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Abstract. CirCUs is a satisfiability solver that works on a combination of And-
Inverter-Graph, CNF clauses, and BDDs. It has been designed to work well with
bounded model checking. It takes as inputs a Boolean circuit (e.g., the model
unrolled k times) and an optional set of additional constraints (for instance, re-
questing that a solution correspond to a simple path) in the form of CNF clauses
or BDDs. The algorithms in CirCUs take advantage of the mixed representation
by applying powerful BDD-based implication algorithms, and decision heuris-
tics that are objective-driven. CirCUs supports incremental SAT solving, early
termination checks, and other analyses of the model that translate into SAT. Ex-
perimental results demonstrate CirCUs’s efficiency.

1 Introduction

Efficient satisfiability (SAT) solvers [15, 18, 11, 6] have helped make Bounded Model
Checking (BMC [2]) a widely used alternative to BDD-based model checking. The
performance of BMC heavily depends on that of the SAT solver. At the same time,
SAT-based model checking goes beyond the simple check for the existence of coun-
terexamples, and involves a wide array of analyses such as early termination checks for
invariants [13] and general LTL properties [1]. SAT solvers are also used in verifica-
tion algorithms that combine BDDs and CNF [4], in the computation of concise proofs
of satisfiability [12] and unsatisfiability [19], and in unbounded model checking [9,
10]. CirCUs is a SAT solver designed to be flexible enough to be used in all these tasks,
while exploiting knowledge of the problem structure to provide better performance than
generic SAT solvers in BMC.

CirCUs’s input is a combination of And-Inverter-Graph (AIG [8]), CNF clauses, and
BDDs. It combines the strengths of these different representations in a hybrid Boolean
reasoning framework. The bounded model checker that uses CirCUs unrolls the model
in the form of an AIG and applies optimizations like BDD sweeping and initial states
propagation to it [8] to remove redundancy, which is a prime cause of inefficiency in
SAT solvers. The constraints representing the property to be checked may be expressed
as part of the AIG or as additional CNF clauses. Given these inputs, CirCUs transforms
parts of the circuit into BDDs so as to apply powerful BDD-based implication algo-
rithms [7]. It then looks for an assignment to the variables that satisfies all the outputs
of the circuit and all additional constraints.
� This work was supported in part by SRC contract 2003-TJ-920.

R. Alur and D.A. Peled (Eds.): CAV 2004, LNCS 3114, pp. 519–522, 2004.
c© Springer-Verlag Berlin Heidelberg 2004



520 HoonSang Jin, Mohammad Awedh, and Fabio Somenzi

2 Objective-Driven Decisions

The speed of SAT solvers depends critically on their ability to choose good decision
variables. In BMC, while the unrolled transition relation is always satisfiable, even after
propagating the initial states, adding constraints on the target states makes most SAT
instances unsatisfiable. CirCUs assumes that good decisions concentrate on proving
that the objective cannot be satisfied, where the objective is an assertion on one of the
outputs of the AIG. (If that assertion can be satisfied, then a counterexample is found.)
Hence, decision variables are chosen from the cone of influence of the objective.

Even though the transition relation is satisfiable, a SAT solver will encounter con-
flicts in the attempt to derive consistent assignments for the inputs and outputs of subcir-
cuits. These conflicts will produce non-objective clauses that express local satisfiability
conditions for the transition relation and auxiliary objectives. Such clauses remain valid
even when the objective changes as a result of further unrolling, and may prevent the
search of fruitless parts of the solution space. When used as an incremental solver, Cir-
CUs marks non-objective conflict clauses when they are created, and re-uses them for
all successive runs and time frames. The clauses that depend on the objective, on the
other hand, may be deleted by periodic clause deletion in CirCUs. Those that survive to
the end of a run are “distilled” to bias the decision variable selection for the next run.

While this mechanism is not more powerful than the ones used in other generic in-
cremental SAT solvers [17, 5] in identifying conflict clauses that remain valid from one
run to the next, it either reduces the time required to detect what conflict clauses remain
valid, or it removes the constraint that all conflict clauses must be kept. Compared to
[14], CirCUs can identify more conflict clauses that remain valid.

3 Experimental Results

We have integrated CirCUs in VIS-2.1. To show the effectiveness of CirCUs, we com-
pare the performance of four versions of BMC on the VIS benchmark suite [16]. All
experiments have been performed on a 1.7 GHz Pentium IV with 1 GB of RAM running
Linux. We have set the time out limit to 10000 s.

– Case A : VIS-2.0 [3, 16] BMC interfaced with Zchaff [11]
– Case B : VIS-2.1 BMC interfaced with Zchaff
– Case C : VIS-2.1 BMC interfaced with CirCUs
– Case D : VIS-2.1 BMC interfaced with Incremental CirCUs

We compare CPU times with scatter plots on logarithmic scale. The efficiency of
optimizations like BDD sweeping and initial states propagation is shown in Fig. 1. In
Case B, we run Zchaff on the CNF written from the optimized AIG. Since we use
the same SAT solver for both case A and B, we can study the effects of removing
redundancy. There are cases when redundancy gives an advantage in solving SAT. The
score based decision heuristic may get a better initial decision order from redundant
circuits. However, on average, redundancy elimination is very helpful.

In Fig. 2, we compare Zchaff’s and (non-incremental) CirCUs’s speed on the same
BMC instances. CirCUs shows consistent improvement over Zchaff. CirCUs achieves
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the larger speed-ups on the harder examples (up to 10x). Incremental vs. non-incre-
mental SAT in CirCUs are compared in Fig. 3. Incremental SAT shows improvement
especially for the harder cases. Because an incremental SAT run starts with additional
clauses transferred from the previous run, in small examples it may incur significant
overhead. We summarize the overall improvement of CirCUs over VIS-2.0 BMC in
Fig. 4. Each scatterplot shows two lines: The main diagonal, and y = κ · xη , where κ
and η are obtained by least-square fitting. Student’s t test confirms that the improvement
visible in each plot is statistically significant.
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Fig. 1. Effects of redundancy removal
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Fig. 2. CirCUs vs. Zchaff
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Fig. 3. Incremental vs. non-incremental
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Fig. 4. Overall gains

Thanks to its performance and flexibility, CirCUs is suited for the modular develop-
ment of abstraction refinement algorithms and other complex SAT-based applications.
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