matrix, and the process
noise, respectively. a[m] = Ψa[m] is zero-mean Gaussian
with covariance matrix Σa = σ2

aΨΨH. We choose p = 0,
δ = 1, q = 1 for our problem setting and obtain (see [14])

[

z[m]
ẑm[1]

]

=

[

0 1
0 ϕ1

][

z[m− 1]
ẑm−1[1]

]

+

[

1
ψ1

]

a[m], (5)

z[m] =
[

1 0
]

[

z[m]
ẑm[1]

]

(6)

as our state-space model.6 The first equality in (5) is obtained
from the one-step forecast error

z[m]− ẑm−1[1] =
∞
∑

j=0

ψja[m− j]−
∞
∑

j=1

ψja[m− j] = a[m],

the second equality in (5) is obtained via

ẑm[1] = Em [ϕ1z[m] + a[m+ 1] − θ1a[m]] = ϕ1ẑm−1[1]+ψ1a[m].

4Note that this representation is informal as z[m] is non-stationary and
hence cannot be represented as an infinite weighted sum (cf. Eq. (4)).

5This definition follows from

Em [z[m+ `]] = Em

ˆ
[Ik[m+ `− k] + Ck [m+ `− k]]k=m

˜

= Em

2

4

`−1X

j=0

ψja[m + `− j]

3

5

| {z }

=0

+Em

2

4

∞X

j=`

ψja[m+ `− j]

3

5 =
∞X

j=`

ψja[m+`−j].

6We set ϕ1 = 1. θ1 and σ2
a can be calculated offline from measurements

and standard estimation techniques.



The MMSE predictor is the conditional mean estimator
Ŷ m[m+ `] = E [Y [m+ `] | z[m], . . . , z[1]] with error covari-
ance matrix

V m[m+ `] =

E

[

(

Y [m+ `] − Ŷ m[m+ `]
)(

Y [m+ `] − Ŷ m[m+ `]
)H

]

.

We define the Kalman gain matrix as

K[m] = V m−1[m]HT
[

HV m−1[m]HT
]−1

resulting in

Ŷ m[m] = Ŷ m−1[m] + K[m]
(

z[m] − HŶ m−1[m]
)

V m[m] = (1− K[m]H) V m−1[m]

as the respective update equations and in

Ŷ m[m+ 1] = ΦŶ m[m]

V m[m+ 1] = ΦV m[m]ΦH + Σa

as the respective prediction equations for the Kalman filter
with initial values Y [0] = Ŷ 0[0] and V [0] = V 0[0].

V. PRECODERS

In this paper, we are not concerned with the optimization of
the precoders. Rather, we want to demonstrate how the serious
performance losses—when precoders are applied in multi-cell
networks that have been originally designed for single-cell
networks or for multi-cell networks with the assumption of
stationary (Gaussian) out-of-cell interference—can be dimin-
ished through the application of a Kalman predictor.

We will look into three different kinds of precoding, namely
opportunistic beamforming, coherent beamforming, and dirty-
paper precoding. The total transmit power a base station
can allocate is limited to Etr. For the case of opportunistic
beamforming, each base station generates a random beam and
the users feed back the rates they can support [17]. In every
cell, the user with the largest rate is served and we have7

Rb = log2






1 +

Etr

∣

∣

∣h
T
b,k̂,b

t
[m]
b

∣

∣

∣

2

z
b,k̂

[m]






. (7)

The precoder is defined by

eT
ζ t

[m]
b =

∣

∣

∣e
T
ζ q

[m]
b

∣

∣

∣ exp
{

jπ(ζ − 1) sin
(

ν
[m]
b

)}

,

where q
[m]
b and ν[m]

b are an isotropically distributed complex
random unit-norm vector and a uniformly distributed real
random variable, whose mean is the boresight direction of cell
b and whose variance equals π2/27. For the case of coherent
beamforming [17], we assume that the b-th base station knows

7Note that whenever a single user is served per cell, we drop the index k
such that t

[m]
b

:= t
[m]

b,k̂
, where k̂ is the user that is served. Because only one

user is served at a time, it is allocated the entire power budget Etr available in
the cell. Hence, (7) gives the per-cell sum-rate for all beamforming approaches
we consider.

TABLE I
OVERVIEW OF SIMULATION PARAMETERS

Number of cells: 57 (three tiers of base stations)
Distance between BSs (ISD): 2km
Number of users per cell: 6
Number of antennas per BS: 4
Transmit power: 10W
Thermal noise power: -100.8dBm
Carrier wavelength: 15cm
Path-loss exponent: 3.8
Maximum antenna gain: 14dBi
Maximum antenna attenuation: 20dB

TABLE II
OVERVIEW OF SIMULATION RESULTS

dirty-paper coding coherent beamforming
genie outdated Kalman genie outdated Kalman

sum-rate 8.52 4.30 4.67 6.27 3.84 3.90
outage — 6.9% 4.1% — 20.4% 17.4%

back-off — 0.29 0.22 — 0.30 0.29
MSE — 5.84 2.91 — 5.99 3.05

the vector channels
{

hT
b,k,b

}

for all k. The precoder is then
chosen according to t

[m]
b = h∗

b,k̂,b
/‖h

b,k̂,b
‖2 with

k̂ = argmax
k=1,...,K

‖hb,k,b‖
2
2

zest
b,k[m]

.

The estimated intercell interference power zest
b,k[m] is taken

from the previous frame (gambling algorithm). For the genie
algorithm, a feedback channel provides the true zb,k[m] based
on that t

[m]
b .8 The dirty-paper precoding algorithms (both genie

and gambling) are extensively treated in [8] to which we refer.
When Kalman prediction is applied, we apply the gambling
algorithm but exchange the outdated information with the
forecast. When zb,k[m] is not perfectly known (gambling and
Kalman prediction), the symbols sb,k[n] are encoded with a
back-off β, viz. Rset

b,k = (1 − β)Rest
b,k (see [8] for details). An

outage occurs (Rb,k = 0) when Rset
b,k was not an achievable

rate, otherwise Rb,k = Rset
b,k.

VI. SIMULATION RESULTS

Table I summarizes the parameters used in our simulations.
Average results are itemized in Table II and the corresponding
cumulative distribution functions are plotted in Fig. 3 for
the cell of interest b = 30 in the center of the network
(see Fig. 1). As we would expect, genie dirty-paper cod-
ing performs best with an average sum-rate of 8.52 bits
per channel use (bpcu). The fact that this average sum-rate
is nearly halved when the intercell interference powers are
unknown to the base stations shows that dirty-paper coding is
impractical for cellular networks when base stations do not
cooperate. Genie coherent beamforming performs mediocre
with an average sum-rate of about two bits less (6.27 bpcu).

8If the feedback unveils that a user ǩ can achieve a higher rate with t
[m]
b

than user k̂, the base station is allowed to schedule that user without changing
t
[m]
b

.
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Though the average sum-rate of coherent beamforming is
also considerably compromised when intercell interference
powers are unknown to the base stations, it appears to be
a bit more robust than dirty paper coding, which performs
only slightly better. This is especially interesting as coherent
beamforming only requires local channel information (K×Na
complex channel coefficients), whereas dirty-paper coding [8]
requires B × B × K × Na complex channel coefficients
to be estimated and exchanged between all base stations!
Unfortunately, those algorithms which do not possess accurate
information of the intercell interference suffer from poor
outage performances. The situation is particularly serious for
beamforming approaches as only one user is served at a time.
The minimum achievable outage probability observed in our
simulations is given in Table II. The back-off that maximized
the average sum-rate, is also listed in Table II. Opportunistic
beamforming achieves the worst average sum-rate (3.58 bpcu)
but also requires neither channel state information, nor base
station cooperation.

Last but not least, we give the mean squared error (MSE)

1

K

K
∑

k=1

E

[

∣

∣ztrue
30,k[m] − zest

30,k[m]
∣

∣

2
]

of our new algorithms compared to the application of outdated
information. As Table II suggests, we can nearly halve the
MSE through the application of Kalman prediction even
though the intercell interference is non-stationary. However,
this gain is diminished through the non-linear character of the
log-function in (7).

VII. CONCLUSIONS

We compared different precoding algorithms for cellular
networks that rely on different degrees of channel state infor-
mation and base station cooperation. Dirty-paper coding with
cooperating base stations outperforms all other approaches we
looked at. Unfortunately, it requires knowledge of B×B×K×
Na complex channel coefficients. Furthermore, the cooperation
comes at the expense of additional infrastructure (backhaul
network) and huge delays (both for propagation between and

processing at base stations). Together with our fast scheduling
assumption, these non-neglectable delays would result in out-
dated solutions. On the other hand, when dirty-paper coding
is performed locally without base station cooperation, perfor-
mance enormously suffers. We showed how the application
of Kalman filters can considerably reduce the back-off and
nearly halve the minimum outage probability when timely
information about the intercell interference is not available.
The latter also holds for coherent beamforming, which is a
viable alternative to dirty-paper coding when base stations
do not cooperate as it nearly performs as well as dirty-paper
coding when the intercell interference powers are unknown to
the base stations. This shows how heavily dirty-paper coding
relies on good channel state information. Unfortunately, the
outage performance is disappointing. All these approaches
outperform opportunistic beamforming.
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