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Abstract

Recent studies reveal that circular RNAs (circRNAs) are a novel class of abundant, stable and ubiquitous noncoding RNA
molecules in animals. Comprehensive detection of circRNAs from high-throughput transcriptome data is an initial and
crucial step to study their biogenesis and function. Here, we present a novel chiastic clipping signal-based algorithm,
CIRI, to unbiasedly and accurately detect circRNAs from transcriptome data by employing multiple filtration strategies.
By applying CIRI to ENCODE RNA-seq data, we for the first time identify and experimentally validate the prevalence of
intronic/intergenic circRNAs as well as fragments specific to them in the human transcriptome.

Background

The past 20 years have witnessed much progress in the

study of RNAs [1,2]. A large proportion of known RNAs

were proved to undertake diverse important biological

functions. Circular RNA (circRNA), one of the latest star

RNAs, is an RNA molecule with ends covalently linked

in a circle that has been discovered in all domains of life

with distinct sizes and sources [3-8]. While in eukaryotes

circRNAs were often regarded as transcriptional noise,

such as products of mis-splicing events [9], recent stud-

ies using high-throughput RNA-seq data analysis and

corresponding experimental validation have proved that

they actually represent a class of abundant, stable and

ubiquitous RNAs in animals [10-13]. Their high abun-

dance and evolutionary conservation between species

suggest important functions, and studies subsequently

revealed that a subset of them function as microRNA

sponges [11,14]. Nonetheless, the functions of the major-

ity of circRNAs still remain unknown and there are few

models of their mechanism of formation, which prevents

model-oriented experimental validation to solve the cir-

cRNA mystery.

Our ignorance about circRNAs is partly due to an insuf-

ficiency of sequencing data specifically aimed at circRNA

detection. In contrast to the scarcity of these data sets,

large amounts of RNA-seq data have been generated using

high throughput sequencing technology. Analyzing cir-

cRNAs identified from enormous RNA-seq data combined

with sequencing data generated from additional samples

has been adopted in several studies [11,13] and will prob-

ably continue to be a commonly used approach in further

studies on circRNAs. Thus, an all-round computational

tool for unbiased identification of circRNAs from various

RNA-seq data sets becomes necessary. Development of

such a detection tool, however, is difficult due to the non-

uniformity of RNA-seq data sets and the complex nature

of eukaryotic transcription: (i) a large proportion of cir-

cRNAs have relatively low abundance compared with their

linear counterparts [10,15], while most RNA-seq data were

generated without a circRNA enrichment step, such as

RNase R treatment, which makes it difficult to accurately

distinguish circRNAs from false positives caused by noise

in RNA-seq data; (ii) existing annotations of reference ge-

nomes were mainly based on linear RNA transcript ana-

lyses, which is not applicable for circRNA identification,

and non-model organisms often have incomplete gene an-

notation or even lack gene annotation; (iii) read lengths

vary in different sequencing data sets, which challenges

unbiased identification of circRNAs; (iv) complexities of

eukaryotic transcription may generate other non-canonical

transcripts, such as lariats and fusion genes, in which cor-

responding reads similar to circular junctions may lead to

false discoveries.

Therefore, current algorithms for circRNA detection have

been mainly developed for certain data sets, which restricts

their utility as a universal approach. In 2012, Salzman et al.

[13] proposed an annotation-dependent algorithm in which
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circRNAs were detected based on the alignment of reads to

a customized database of annotated exon boundaries. They

also improved the algorithm in a more recent report by

adding false discovery rate (FDR)-controlled filtration based

on statistics of alignment quality scores [10]. Nevertheless,

their approach necessitates annotation and is not, therefore,

applicable to species that are incompletely annotated.

Besides, the filtration based on statistics may not be effect-

ive on low coverage regions or most RNA-seq data that is

not sequenced deeply enough. Memczak et al. [11] utilized

GT-AG splicing signals flanking exons as a filter for de novo

identification of circRNAs; most recently, a similar pipeline

was used to search for microRNA-sponge candidate

circRNAs [16]. However, both algorithms adopt a two-

segment alignment of split reads, which may lead to an in-

ability to detect certain types of circRNAs with more com-

plicated alignments (for example, short exon-flanking

circRNAs). Moreover, the filtration strategy employed in

these algorithms is insufficient for removal of false positives.

Jeck et al. [12] adopted another strategy, which compares

untreated and RNase-treated sequencing results to confirm

the existence of circRNA candidates and remove false posi-

tives. This approach is sensitive and able to estimate the

relative abundance of circRNAs. However, it may introduce

systematic bias in the enrichment procedure, and also is

not applicable to the majority of currently available RNA-

seq data generated without circRNA enrichment.

Compared with circRNA detection algorithms, map-

ping algorithms have a much longer history of develop-

ment, and some of them were specifically designed for

split and local alignment. BWA-MEM [17] implements a

local alignment by seeding with maximal exact matches

and extension with an affine-gap algorithm, which pro-

vides for fast speed and high accuracy. Another algo-

rithm, segemehl [18], uses an enhanced suffix array for

seeding and was reported to outperform its competitors

on splice site detection. Because circRNAs are character-

ized by circular junctions, which resemble splicing and

usually produce multiple alignments during read map-

ping, these mature mapping algorithms may provide

large improvements in accuracy and efficiency and may

make unbiased detection of circRNAs possible. Indeed,

an auxiliary script in segemehl simply summarizes and

reports junctions of circular candidates as well as splice

sites. However, without strategies to identify sequential

features peculiar to circRNAs, large amounts of false

positives are unavoidable.

In this article, we present a comprehensive computa-

tional tool for circRNA identification and annotation

from RNA-seq reads. In contrast to other annotation- or

circRNA enrichment-dependent algorithms, this method

employs a novel algorithm based on paired chiastic clip-

ping (PCC) signal detection in the Sequence Alignment/

Map (SAM) of BWA-MEM combined with systematic

filtering to remove false positives. Application of our al-

gorithm to existing and newly generated sequencing data

in this study combined with experimental validation

demonstrate its reliability and potential for further stud-

ies on circRNAs.

Results
Our circRNA identification tool, named 'CIRI' (CircRNA

Identifier), scans SAM files twice and collects sufficient in-

formation to identify and characterize circRNAs (Figure 1).

Briefly, during the first scanning of SAM alignment, CIRI

detects junction reads with PCC signals that reflect a cir-

cRNA candidate. Preliminary filtering is implemented

using paired-end mapping (PEM) and GT-AG splicing sig-

nals for the junctions. After clustering junction reads and

recording each circRNA candidate, CIRI scans the SAM

alignment again to detect additional junction reads and

meanwhile performs further filtering to eliminate false

positive candidates resulting from incorrectly mapped

reads of homologous genes or repetitive sequences. Fi-

nally, identified circRNAs are output with annotation in-

formation. Details of the CIRI algorithm are provided in

Materials and methods.

Simulation studies

Since neither a large database of validated circRNAs nor a

specific simulation tool for the non-canonical transcripts

is available to date, a simulation tool (CIRI-simulator) de-

veloped by us was used to generate simulated reads and

evaluate the performance of CIRI. We first focused on

how expression levels of circRNAs could affect the per-

formance of CIRI. As shown in Figure S1A in Additional

file 1, with a simulated increase in coverage of circular

transcripts from 3- to 10-fold, the sensitivity of circRNA

identification rose steadily, and CIRI maintains high sensi-

tivity of 93% for circRNAs at a depth of 10-fold or higher.

Notably, even at the low depth of three-fold, more than

70% of circRNAs could be detected by CIRI. We also

tested the performance of CIRI on variable read length. As

shown in Figure S1B in Additional file 1, for most com-

monly generated read lengths in Illumina platforms to

date, CIRI shows high sensitivity and low FDR. These re-

sults indicate that CIRI is most efficient for reads with

lengths ranging from 60 to 100 bp, and it can also be used

for shorter reads, such as 40 bp reads, with a relatively low

sensitivity. circRNAs of different sizes may have different

types of PCC signals (described in Materials and methods)

and this likely affects the performance of CIRI. We thus

specifically explored the detection results of CIRI for a

simulated data set (80 bp paired-end reads; depth of 10-

fold for circRNAs). Simulated circRNAs were divided into

four subsets according to their size relative to the read

length: smaller than the read length (≤80 bp), twice the

read length (81 to 160 bp), three-fold the read length (161
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to 240 bp) and more than three-fold the read length (>240

bp). CIRI detection showed a slightly fluctuating trend for

sensitivity, and for each of the four subsets, CIRI could

identify more than 90% of the simulated circRNAs (Figure

S1C in Additional file 1). Comparisons were performed

between CIRI and segemehl, the latter of which was re-

ported as a mapping algorithm applicable to circRNA

reads [18]. With no annotation provided in the compari-

sons, CIRI showed good performance for all simulated

data with different read lengths and sequencing depths

(Figure S2 in Additional file 1).

Considering eukaryotic transcription complexities that

may affect detection of circRNAs, the FDR in the above

simulation studies may be underestimated. Therefore,

we further utilized real data sets of poly-A selected se-

quencing as a blank background for our simulations. cir-

cRNAs have no poly(A) tails and could theoretically

escape from sequencing based on poly-A purification, so

poly-A selected sequencing data sets that contain com-

plex information about the transcriptome can be ideal

blank backgrounds and help us accurately estimate FDRs

resulting from use of CIRI. We selected three poly-A se-

lected sequencing data sets with different read lengths

(54 bp, 76 bp, 101 bp) generated by three independent

laboratories and added simulated reads of 10-fold cir-

cRNAs with corresponding read lengths to each. As

shown in Figure S3A in Additional file 1, with no anno-

tation provided, CIRI shows sensitivity consistent with

Figure 1 The basis and pipeline of circRNA identification in CIRI. (A-C) CIGAR signals identified in the first scan. (A) For most circRNAs, two
segments of junction reads align to the reference sequence separately in reverse orientation. (B) If one segment is longer than the exon flanking

junction, the rest of the segment can align to the nearby exon contained in the circRNA. (C) If the circRNA length is shorter than the read length,
two terminal segments will possibly align to the termini of the area where the middle segment aligns. (D) To reduce the false positive rate,

candidate circRNAs are filtered based on the following information: i) PEM signals - the paired read of a junction read should align within the
inferred circRNA area; ii) GT-AG splicing signals should be present in the inferred junctions; iii) mapping statistics - mapping quantity and quality,
and mapping read length in the junctions. (E) The CIRI pipeline for detecting circRNAs from transcriptome data. (DP: dynamic programming).
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the simulation tests on read length described above and

could simultaneously control FDR at a low level. To better

understand the FDR of CIRI, we also made further com-

parisons between CIRI and segemehl on the three data sets.

While segemehl could detect similar numbers of simulated

circRNAs, it showed FDRs approximately 20 times higher

than CIRI for all three data sets when both used default

settings (Figure S3A in Additional file 1). Other parameter

settings recommended by segemehl were also tested, but

FDR was reduced at the cost of sensitivity (Figure S3B,C in

Additional file 1). As segemehl cannot utilize PEM infor-

mation, we also applied the SE mode of CIRI to figure out

if the discrepancy in performance could be totally attrib-

uted to the PEM filtering that CIRI employed. The results

showed that although the lack of PEM information resulted

in the FDR more than doubling, CIRI still showed better

performance with regard to both sensitivity and FDR com-

pared with the optimal setting of segemehl (Figure S3D in

Additional file 1), which indicates the high efficiency of the

filtering strategies employed by CIRI.

Circular RNA validation based on sequencing of RNase R

free/treated samples

To verify that CIRI identified bona fide circRNAs rather

than false positives, we generated 7.4 Gb and 16.3 Gb se-

quence data from HeLa cells based on ribominus RNA se-

quencing with or without RNase R treatment (RNaseR+/-,

respectively). RNase R is a magnesium-dependent 3′→ 5′

exoribonuclease that digests essentially all linear RNAs

but does not digest lariat or circular RNA structures. Both

data sets were used for prediction of circRNAs. As is

shown in Figure 2A, predictions by CIRI show a signifi-

cant overlap between the two data sets. About 80% of can-

didate circRNAs from the RNaseR- sample that have at

least five supporting junction reads were also detected in

the RNaseR+ sample.

We randomly selected 33 candidate circRNAs with rela-

tively high expression levels (more than five junction

reads) and designed outward-facing primers for each to

amplify the fragment across the junction from cDNA syn-

thesized from total RNA RNaseR-, RNaseR+ and poly-A+

Figure 2 Circular RNA validation based on sequencing of RNase R treated/untreated samples and details of circRNA chr2: 58,311,224|
58,316,858. (A) Overlap of prediction results between two samples (RNaseR+, ribominus RNA treated with RNase R; RNaseR-, ribominus RNA). (B)
Coverage of five exons contained in chr2: 58,311,224|58,316,858 in the two samples (red, junction reads identified by CIRI in RNaseR- sample; blue,

junction reads identified by CIRI in RNaseR+ sample; grey, other reads). Scissors indicate the splicing sites, which are flanked by GT-AG signals
highlighted in red. (C) circRNA structure and its linear amplified fragment using a pair of outward-facing primers. (D) Sequencing chromatogram

of the PCR product across the junction.
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samples. Considering residual genomic DNA in total RNA

may generate false positive amplification and thus affect

validation, we also implemented PCR using the same con-

ditions with total DNA as a negative control. As shown in

Table S1 in Additional file 1, we successfully amplified 24

circRNAs (73% of 33 candidates) from RNaseR- and RNa-

seR+ samples. To distinguish from canonical mRNA tran-

scripts, the coordinate positions for each circRNA are

connected with a vertical bar '|' instead of a dash '-'. Here

the vertical bar represents the junction of circRNAs.

Because some candidate circRNAs contain extremely short

exons or introns with exceptional GC content, which is

quite challenging for primer design, our validation ap-

proach would underestimate the specificity of CIRI. Details

for each validated circRNA are depicted in Figures 2 and 3

and Figures S4, S5 and S6 in Additional file 1. For all of the

24 validated circRNAs, no product with expected length

could be amplified in the genomic DNA, which rules out

the possibility of DNA contamination. We also found that

although most validated circRNAs could not be amplified

Figure 3 A non-exonic circRNA with intronic/intergenic circRNA fragments. (A) Coverage of one exon and three intronic regions contained
in chr10: 60,347,975|60,380,661 in the two samples (red, junction reads identified by CIRI in RNaseR-; blue, junction reads identified by CIRI in
RNaseR+; grey, other reads). (B) circRNA structure and its two linear amplified fragments using a pair of outward-facing primers. The top PCR

product in the gel is longer than one complete circle around the circRNA and the bottom PCR product is shorter than one complete circle.
(C) Sequencing chromatogram of the PCR product across the junction. (D) The circRNA contains three intronic circRNA fragments and one exon,

which are all flanked by GT-AG splicing signals. The positions of stop codons in all six frames are shown as crosses.
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from poly-A selected RNA, weak PCR products do appear

in a few cases. Since some circRNAs were detected from

sequencing data of poly-A selected RNA in previous studies

[19], these PCR products should result from residual cir-

cRNAs during poly-A selection.

All PCR products were further validated using Sanger

sequencing and we also checked the RNA-seq mapping

details (mapping quality, coverage and flanking splicing

signals) for each of them. For example, amongst the five

exons contained in chr2: 58,311,224|58,316,858 of gene

VRK2, exon 6 is 50 bp long, which is much shorter than

the read length (101 bp) and may result in related algo-

rithms being unable to detect it (Figure 2; Figure S6A in

Additional file 1). From the sequencing coverage plots

for both the RNaseR- and RNaseR+ samples, the high

efficiency of CIRI detection of junction reads can be

clearly observed, which demonstrates that CIRI can

unbiasedly detect circRNAs with a short exon flanking

the junction owing to its comprehensive consideration

of multiple-segment style in junction read mapping (see

Materials and methods).

The intronic circRNA chr10: 60,347,975|60,380,661 of

gene BICC1 is composed of four separated fragments in

the human genome, and three of them are from the ap-

proximately 42 kb long intervening intron between exon 1

and exon 2 (Figure 3A; Figures S6B and S7 in Additional

file 1). The three intronic circRNA fragments (ICFs) are

100 bp, 170 bp and 71 bp long, respectively, and they are

all flanked by GT-AG splicing signals. It should be noted

that this intronic circRNA is expressed at very low levels

compared with its neighboring exons in the RNaseR- sam-

ple. However, after treatment with RNase R, which nearly

digested all the linear mRNA transcripts, we can clearly

see the patterns of circRNA expression (Figure 3A-C). We

translated the nucleotide sequence of this circRNA in all

six possible frames, but found that none of them could

generate a full length open reading frame (Figure 3D).

This indicates that the three ICFs are unlikely to be novel

exons. Furthermore, we checked currently available hu-

man gene expression databases, but found no evidence for

their presence as linear transcripts, implying that they

might be circRNA-specific sequences in the genome.

Comparative genomic analysis revealed that these ICFs

and their splicing signals are highly conserved in all cur-

rently available primate genomes (data not shown). An-

other non-exonic circRNA is chr5: 10,213,603|10,224,173,

which is categorized as an intergenic circRNA by CIRI

(Figure S5A in Additional file 1). Two ICFs, flanked by

GT-AG splicing signals as well, act as splice donor and

acceptor of the circular junction and form the whole

circRNA. Indeed, we also found ICFs with similar fea-

tures in all other three validated non-exonic circRNAs,

which are distinct from the mapping pattern of lariats

(Figures S4A-D and S8 in Additional file 1).

A direct comparison between CIRI and other algorithms

To further evaluate the performance of CIRI, we per-

formed a direct comparison of CIRI with the other two

available de novo algorithms, segemehl [18] and find_circ

[11], using the RNaseR- data set described above. As

shown in Figure 4A, CIRI, find_circ and segemehl de-

tected 5,533, 5,542 and 18,418 circRNAs, respectively.

Two types of known false positives were compared among

the seven subgroups divided according to the overlap of

the three predictions, and three subgroups of CIRI (I, III,

V) have the lowest FDRs for both types (Figure 4D). Since

find_circ provides the junction reads for each predicted

circRNA, we used the mapping information of these junc-

tion reads, including PEM, to thoroughly analyze the dis-

crepancy between CIRI and find_circ. Amongst the 1,904

candidate circRNAs predicted by find_circ but not by

CIRI, 1,783 (about 94%) were indeed filtered by CIRI due

to a lack of PCC signals or PEM support (Figure 4B). We

also visualized the top five most abundant circRNA candi-

dates solely detected by CIRI or find_circ, and found that

at least four of the five CIRI-specific circRNAs have a con-

siderable number of reads mapped after RNase R treat-

ment. In contrast, none of those predicted by find_circ

seem to be reliable (Figure S9 in Additional file 1).

To estimate other unknown types of false positives, we

utilized the RNaseR+ data set as an indicator of prediction

reliability. Bona fide circRNAs are resistant to RNase R

treatment and supposed to have high sequencing depth in-

side a circular junction (Figure 4C). Therefore, we calcu-

lated the normalized sequencing depth adjacent to the

junction for each predicted circRNA, which to some ex-

tent can reflect the reliability of circRNA prediction. As

shown in Figure 4E, circRNAs identified by all three algo-

rithms have a clear pattern of decreased sequencing depth

outside the junctions and increased sequencing depth in-

side the junctions. Similar patterns were also observed in

all CIRI identified categories. In contrast, a large pro-

portion of circRNA candidates solely detected by find_circ

or segmenhl have no read support inside the junctions

(Figure 4E; Table S2 in Additional file 1). Taken together,

these results further indicate the advantage of CIRI over

the other two algorithms.

CIRI detects more circRNAs from real data sets from four

cell types compared with a previous report

We applied CIRI to paired-end sequencing data gener-

ated from CD19+, CD34+, and HEK293 cells and neu-

trophils. CIRI detected 3,001 circRNAs versus 1,951

detected by Memczak et al. [11] from the same data sets

(Figure S10 in Additional file 1). Among them, 1,290

overlapping circRNAs identified by both methods com-

prise about two-thirds of the total number detected by

the latter and 43% of CIRI detection results. We focused

on bona fide circRNAs validated in the Memczak et al.
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study by testing their resistance to RNase R degradation

followed by northern blotting. Remarkably, all 22 validated

circRNAs (including CDR1as), which vary in abundance,

cell type, chromosome origin and spanning distance along

the reference, were 100% detected by CIRI.

Subsequently, 661 assumed circRNAs not detected by

CIRI were further explored. We selected the top 10 most

abundant ones with at least 63 supporting reads, and

manually checked the mapping details of all relevant reads.

As shown in Figure S10 in Additional file 1, 6 of the 10 as-

sumed circRNAs have adjacent collinear exons that are

identical or highly similar to the assumed junction exons.

For example, the most abundant one, has_circ_002179,

which was described as a circRNA located in chromosome

12 with two junction exons 55 kb away spliced together

in chiastic order and supported by 2,842 reads in the

Memczak et al. study, was shown to indeed be composed

of two adjacent exons (1.6 kb away) in canonical order of

the TUBA1B gene by our further check. Their false predic-

tion may be accounted for by a 61 bp identical sequence

from a homologous gene, TUBA1A, and the high expres-

sion of TUBA1B linear transcripts. Among the other four

candidates, none were supported by paired-end mapping

information, suggesting that they are probably false posi-

tives and were ruled out by CIRI filtering.

Amongst the 1,711 circRNAs exclusively predicted by

CIRI, we found 526 of them were also detected in our

sequencing data from HeLa cells, of which two were ex-

perimentally validated. Both of these circRNAs contain a

very short exon, 39 bp and 29 bp, respectively, which act

as splice donor or acceptor. We noticed that Memczak

et al.’s algorithm needed both ends of an unmapped read

to be entirely aligned to chiastic positions. When junc-

tion reads are aligned to extremely short exons, they are

Figure 4 Comparison between CIRI, find_circ and segemehl based on HeLa cell transcriptome data. (A) Overlap of identified circRNAs

among the three algorithms using the RNaseR- data. (B) Overlap of identified circRNAs between CIRI and find_circ using the RNaseR- data.
find_circ-specific candidates can be removed by various filters in CIRI. (C) A schematic view of reads mapped to a circRNA region. RNaseR+ data
were used to validate the circRNA candidates identified based on the RNaseR- data. Dashed rectangle indicates the flanking region adjacent to

the junction, which was used to plot the read depth in subgraph E. (D) Two typical false positive types identified by the three algorithms.
(E) Density plot of sequencing depth adjacent to the junction of circRNA candidates. The x-axis represents the relative coordinates of all circRNA
candidates with the junction point set to zero; the y-axis represents normalized sequencing depth.
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usually split into three segments (Figure 1B). Thus, this

short-exon flanking type of circRNA would be missed by

their algorithm.

Nearly 100,000 circRNAs were identified from ENCODE

transcriptome data from 15 cell lines

Since CIRI is capable of detecting circRNAs located in

distinct genomic regions, including intronic or inter-

genic regions, we analyzed RNA-seq data sets generated

in the ENCODE project to further explore the unknown

nature of circRNAs in these regions, which also facili-

tates a comparison between CIRI and the annotation-

dependent algorithm reported previously [10].

In total, CIRI identified 98,526 circRNAs from the 15

cell types, of which 18,894 circRNAs (19.2%) are located

in intronic regions and 4,913 (5.0%) are located in inter-

genic regions. Similar distributions were found when mak-

ing comparisons between cell types. Exonic circRNAs

account for the majority of circRNAs detected in each cell

type, and circRNAs located in intronic and intergenic re-

gions were also detected in all cell types but in smaller

proportions (12 to 19.1%; Figure 5A,B).

We compared the exonic circRNAs detected by CIRI

with all circular junctions detected by the annotation-

dependent algorithm [10]. Among the 87,195 distinct

junctions obtained after removing redundant junctions de-

tected in more than one cell type and ambiguously anno-

tated junctions such as ‘abparts’ from all junctions

reported by Salzman et al. [10], 27,350 circRNAs were de-

tected by CIRI, which account for about 31% of the 87,195

junctions. It should be noted that 46,866 junctions were

indeed indicated after controlling for FDR in their study,

which may explain the low percentage of overlap when

making a comparison using all junctions. Moreover, a

comparison between CIRI and the annotation-dependent

algorithm using the subset of validated circRNAs in HeLa

Figure 5 Cell type-specific expression of circRNAs. circRNAs identified by CIRI in each cell type were applied as features to calculate distance
between a pair of cell types. Euclidean distances between pairs within 6 cancer cell types, 9 non-cancer cell types and all 15 cell types were
individually calculated. (A) Euclidean distances for 18,894 intronic circRNAs. (B) Euclidean distances for 74,719 exonic circRNAs. (C) Euclidean

distances for corresponding poly-A transcript expression of exonic circRNAs using RPKM values. (D) circRNAs identified exclusively by exon
boundaries, exclusively by GT-AG splicing signals and by both signatures in each cell type. (E) circRNAs located in exonic, intronic and intergenic

regions in each cell type.
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cells may provide additional, reasonable explanation for the

remarkable difference. Among the 24 validated circRNAs,

21 were also detected by CIRI in the ENCODE data sets,

while only 14 were detected by Salzman et al. (Table S1 in

Additional file 1). Besides all five non-exonic circRNAs that

cannot be detected by the annotation-dependent algorithm,

three exonic circRNAs were not included in their list - for

example, chr1: 117,944,808|117,963,271 is an abundant cir-

cRNA detected by CIRI in 12 of 15 cell lines, including

HeLa-S3 (Figure S4J in Additional file 1).

To further verify our detected circRNAs in the EN-

CODE data sets, we performed another comparison be-

tween CIRI and a recently published pipeline [16]. In

their study, Guo et al. [16] set a high cutoff for relative

expression of circRNAs (≥10%) and applied their pipe-

line to 39 ENCODE data sets to derive a conservative

catalog. Amongst the 7,058 circRNAs in the catalog,

only 8%, 22% and 32% were shared when compared with

the three previous studies respectively [16]. However, we

found that 75% of them could be confirmed by CIRI in

this study (Figure S11A in Additional file 1).

Cell type-specific expression of circRNAs

To compare the expression of circRNAs across the 15 cell

types, we calculated the counts of junction reads for each

circRNA normalized by total sequencing reads in each

data set as an indicator of their expression levels. Most of

the circRNAs had variable expression levels across cell

types. As shown in Figure S12 in Additional file 1, signifi-

cantly distinct expression levels can be observed for the

top 50 most abundant circRNAs located in all three types

of genomic region. For example, the most abundant one,

located in chromosome 20 and annotated as CYP24A1 ex-

onic circRNA, is expressed in only five cell types and is

hundreds of times more abundant in cancer cell A549

compared with the other four cell types.

Since the 15 ENCODE RNA-seq samples represent six

cancer types and nine non-cancer types, we were able to

compare circRNA expression variation between cancer

and non-cancer cells. The Euclidean distance was calcu-

lated between all pairs of 15 cell types applying exonic

and intronic circRNA expression levels as features indi-

vidually. Comparison of the collection of distances be-

tween the six cancer cell types with that between the

nine non-cancer cell types showed that the non-cancer

distances were significantly smaller than the cancer dis-

tances for exonic and intronic circRNA expression (P <

0.001 for both, Mann-Whitney U test; Figure 5C,D). We

then calculated the corresponding mRNA transcript ex-

pression levels of exonic circRNAs using RPKM values

and computed distances by the same method. The dis-

tances for linear mRNA transcripts show a reverse ten-

dency, that is, the cancer distances are significantly

smaller than the non-cancer distances (P < 0.01, Mann-

Whitney U test; Figure 5E). This indicates that the expres-

sion patterns of linear transcripts of circRNA-encoding

exons are more similar in cancer cells compared with

non-cancer cell types, but the cancer cells appear to have

more diverse exonic and intronic circRNA expression

profiles.

More universally shared circRNAs tend to have higher

expression levels

The annotation information provided by CIRI also facili-

tates further study on the relationship between the univer-

sality of circRNAs and their expression. We first reviewed

the output of CIRI for each data set from the 15 cell types

to summarize the number of cell types in which an exonic

circRNA is detected, and then calculated the average ex-

pression level of the circRNAs across the cell types using

the counts of junction reads normalized by total sequen-

cing amount of the cell type. Interestingly, we found that

circRNAs present in more cell types have significantly

higher expression levels than those present in fewer cell

types (Figure 6A). To determine whether such elevated ex-

pression is caused by the linear mRNA expression back-

ground, we then performed a similar analysis on linear

gene expression corresponding to each exonic circRNA.

The RPKM value for each gene was obtained from a GTF

file downloaded from the ENCODE website and the re-

sults showed no significant variation in linear gene expres-

sion (Figure 6B).

As high abundance and universal expression of genes

often suggest important function, we further performed

gene set enrichment analysis for the universally expressed

circRNAs. We applied Gene Ontology and KEGG (Kyoto

Encyclopedia of Genes and Genomes) enrichment ana-

lyses to a total of 966 gene IDs of exonic circRNAs present

in more than 10 cell types [20,21]. As shown in Figure 6C,

significantly enriched Gene Ontology categories are re-

lated to a broad range of biological processes, such as

metabolic and modification of macromolecule, and mo-

lecular functions, such as protein and amino acid ligase

activity. KEGG enrichment analysis also points to protein-

related processes such as ubiquitin-mediated proteolysis

and protein processing in endoplasmic reticulum (Table

S3 in Additional file 1).

Running time and memory use

We determined the running time of CIRI as applied to

different data sets. As shown in Figure S13 in Additional

file 1, running time increases with file size and number of

circRNAs detected. CIRI is fast for small data sets (for ex-

ample, <5 Gb RNA-seq data) and spends less than half an

hour on a 7.5G SAM file using high stringency. It took

longer to process large SAM files, but no more than 24

hours was needed even when processing deep sequencing

data such as ENCODE data sets (for example, 14.8 hours

Gao et al. Genome Biology  (2015) 16:4 Page 9 of 16



when processing an 84 Gb SAM file for human skin fibro-

blast cell line BJ). We simultaneously observed the mem-

ory use of CIRI within the running time and found the

peak memory cost is about 20% of the SAM file size.

Discussion

CIRI provides an annotation-independent approach for

circRNA detection by employing a de novo algorithm.

Considering there is little knowledge and few hypotheses

on the mechanism of formation of circRNAs at present,

this approach can detect novel circRNA candidates for

experimental validation and hypothesis generation. In

particular, CIRI has the following indispensable advan-

tages over annotation-dependent algorithms: (i) it is able

to detect circRNAs transcribed from intronic or inter-

genic genomic regions; (ii) and it is applicable to sequen-

cing data of eukaryotes that are not well annotated and

or even with no annotation.

Unbiased detection of circRNAs and false discovery rate

control in CIRI

Compared with a canonical transcript, circRNA is mainly

characterized by its circular junction. Exhaustive identifica-

tion of junction reads facilitates precise estimation of cir-

cRNA abundance based on junction read coverage, and

more importantly, detection of certain circRNAs, espe-

cially low-abundance ones. Thus, all existing algorithms

focus on junction read detection. Salzman et al. [10,13]

constructed a custom database for all possible exon pairs

based on existing annotations to identify reads indicating a

non-canonical exon order. Memczak et al. [11] and Guo

et al. [16] adopted an end-to-end alignment to find all in-

completely mapped reads combined with an additional

two-segment alignment to determine possible junction

sites. All of these algorithms were applied to certain data

sets in previous studies, which successfully identified

plenty of circRNAs. However, based on extensive observa-

tions on both simulated and real data sets, we found that

different circRNAs may generate various junction read

types and a significant proportion of junction reads could

be missed by the algorithms mentioned above. For ex-

ample, short-exon flanking circRNAs generate three-

segment junction reads rather than two-segment ones, and

non-exonic circRNAs are not detectable using annotation-

dependent algorithms. The short segment of an unbal-

anced junction read may lead to a non-unique alignment,

which also challenges the existing algorithms. Considering

the complexity of junction reads, CIRI collects and com-

pares raw mapping information for all split alignments of a

read to find paired chiastic clipping signals instead of artifi-

cially dividing an incompletely mapped read into two parts

or aligning all reads to a custom database constructed

based on a priori assumptions. As the PCC signal is not

restricted by read length or mapping segment counts and

is also independent of annotation, it should be more reli-

able for junction detection.

On the other hand, other natural or artificial mecha-

nisms can also produce junction-like reads [15]. Therefore,

a filtering system able to rule out false positives from com-

plicated transcriptome sequencing data is necessary. PEM,

Figure 6 Comparison of average expression of circRNAs present in different numbers of cell types with their linear counterparts.

(A) circRNAs detected by CIRI are divided into 15 groups according to the number of cell types in which a circRNA is expressed. The expression
of a specific circRNA type is represented by the count of junction reads normalized by total sequencing amount in each cell type. The boxplot is

generated by R using ln(normalized counts). (B) Linear gene expression levels are compared in a similar way as a control. We summarized
expression of corresponding genes of exon circRNAs in each cell type using RPKM values recorded in a GTF file. The boxplot was generated by
R using ln(RPKM). (C) Gene Ontology enrichment analysis for 966 gene IDs of exonic circRNAs expressed in more than 10 cell types.
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GT-AG splicing signal/exon boundary and multiple map-

ping filters individually utilize several sequence and struc-

ture features, and ensure CIRI can more specifically

predict circRNAs. For example, homologous genes or re-

petitive sequences in the reference genome can generate

erroneous mappings for a split read and thus lead to false

positives in other algorithms (Figure 1D; Figures S10 and

S11 in Additional file 1). We found that 42 candidates (7%

of the total predictions) from the mouse data sets in Guo

et al. [16] can be attributed to erroneous mappings. In

contrast, CIRI could avoid such false predictions owing to

its PCC signal and efficient filtering strategies.

We also performed a further analysis on the efficiency of

the false positive filtering in CIRI using chimeric RNA as a

control. Chimeric RNA could originate from the same

strand or different strands of a chromosome and the

former may result in false positives because of their similar

chiastic mapping to a circRNA. Since the false positive

rate resulting from such chimeric RNAs is hard to calcu-

late directly, we utilized chimeric RNA with strand-

dissimilarity to estimate the effects of the former on cir-

cRNA detection as well as the efficiency of a certain filter

for such false positives. We modified CIRI to detect false

PCC signals from a fake junction read with its two ends

mapping to different strands but kept all of the filters un-

changed. As shown in Figure S14 in Additional file 1, two

types of chimeric RNAs from different strands signifi-

cantly decreased in each step. The remaining false posi-

tives were about two orders of magnitude fewer compared

with the predicted circRNAs from the same dataset, which

demonstrated the filtering strategies employed by CIRI are

efficient and reliable.

Intronic or intergenic circRNA fragments provide

evidence of non-exonic circRNAs

Previous studies tended to believe that circRNAs are ex-

clusively composed of known exons [10,12,15]. Although

Memczak et al. [11] and Guo et al. [16] predicted non-

exonic circRNAs, they did not validate any of them except

the well-known CDR1as, which is an intergenic circRNA

by our definition, and no details for the candidate non-

exonic circRNAs were provided. Most recently, Salzman

et al. [10] discovered and experimentally validated that a

circular isoform of CAMSAP1 contains exon 2, exon 3

and the intervening intron. In this study, we for the first

time elaborated on the cases of non-exonic circRNAs as

well as ICFs. All the identified ICFs were flanked by GT-

AG splicing signals, and they are discontinuously selected

and spliced from intronic or intergenic regions, which

suggests that the circRNAs containing these ICFs are not

intermediates or mis-splicing products of other transcripts.

ICFs can form a circle all by themselves (Figure S5A,B

in Additional file 1), while in other cases they combine

with known canonical exons (Figure 3; Figure S5B,D in

Additional file 1). In both scenarios, ICFs could act as a

splice donor or acceptor in circRNA formation, which re-

sulted in the inability of annotation-dependent algorithms

to detect them.

It has to be mentioned that an intronic circRNA is dif-

ferent from a lariat or a 'circular intronic long noncoding

RNA' [22]. It was reported that the loop portion of lariats

may escape degradation by RNase R and even generate

'fake' junction reads called branch point reads [12,23]. As

shown in Figure S8 in Additional file 1, RNase R treatment

completely removed linear transcripts of MED13L and left

three ICFs and a putative lariat. However, the 3′ tip of the

lariat was digested while all three ICFs remained intact.

Although the reverse transcription product of a lariat can

also map to the reference genome in a chiastic order, the

alignments are not flanked by GT-AG splicing signals. In-

stead a single dinucleotide, 'GT', which is the splicing sig-

nal of exon 2, can be found within the 5′ end of the lariat.

Detection of non-exonic circRNA in ENCODE data sets

The ENCODE projects demonstrated that transcription is

pervasive across the human genome and most bases (up

to 93% of the human genome in some tissues) are in-

cluded in primary transcripts [24]. Combined with studies

on other species, it is believed that the present annotations

of genomes cannot completely decipher transcription [25].

Several studies have also revealed the intimate association

of many known categories of non-coding RNAs with in-

tronic regions [26-28]. Thus, to limit the detection of non-

canonical RNA to known exons using annotation obtained

from a conventional understanding of canonical splicing

is, to some degree, inadequate.

To identify potential non-exonic circRNAs, we used

GT-AG splicing signals in CIRI with 15 ENCODE RNA-

seq samples. In order to further examine the rationality of

splicing signals as a filter for de novo detection, we com-

pared outputs using GT-AG signals and known exon

boundaries as filters independently in the 15 data sets. The

results showed that a small proportion of circRNAs (less

than 1%) were exclusively detected using exon boundaries

while at least 23% of additional candidates were exclusively

found using splicing signals (Figure 5D), which demon-

strated that splicing signals could find more circRNA can-

didates while failing to detect few exonic RNAs.

Scrutiny of the detection outputs showed that intronic

and intergenic circRNA candidates account for a relatively

stable proportion of all samples. Further study showed no

significant correlation between the intronic and intergenic

circRNA candidates and sequencing amount of data sets

(data not shown), which strongly suggests that the cir-

cRNAs are not the result of noise in RNA-seq data. All

the results provide evidence that circRNAs are prevalently

transcribed from the human genome, and the de novo

algorithm employed by CIRI is effective for detection of

Gao et al. Genome Biology  (2015) 16:4 Page 11 of 16



circRNAs, especially for intronic and intergenic circRNAs.

Considering the proportion of non-exonic circRNAs in all

detected circRNAs from the ENCODE data sets, they

could be pervasive and may provide a new essential source

material for studying the biogenesis and function of

circRNAs.

Short-exon flanking and small circRNA detection

According to the Gencode version 18 annotation, about

one-third of exons in the human genome are shorter

than 100 bp (data not shown), which is the most popular

read length in current next-generation sequencing. Con-

sidering the prevalence of gene sources of circRNAs,

short exons could affect the detection and estimation of

circRNA abundance because of the complicated map-

ping patterns of junction reads that contain the exons.

In this study, we identified nearly 800 circRNAs with a

short exon (≤70 bp) flanking junctions in our HeLa cell

sequencing data. Five of them were experimentally vali-

dated and all five were also detected by CIRI in at least

one of 19 real data sets generated in previous studies

(Table S1 in Additional file 1). In contrast, two existing

algorithms detected only one of them when applied to

the same data.

circRNAs smaller than 40 bp were reported as major

components of circRNA categories in archaea [29]. The

same study also demonstrated that a circRNA smaller

than the insert size or even read length could possibly

remain, though at reduced abundance resulting from the

lower probability of reverse transcription occurring over

more than one complete circle around circRNAs. CIRI

employs a specific detection strategy for these potential

circRNAs (Figure 1C), and simulated data showed its

efficiency with regard to both sensitivity and FDR

(Figure S3C in Additional file 1). When analyzing our

sequencing data from HeLa cells, however, CIRI de-

tected few small-sized circRNAs (about 0.15% of de-

tected circRNAs). The small proportion of small-sized

circRNAs suggests they may be lost in the process of li-

brary construction or they are rare species in HeLa cells.

Optimal choice of parameters in CIRI

Considering CIRI may be applied to various types of

RNA-seq data, we provide our recommendations for par-

ameter choice according to the performance of CIRI on

simulated data (see Results). Single-end reads result in

higher FDRs compared with paired-end reads because of

the lack of PEM information as one of the filters when

using default parameters. Thus, we provide two parame-

ters (-u, -b) to set mapping quality thresholds, which is

able to control FDR within similar levels with paired-end

detection but with reduced sensitivity. Although short

read length may lead to low sensitivity, alteration of pa-

rameters (-k and -T) for BWA-MEM to allow alignments

for low mapping scores can improve performance for this

type of sequencing data. We also provide stringency pa-

rameters based on read counts of a circRNA candidate. A

circRNA candidate will be output only when two distinct

types of PCC signals support its junction using high strin-

gency, which may leave some less abundant circRNAs un-

detected due to frequent read duplication in RNA-seq

data, while low stringency requires CIRI to output every

circRNA candidate regardless of supporting read counts

or PCC signal types.

Conclusion

In this study we propose a novel algorithm, CIRI, that is

able to detect circRNAs in a genome-wide range, includ-

ing intronic and intergenic circRNAs. It does not require

RNA-seq data generated after a circRNA enrichment

step, such as RNase treatment, or an annotation file as

input, and it is applicable to almost all commonly gener-

ated read lengths in various sequencing platforms. Sys-

tematic filtering in the algorithm ensures a low false

positive rate without sacrificing the sensitivity of detect-

ing non-exonic circRNAs and small circRNAs. Extensive

simulation studies showed that CIRI has an excellent

and unbiased performance with regard to both sensitiv-

ity and FDR. A detailed analysis of CIRI output from

ENCODE RNA-seq data also revealed new characteris-

tics of circRNAs, including the prevalence of intronic

and intergenic circRNAs, which suggests our approach

will be a powerful tool for detection and annotation of

circRNAs and helpful for further exploration of cir-

cRNAs. Since the knockout of ICFs in non-exonic cir-

cRNAs does not affect their linear counterparts, the

intronic and intergenic circRNAs detected in this study

provide good targets for further functional studies.

Materials and methods

Algorithm

Detection of balanced junction reads based on paired

chiastic clipping signals

CIRI requires two types of files, a FASTA formatted refer-

ence sequence and a SAM alignment generated by the

BWA-MEM algorithm [17], which implements a local

alignment and outputs primary alignments for all segments

of a query read that separately map to the reference.

CIRI analyzes all alignment records of each read in the

SAM file. Briefly, two segments of one read that indicate a

circRNA junction should be aligned to the reference gen-

ome in a chiastic order (Figure 1A). CIGAR values reflect

the junction features in the form of upstream xS/HyM

and downstream xMyS/H, where x and y represent the

number of mapping (M), soft clipping (S) or hard clipping

(H) bases. A typical junction has pairs of such perfectly

corresponding alignment records, which we named 'paired

chiastic clipping signals', though sequencing errors or
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fortuitously matching bases may obscure the junction

boundary between two separately aligned segments. Not-

ably, some junction reads have a much shorter segment

flanking the junction compared with the other segment,

which we term an unbalanced junction read. Because the

short segment (<19 bp using the default parameter of

BWA-MEM) is ignored by the aligner to prevent multiple

mapping or erroneous mapping, such junction reads lack

one of the necessary clipping signals in the SAM align-

ment. Therefore, we focus on detection of balanced junc-

tion reads in this step and detect unbalanced ones in the

following step.

Besides typical junction reads with two segments,

more complicated features of several special circRNAs

can also be identified. First, if the exon flanking the

junction of a circRNA is shorter than the read length,

some junction reads of the circRNA may inconsecutively

map to the reference in a three-segment style, where

two segments map to two exons flanking the junction

and the third segment maps to the proximal part of the

exon adjacent to the short flanking exon contained in

the circRNA (Figure 1B). Second, circRNAs smaller than

the read length may also align to the reference in an-

other form of the three-segment style, where two ter-

minal segments separately overlap the terminal parts of

the area where the middle segment aligns (Figure 1C).

In both situations, CIGAR values show PCC signals in

the style of xS/HyMzS/H and corresponding (x + y)S/

HzM and/or xM(y + z)S/H, and CIRI checks mapping

positions to differentiate the two situations.

If CIRI detects CIGAR values for alignments from the

same read that correspond to each other as described

above, it then checks the strand information and mapping

positions in the SAM alignment. If two segments align to

the same chromosome and strand and the distance be-

tween them along the genome reference is reasonable, the

read is considered as a candidate junction read with posi-

tive PCC signal. Strand information and mapping posi-

tions are also used to determine the tentative boundaries

of segments in the candidate junction read in this step.

Filtering of junction reads based on paired-end mapping

and GT-AG splicing signals

CIRI utilizes PEM information if available for preliminary

filtering of false positive PCC signals. Because two segments

of a bona fide junction read in theory represent termini of

the range where all circRNA reads align, a candidate junc-

tion read is considered to indicate a circRNA only when its

paired read aligns within the region of the putative circRNA

range on the reference genome that segments of the junc-

tion read indicate (Figure 1D). For single-ended reads, this

step is omitted.

GT-AG signals are major splicing signals in eukaryotic

transcription and are used for circRNA detection in

CIRI. CIRI loads reference sequences to check whether

AG and GT dinucleotides (or reverse complementary di-

nucleotides CT and AC) flank segments of a junction on

a genome (Figure 1D). Due to the ambiguity of junction

boundaries identified from alignments, GT and AG sig-

nals are accepted if both deviating from the tentative

boundaries in the same direction and at the same dis-

tance along the reference sequence. Additionally, consid-

ering splicing signals for minor introns such as AT-AC

and other possible situations where GT-AG splicing sig-

nals are not applicable, CIRI can also extract exon

boundary positions from a GTF/GFF annotation file pro-

vided by users and use them as a complementary or al-

ternative filter for false positives (-x and -a parameters).

Candidate junction reads not supported by splicing sig-

nals or exon boundaries are filtered out. The tentative

junction boundaries are modified and determined ac-

cording to loci of GT-AG signals or exon boundaries in

each junction read. Another optional filter (-E) is also

available, here to remove false junction reads based on

searching identical sequences on the reference genome.

The circRNA balanced junction reads are clustered and

recorded subsequently according to their junction loci.

Detection of unbalanced junction reads and final filtering

based on dynamic programming alignment

After junction loci and flanking segment sequences have

been determined, we have adequate information to dis-

tinguish an unbalanced junction read as described above

from false positives resulting from non-unique mapping

of short segments. CIRI scans SAM alignment for the

second time and makes a thorough investigation of each

read. Information such as CIGAR value, mapping pos-

ition and mapping quality of a read and its paired read is

taken into account. Any read mapping to the related re-

gion of a putative circRNA junction in the SAM align-

ment is aligned with related junction reads identified in

the first scan using a dynamic programming algorithm

to decide whether the former supports the junction of a

circRNA or corresponding linear transcript. Unbalanced

junction reads can be detected here even though their

flanking segment is not long or informative enough to

be uniquely aligned by the aligner.

This step also facilitates a further filter to prevent false

predictions resulting from similarity of homologous genes

or repetitive sequences (Figure 1D). Briefly, when CIRI de-

tects a read that is highly similar or identical to one of the

junction reads but finds its mapping position on the refer-

ence is distinct from that of the junction read, CIRI records

the read and alignment information. After investigating all

reads, CIRI summarizes mapping positions of all related

reads of a candidate junction, compares counts and map-

ping lengths of the reads, and determines whether the

reads reliably reflect a circRNA junction and whether the
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candidate circRNA will be kept in the final output. To set

the minimum of relative expression, another optional par-

ameter, –rel_exp, is also available, which calculates the

relative expression for each circRNA based on counting

junction and non-junction reads around the circular

junction.

If a GTF/GFF formatted gene annotation is provided

by users, CIRI can refer to the annotation and provide

circRNA annotation information in the output file.

Three main categories are given according to genome

region where a circRNA is located: exon, intron and

intergenic region. Notably, a circRNA with one end lo-

cated in an intergenic or intronic region is categorized

as an 'intergenic' or 'intronic' one, no matter where the

other end is located. For circRNAs in an exonic or in-

tronic region, we also display related gene information

in detail.

Data sets

A simulation tool

CIRI-simulator requires two types of files, a FASTA for-

matted reference sequence and a GTF or GFF formatted

annotation file. First, it loads the annotation file to rec-

ord gene, transcript and exon information such as pos-

ition and strand. For each gene, two random numbers

are generated for each transcript to determine if the

transcript will be selected to generate linear RNA and

circRNA reads, respectively. When different transcripts

of a gene are selected, exons contained in them will be

simulated independently, which mimics alternative spli-

cing in eukaryotes. CIRI-simulator then scans the refer-

ence sequence to obtain complete RNA sequences for

transcripts selected previously. Simulated reads of linear

RNAs and circRNAs are generated randomly by refer-

ring to the RNA sequences. Particularly for circRNAs,

junction reads are generated simultaneously with reads

of other regions by referring to the sequence in the cir-

cle. Notably, parameters such as read length, coverage

(for both circRNAs and linear RNAs), sequencing error

rate, and insert size, can be customized by users. A list

of simulated circRNAs will be generated as a FASTQ

formatted file to facilitate performance evaluation.

Simulated data

We used CIRI-simulator to generate different sequen-

cing data. In detail, human chromosome 1 (hg19) and its

GTF annotation file (Gencode version 18, downloaded

from [30]) were used as reference and annotation, re-

spectively. We selected read lengths of 40 bp, 60 bp, 80

bp and 100 bp, depth of coverage of 3-, 5-, 10-, 20- and

50-fold, and insert lengths of 200 bp and 350 bp to

simulate sequencing reads. Read amounts are deter-

mined by sequencing coverage and read length in each

data set. For example, about 8 million and 6.5 million

reads were generated in simulation data sets with the

same coverage settings of circRNAs (10-fold) and linear

transcripts (randomly ranging from 1- to 100-fold) for

read lengths of 80 bp and 100 bp, respectively. When

processing the simulated reads, parameters such as

BWA-MEM alignment score minimum of 10, 13, 16, 20,

23, 26 and 30, and max spanning distance of 100 kb, 300

kb, 500 kb, 1 Mb and 2 Mb were also used to estimate

the performance of CIRI. Considering alignment errors

may occur during BWA alignment for multiple chromo-

somes, we applied the hg19 whole genome as reference

of alignment though only using chromosome 1 as the

reference to generate simulated sequencing data. Out-

puts from CIRI were compared with the lists generated

by CIRI-simulator to obtain sensitivity and false positive

rate (FDR) using custom scripts.

In the following simulation tests, three poly-A selected

sequencing data sets (SRR307005, SRR307006, SRR307007

and SRR307008, 54 bp; SRR317064 and SRR317065, 76

bp; SRR836183, 101 bp) were chosen as blank background.

CIRI-simulator was used to generate reads of circular

RNAs with corresponding read length at a coverage of 10-

fold, using all 24 chromosomes of hg19 and Gencode ver-

sion 18 GTF annotation file as references and annotation,

respectively. Read mapping was performed using BWA-

MEM with default parameters except '-T 19', which filters

out alignments with score <19 from the output. Parame-

ters of CIRI were as follows: no annotation file provided,

using PE mode/SE mode (-p/-s) and default. The mapping

quality controller was set to be -u 3 -b 13 only for one test.

The parameters of segemehl were as follows: split read

mapping (-S), which is necessary for circRNA read map-

ping and default. Outputs from CIRI and segemehl were

compared with the lists generated by CIRI-simulator to

obtain sensitivity and false positive rate (FDR) using the

same custom scripts mentioned above except for necessary

modifications for segemehl in corresponding tests to filter

out candidates with a letter 'F', which was described as

'could be wrong' in the segemehl manual, or only keep

candidates with supporting counts ≥2 or 3, the former of

which was recommended in the additional file of their re-

port [18].

Real data

Ribominus RNA-seq data for four cell types (SRP009373,

CD19+, CD34+, neutrophils; SRR650317, HEK293) gener-

ated in two circRNA-related studies [11,13] were down-

loaded from the NCBI SRA database. Data sets from both

studies comprise paired-end sequencing data, though read

lengths are different. Read mapping was performed using

BWA-MEM with default parameters except '-T 19'. The

SAM alignment records for the two data sets were subse-

quently analyzed by CIRI separately using PE mode (-p),

low stringency (-low), max spanning distance 500 kb (-m
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500,000) and Gencode version 18 GTF annotation (-a). We

incorporated the outputs to compare them with the predic-

tion results of Memczak et al. [11] using a custom script.

We also applied CIRI to 15 RNA-seq data sets generated

by the ENCODE project and used for circRNA analysis in a

more recent report [7]. BWA-MEM and CIRI parameters

were the same as described above except for mapping qual-

ity thresholds for each segment (-u 3) and total of segments

(-b 13) of a candidate junction read. Eleven (SRR060824,

SRR192530, SRR192531, SRR765631-SRR765637 and ch12:

B-cell lymphoma) out of 18 data sets in the study of Guo

et al. [16] were used for identification of mouse circRNAs.

CIRI parameters were default settings except for SE mode

for single-end data. GTF annotation and genome sequences

were downloaded from [31] using the latest versions. We

incorporated the outputs to compare them with the pre-

diction results of Guo et al. [16] using a custom script.

Mapping details of candidate circRNAs predicted by the

above algorithms were checked using the visual mapping

tools inGAP and inGAP-sv [32,33].

Direct comparison of CIRI, find_circ and segemehl

We applied CIRI, find_circ and segemehl on our HeLa cell

RNA-seq data set without RNase R treatment. Similar par-

ameter adjustments were implemented to rule out effects

of different default settings in the three tools. For example,

maximum spanning distance was set to 100 kb. Parame-

ters for find_circ were default. For CIRI they were -E, -u

3, -b 13, no annotation provided. For segemehl they were

-S, read count ≥2. The putative circRNAs identified by the

three tools were further validated by using the mapping

depth of corresponding RNase R-treated transcriptomic

data. Mapping depth of RNase R+ data was calculated for

50 bp upstream to 50 bp downstream of all predicted

junctions from the SAM alignment using a custom script

independent of the three algorithms. The read depths

were then normalized by average read depth inside a

junction.

Experimental validation

RNA isolation, ribosomal RNA depletion, RNase R treatment

and DNA isolation

Total RNA was isolated using TRIZOL for HeLa cells

grown in standard media and conditions. RNA concentra-

tion and quality were determined by NanoDrop, Qubit

and Agilent 2100. Total RNA was then divided into six

replicates and three replicates were depleted of ribosomal

RNA using a Ribominus kit (Invitrogen, Carlsbad, CA)

according to the manufacturer's instructions. rRNA-

depleted RNA from two replicates was incubated at 37°C

for 1 hour in 16 μl reaction with 10U/μg RNase R

(Epicentre, Madison, WI). Total DNA was isolated from

HeLa cells using a DNeasy Blood and Tissue kit (Qiagen,

Hilden, Germany).

Library preparation and sequencing

Ribosomal RNA and ribosomal RNA-/RNase R-treated

samples were used as templates for cDNA libraries. Both

libraries were prepared per TruSeq protocol (Illumina, San

Diego, CA) and then sequenced on the Illumina HiSeq

2000 platform of the Research Facility Center at Beijing

Institutes of Life Science, CAS, with 2 × 101 bp paired

reads. The sequencing data were submitted to NCBI SRA

with accession numbers SRR1636985 and SRR1636986,

and SRR1637089 and SRR1637090 for the two treatments.

Another total RNA sample was used for poly-A selected li-

brary preparation according to the TruSeq v2 guide.

RT-PCR

Poly-A selected, ribosomal RNA- and ribosomal RNA-/

RNase R-treated samples mentioned above were used as

templates of RT-PCR. cDNA was synthesized using a

SuperScript III first-strand kit (Invitrogen) with random

hexamers as primers for all three samples. Outward-

facing primer sets (Table S4 in Additional file 1) were

designed for circular RNA candidates identified by CIRI

and PCR reactions were performed for the three cDNA

samples and genomic DNA using 35 cycles. PCR prod-

ucts were directly sequenced or sequenced after cloning

(for products with insufficient concentration for direct

sequencing) to validate circularity.

Implementation

CIRI is implemented in Perl and has been extensively

tested on Linux and Mac OS X. No other tool is required

for using CIRI. CIRI is packaged with CIRI-simulator and

is available at [34].

Additional file

Additional file 1: Table S1. Candidate circRNAs for experimental
validation. Table S2. Direct comparison of three algorithms. Table S3.
Top 10 KEGG enrichment analysis for 966 gene IDs of exonic circRNAs
expressed in more than 10 cell types. Table S4. Outward-facing primers
of all validated circRNAs. Table S5. Identified circRNAs in ENCODE data
sets. Figure S1. Performance of CIRI on simulated data sets. Figure S2.
Performance of CIRI and segemehl on data sets with different read
lengths and sequencing coverages simulated by CIRI-simulator.
Figure S3. Performance of CIRI and segemehl on simulated data sets
with real poly-A+ data sets as blank background. Figure S4. Experimental
validation of exonic circRNAs. Figure S5. Experimental validation of
intronic and intergenic circRNAs. Figure S6. PCR validation of one exonic
circRNA (chr2:58,311,224|58,316,858, A) and one intronic circRNA (chr10:
60,347,975|60,380,661, B) using one pair of outward primers and two pairs
of inward primers (within the circle and out of the circle as control) for
each of them in RNase-/+, genomic DNA and poly-A samples. Figure S7.
Reads mapped to the junction of intronic circRNA (chr10: 60,347,975|
60,380,661). Figure S8. CIRI can distinguish intronic circRNAs from
intronic lariats. Figure S9. Top five most abundant circRNA candidates
solely identified by CIRI or find_circ. Figure S10. Comparison of circRNA
identification from four cell types between CIRI and the algorithm used
in Memczak et al. Figure S11. Comparison of circRNA identification from
human and mouse between CIRI and the algorithm used in Guo et al.
Figure S12. Expression levels of top 50 abundant circRNAs identified by
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CIRI in 15 cell types. Figure S13. Running time of CIRI on different data
sets. Figure S14. Performance evaluation of CIRI’s filters on both circRNAs
and chimeric RNAs.
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