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Abstract: Large datasets catalyze the rapid expansion of deep learning and computer vision. At the
same time, in many domains, there is a lack of training data, which may become an obstacle for the
practical application of deep computer vision models. To overcome this problem, it is popular to apply
image augmentation. When a dataset contains instance segmentation masks, it is possible to apply
instance-level augmentation. It operates by cutting an instance from the original image and pasting to
new backgrounds. This article challenges a dataset with the same objects present in various domains.
We introduce the Context Substitution for Image Semantics Augmentation framework (CISA), which
is focused on choosing good background images. We compare several ways to find backgrounds
that match the context of the test set, including Contrastive Language–Image Pre-Training (CLIP)
image retrieval and diffusion image generation. We prove that our augmentation method is effective
for classification, segmentation, and object detection with different dataset complexity and different
model types. The average percentage increase in accuracy across all the tasks on a fruits and
vegetables recognition dataset is 4.95%. Moreover, we show that the Fréchet Inception Distance (FID)
metrics has a strong correlation with model accuracy, and it can help to choose better backgrounds
without model training. The average negative correlation between model accuracy and the FID
between the augmented and test datasets is 0.55 in our experiments.

Keywords: image augmentation; computer vision; data collection; image retrieval; image generation;
few-shot learning

MSC: 65D19; 51N05; 68U05

1. Introduction

Deep learning and computer vision (CV) algorithms have recently shown their capa-
bilities in addressing various challenging industrial and scientific problems [1]. Successful
application of machine learning and computer vision algorithms for solving complex tasks
is impossible without relying on comprehensive and high-quality training and testing
data [2,3]. CV algorithms for solving classification, object detection, and semantic and
instance segmentation require a huge variety of input data to ensure robust work of the
trained models [4–6]. There are two major ways to enlarge a training dataset. The first one
is obvious and implies physical collection of the dataset samples in various conditions to
ensure high diversity of the training data. There is a set of huge datasets that have been
collected for solving computer vision problems. These datasets are commonly used as the
benchmark [7–10]. One of the specifics of these datasets is that they are general-domain
sets. Unfortunately, general-domain-labeled data can be almost useless for solving specific
industrial problems. One of the feasible applications of such well-known datasets is that
they can serve as a good basis for pre-training of neural networks (transfer learning) [11,12].
Using these pre-trained neural networks, it is possible to fine-tune them and adapt them to
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address specific problems. However, in some cases, even for fine-tuning, a comprehensive
dataset is in high demand. Some events are rare, and it is possible to collect only a few data
samples [13–15]. Thus, a second approach for enhancing the characteristics of the dataset
can help. This approach is based on artificial manipulations with the initial dataset [16,17].
One of the well-developed techniques is data augmentation, where original images are
transformed according to special rules [18]. Usually, the goal of image augmentation is to
make the training dataset more diverse. However, augmentation can be used to deliberately
shift the data distribution. If the distribution of the original training dataset differs from
the distribution of the test set, it is important to equalize them as much as possible.

The agricultural domain is part of the industrial and research areas for which the develop-
ment of artificial methods for improvement of training datasets is vital [19–21]. This demand
appears due to the high complexity and variability of the investigated system (plant) that
has to be characterized by computer vision algorithms [22]. The difficulty of the agricultural
domain makes it a good candidate for testing augmentation algorithms.

There are many different plant species, and plants grow slowly. Thus, collecting and
labeling huge datasets for each specific plant growing in each specific stage is a complex
task [23]. Overall, it is difficult to collect datasets [24], especially for plants, and it is
expensive to annotate them [25]. Therefore, we propose a method to multiply the number
of training samples. It does not require many computational resources, and it can be
performed on the fly. The idea behind the algorithm is to cut instances from the original
images and add them onto the new backgrounds (Figure 1).

Figure 1. Context substitution showcase.

The contribution of this study is the following:

• we describe an efficient algorithm for instance-level image augmentation and measure
its performance;

• we prove that the context is vital for instance-level augmentation;
• we propose several efficient ways to find representative background images if the test

environment context is known;
• we show that it is possible to estimate which dataset variant will provide better

accuracy before model training, calculating the FID between the test dataset and the
training dataset variants;

• we share the dataset and generate background images and source code for augmentation.

The novelty of this study is as follows:

• extensive experiments with instance-level augmentation for different computer vi-
sion tasks;

• experiments with different model types;
• application of FID to choose the augmentation approach.
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1.1. Image Augmentation

Computer vision models require many training data. Therefore, it becomes challenging
to obtain a good model with limited datasets. Namely, a small-capacity model might not
capture complex patterns, while a big capacity model tends to overfit if small datasets
are used [26]. Slight changes in test data connected with surrounding and environmental
conditions might also lead to a decrease in model performance [27].

To overcome this issue, we use various image augmentation techniques. Data augmen-
tation aims to add diversity to the training set and to complicate the task for a model [28].
Among these plant image augmentation approaches, we can distinguish: basic computer
vision augmentations, learned augmentation, graphical modeling, augmentation policy
learning, collaging, and compositions of the ones above.

Basic computer vision augmentations are the default methods preventing overfitting
in most computer vision tasks. They include image cropping, scaling, flipping, rotating,
and adding noise [29]. There are also advanced augmentation methods, connected with
distortion techniques and coordinate system changes [30]. Since these operations are quite
generic, most popular ML frameworks support them. However, although helpful, these
methods demonstrate limited use, as they bring insufficient diversity to the training data
for few-shot learning cases.

Learned augmentation stands for generating training samples with an ML model.
For this purpose, conditional generative adversarial networks (cGANs) and variational
autoencoders (VAEs) are frequently used. In the agricultural domain, there are examples
of applying GANs to Arabidopsis plant images for the leaf counting task [31,32]. The main
drawback of this approach is that generating an image with a neural network is quite
resource-intensive. Another disadvantage is the overall pipeline complexity: the errors of
a model that generates training samples are accumulated with the errors of a model that
solves the target task.

Learned augmentation policy is a series of techniques used to find combinations of
basic augmentations that maximize model generalization. This implies hard binding of the
learned policy to the ML model, the dataset, and the task. Although it is shown to provide
systematic generalization improvement on object detection [33] and classification [34], its
universal character as well as the ability to be performed along with multi-task learning
are not supported with solid evidence.

Collaging presupposes cropping an object from an input image with the help of a
manually annotated mask and pasting it to a new background with basic augmentations of
each object [19]. In [35], a scene generation technique using object mask was successfully
implemented for an instance detection task. It boosted model performance significantly
compared with the use of only original images. The study on image augmentation for
instance segmentation using a copy–paste technique with object mask was extended in [36].
The importance of scene context for image augmentation is explored in [37,38].

1.2. Image Synthesis

Graphical modeling is another popular method in plant phenomics. It involves
creating a 3D model of the object of interest and rendering it. The advantage of this
process is that it permits the generation of large datasets [39] with precise annotations, as
the labels of each pixel are known. However, this technique is highly resource-intensive;
moreover, the results obtained using the existing solutions [40,41] seem artificial. More
realistic synthesis is very time-consuming. This approach is suitable when there are not
many variations of the modeled object. If there are many different object types, it can be
easier to collect and annotate new images.

1.3. Neural Image Generation and Image Retrieval

To gain new training images for CV tasks, one can implement GAN-based or diffusion-
based models. Currently, they allow for the creation of rather realistic images and meet
the demands of different domains, such as agricultural [42], manufacturing processes [43],



Mathematics 2023, 11, 1818 4 of 24

remote sensing [44], or medical [45]. Such models can be considered as a part of an image
recognition pipeline. Moreover, recent results in Natural Language Processing (NLP) offer
opportunities to extend image generation applications via textual description. For instance,
an image can be generated based on a proposed prompt, namely, a phrase or a word. Such
synthetic images help to extend the initial dataset. The same target image can be described
by a broad variety of words and phrases that lead to diverse visual results. Another way
to obtain additional training images is a data retrieval approach. It supposes to search
for existing images from the Internet or some database according to a user’s prompt. For
instance, the CLIP model can be used to compute embedding of a text and to find images
that match it better based on distance in a special embedding space [46].

2. Materials and Methods

The notation that we use in this section for describing the augmentation framework
parameters is listed in Table 1.

Table 1. CISA framework internal notations.

Notation Description

n The number of objects per scene
m The number of output masks
p Average packaging overhead per input object
o Average overhead for auxiliary data storage per object
ò Constant system overhead
s Objects’ shrinkage ratio
θ Orientation coefficient (width-to-height ratio)
H The set of objects heights
H̃ The set of shrinked object heights
W The set of object heights
W̃ The set of shrinked object widths
h Average over all input object heights
w Average over all input object widths
ĥ Hard height restriction
M Average RAM (random access memory) usage

2.1. Method Development and Description

In this paper, we introduce a method of image augmentation for a semantic segmenta-
tion task. When instance-level annotation areas are available, one can apply our method for
other tasks such as classification, object detection, object counting, and semantic segmenta-
tion. Our method takes image–mask pairs and transforms them to obtain various scenes.
Having a set of image–mask pairs, we can place many of them on a new background.
Transformation of input data and background, accompanied by adding noise, gives the
possibility for us to synthesize an infinite number of compound scenes.

This section first describes the overall augmentation pipeline and then describes the
tested approaches for background image generation.

We distinguish between several types of image masks:

• Single (S)—single-channel mask that shows the object presence.
• Multi-object (MO)—multi-channel mask with a special color for each object (for

each plant).
• Multi-part (MP)—multi-channel mask with a special color for each object part (for

each plant leaf).
• Semantic (Sema)—multi-channel mask with a special color for each type of object

(leaf, root, flower).
• Class (C)—multi-channel mask with a special color for each class (plant variety).
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A single-input mask type allows us to produce more than one output mask type.
Hence, multiple tasks can be solved using any dataset, even the one that was not originally
designed for these tasks (see Table 2 for the possible mask transitions).

For example, an image with a multipart mask as input enables us to produce: the S
mask, which is a Boolean representation of any other mask, the MO mask with unique
colors for every object, the MP mask with a unique color for each part across all the present
objects, and the C mask that distinguishes the classes (Figure 2). Additionally, for every
generated sample, we provide bounding boxes for all objects and the number of objects of
each class.

Note that we assume that each input image–mask pair includes a single object. There-
fore, we can produce the MO mask based on any other mask. To create the C mask,
information about input objects must be provided.

Table 2. Possible mask transitions.

Input Mask Type S MO MP Sema C

S + + - - +
MP + + + - +

Sema + + - + +

Figure 2. A MultiPartAugmentor-generated scene. (a) Without noise. (b) With added noise, blurring,
and bounding boxes. (c) With added noise, blurring, bounding boxes, and s = 0.1.

2.2. System Architecture

The library with the code will be shared as an open source code with the community. The
core of the presented system is the Augmentor. This class implements all the image and
mask transformations. Such transformations as flipping or rotating are mutual for both the
image and the mask. We add noise for images only.

From the main Augmentor class, we inherit SingleAugmentor, MultiPartAugmentor
and SemanticAugmentor classes, helping to apply different input mask types and to treat
them separately. To be more precise, SingleAugmentor is exploited for S input mask type,
MultiPartAugmentor is for MP mask type, and SemanticAugmentor is for Sema mask type.

The described above classes are used in the DataGen class, which chooses images for
each scene and balances classes if needed. Two principal ways of new scene generation are
offline and online. We implement them in SavingDataGen and StreamingDataGen accordingly.
Both of the classes take the path to images with corresponding masks as input. The offline
data generator produces a new folder with created scenes while the online generator can
be used to load data directly to a neural network.
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Offline generation is more time-consuming because of additional disk access opera-
tions; at the same time, it is performed in advance and thus does not affect model training
time. It also makes it easier to manually look through the obtained samples to tune the
transformation parameters.

Meanwhile, the online data generator streams its results immediately to the model
without saving images on the disk. Furthermore, this type of generator allows us to change
parameters on the fly: for instance, the model is trained on easy samples, and then, the
complexity may be manipulated based on the loss function.

2.3. Implementation Details

The present section discusses the main transformation pipeline (Figure 3).

Figure 3. Transformation pipeline activity diagram.

The first step is to select the required number of image–mask pairs from a dataset.
By default, we pick objects with repetitions that enable us to create scenes with a larger
number of objects than present in the input data.

After that, we prepare images and masks before combining them into a single scene.
The procedure is as follows:

• adjust the masks to exclude large margins;
• perform the same random transformations to both the image and mask;
• obtain all required mask types and auxiliary data.

Once all the transformations are performed and we know the sizes of all objects, the
size of the output scene is calculated. Note that input objects can have different sizes
and orientations; therefore, we cannot simply place objects by grid because it will lead to
inefficient space usage. It is also not a good idea to place objects randomly in most cases
because it will lead to uncontrollable overlapping of objects.

Within the framework of our approach, the objects are packed using the Maximal
Rectangles Best Long Side Fit (MAXRECTS-BLSF) algorithm. It is a greedy algorithm that
is aimed at packing rectangles of different sizes into a bin using the smallest possible area.
The maximum theoretical packaging space overhead of the MAXRECTS-BLSF algorithm is
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0.087. The BLSF modification of the algorithm tries to avoid a significant difference between
side lengths. However, similar ot other rectangular packing algorithms, this one also tends
to abuse the height dimension of the output scene, yielding a column-oriented result.

In order to control both overlapping of the objects and the orientation of output scenes,
we introduce two modifications to the MAXRECTS-BLSF algorithm.

Control of the overlapping is achieved via substituting the objects’ real sizes with the
shrinked ones when passing them through the packing algorithm. The height and width
are modified according to Equation (1):

H̃ = (1− s)H; W̃ = (1− s)W, (1)

where s ranges from 0 to 1 inclusively.
The bigger the shrinkage ratio, the smaller the substituted images. It is applied to both

height and width and to all of the input objects. The real overlapping area in practice will
vary depending on each objects’ shape and position. To perceive the overlap percentage, see
Figure 4. Here, we consider the case where all input objects are squares without any holes.
In other words, it is the maximum possible overlap percentage for the defined shrinkage
ratio. We show this value for an object in the corner of a scene, an object on the side, and an
object in the middle, separately.

We recommend choosing s between 0 and 0.3; however, taking into consideration
sparse input masks, it can be slightly higher.

To control the orientation of the output scene, we set a hard limit of the scene height
for the packing algorithm. Assuming that input objects will have different sizes in practice,
we cannot obtain optimal packing with the fixed output image size or width-to-height ratio.
To calculate the hard height limit, we use Equation (2).

ĥ = max

(
maxH, θ

∑n
i=1 H̃i⌈√

n
⌉ ) (2)

The fraction in Equation (2) estimates the required value of height to make a square
scene. We choose a maximum between it and the biggest objects’ height to ensure that it is
enough space for any input object. The orientation coefficient θ can be treated as the target
width-to-height ratio. It will not produce the scenes with the fixed ratio, but with many
samples, the average value will approach the target one. θ = 1 will try to obtain square
scenes. θ > 1 will generate landscape scenes. In our experiments, we set θ to 1.2 to obtain
close to square images with landscape preference. The average resulting width-to-height
ratio over ten thousand samples was 1.1955.

To adjust the background image size to the obtained scene size, we resize the back-
ground if it is smaller than the scene or randomly crop it if it is bigger.

We generate the required number of colors, excluding black and white, and find their
Cartesian product according to Algorithm 1 for coloring the MO and MP masks.

Algorithm 1: Color generation.
Input: Number of objects n;
Output : The set of colors C;
L = d 3

√
n + 2e

s = 1
L

for l = 0, ..., L− 1 do
T ← 1− (s ∗ l)

end
return C = {(c1, c2, c3)|c1, c2, c3 ∈ T}

To preserve the correspondence between the input objects and their representation on
the final scene, we color the objects in order of their occurrence.
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(a)

(b)

Figure 4. Shrinkage ratio effect illustration. (a) The dependency of maximum object overlap on
shrinkage ratio. (b) Simplified scene generation example.

2.4. Time Performance

In this section, we measure the average time that is required to generate scenes
of various complexity. For this experiment, we use Intel(R) Core(TM) i7-7700HQ CPU
2.80 GHz without multiprocessing. The average height of objects in the dataset is 385 pixels;
the average width is 390 pixels. The results are averaged on a thousand scenes for each
parameter combination and are reflected in Figure 5a for MultiPartAugmentor and Figure 5b
for SemanticAugmentor.

SA (the red bar on the left) stands for Simple Augmentor with one type of output
mask; NA (the blue bar in center) means adding noise and smoothing to scenes; NMA (the
green bar on the right) means adding noise, smoothing, calculating bounding boxes, and
generating all possible types of output masks. To recall possible mask types for each
augmentor, refer to Table 2. The filled area in the bottom shows the time for loading input
images and masks from disks. The shaded area in the middle shows the time for actual
transformation. The empty area in the top shows the time for saving all the results to the
disk. If every bar is accumulated with all the bars below it, the top of the shaded bar will
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show the time for StreamingDataGen, and the top of the empty area will show the time for
SavingDataGen.

(a)

(b)

Figure 5. Average scene-generating time with (a) MultiPartAugmentor and (b) SemanticAugmentor.

From the bar plots, you can see linear dependence between the number of input objects
and the time for generating a scene.

2.5. System Parameters

Two main classes of the system where we can choose parameters are Augmentor and
DataGen, or classes inherited.

The Augmentor parameters that define the transformations are shown in Table 3.

Table 3. Augmentor transformation parameters.

Operation Description Range Default Value

Shrinkage ratio See Figure 4 for details [0...1) 0
Rotation The maximum angle of image and mask rotation [0...180] 180
Flip probability The probability to flip the image and mask horizontally [0...1] 0.5
Smooth The size of the Gauss kernel applied for image smoothing 1, 3, ... 1
Perspective transform The share of added width before perspective transform [0...3] 0
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The rest of the Augmentor parameters define output mask types, bounding box pres-
ence, and mask preprocessing steps.

The data generator parameters define the rules to pick samples for scenes: the number
of samples per scene, picking samples for a single scene from the same class or randomly,
class balancing rule, the input file structure, the output file structure.

2.6. Background Image Choosing

Making many augmented copies of objects is a very powerful tool used to increase
dataset variability. However, many previous works underestimate the role of image context.
The role of the context in an image plays a role in its background. In this paper, we show
that the proper choice of a background is vital. For this, we experiment with methods that
produce images that are similar to the test set backgrounds.

In the test set, we have five types of background. It includes: grass, floor tiles, wooden
table, color blanket, and shop shelves. Therefore, we want to obtain suitable images that
represent every surrounding type. The corresponding text prompts are:

• grass: grass, green grass, grass on the Earth, photo of grass, grass grown on the Earth;
• floor tiles: tile, ceramic tile, beige tile, grey tile, metal, photo of metal sheet, metal

sheet, tile on the floor, close photo of tile, close photo of grey tile;
• wooden table: wood, wooden, wooden table, dark wooden table, light wooden table,

close photo of wooden table, close photo of table in the room;
• color blanket: veil, cover, blanket, color blanket, dark blanket, blanket spread, bed

linen, close photo of veil (cover, blanket), blanket on the bed, towel, green towel, close
photo of towel on the table;

• shop shelves: shelves, shop shelves, close photo of shop shelves, white shop shelves,
shop shelves close, table in shop, empty shelves in the shop, table with scales in front
of shop shelves, scales in the shop.

We also split backgrounds into easy: wooden table, floor tiles; and complex: grass,
color blanket, shop shelves. This split is manual and serves to demonstrate the difference in
performance between more and less realistic images. More precisely, complex backgrounds
are ones where visual augmentation looks unrealistic. Various background properties
are significant not only in the agriculture domain, they represent different environmental
conditions in the remote sensing domain and can be considered to boost model performance
through geographical regions [47]. Background complexity in CV tasks for self-driving
cars depends on urban area complexity and lighting conditions and has to be taken into
account to develop robust algorithms [48]. To capture observed scenes for aerial vehicle
navigation, surrounding properties are also crucial [49].

We use the described above text prompts with ruDALL-E [50] and stable diffusion [51]
models to generate similar images, and with the CLIP [52] model to retrieve similar images
from the LAION-400M [53] dataset. There are 100 collected backgrounds for each prompt.

For the comparison, we also add the worst-case and the best-case backgrounds. As the
worst case, we propose to use random pattern images. The best case is to have real images
from the same place, where a CV model will be inferenced.

Dataset

To verify the proposed approach, we conduct experiments using a set of images of var-
ious fruits and vegetables. We collect a unique dataset that comprises the following species:
apple, cabbage, grape, tomato, pepper sweet, and onion. The dataset has hierarchical
structure where each species includes three varieties, as is depicted in Figure 6. All species
and varieties are presented in Table 4. Overall, each individual fruit or vegetable variety
is represented by 150 images gained in different environmental and lighting conditions.
We create a manual instance segmentation annotation for the images. Each image contains
several fruits or vegetables of a single variety. Therefore, instance segmentation markup
can be easily automatically converted into image classification labels. We can also obtain
bounding boxes for object detection based on instance segmentation masks. Hence, we
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create annotations for three CV tasks, namely, semantic segmentation, image classification,
and object detection. For each task, the dataset is split into training and testing in an
80/20 ratio.

7

Figure 6. The hierarchical structure of the collected dataset.

Table 4. Species and varieties presented in the dataset.

Species Varieties

Apple Granny, Red delicious, Golden
Cabbage Cauliflower, Peking, White

Grape Black, Green, Pink
Tomato Bull heart, Pink, Slivka

Pepper sweet Green, Red, Yellow
Onion Yellow, White, Purple

Figure 7 depicts generated images using the original dataset with instance segmenta-
tion masks.

Figure 7. Example of generated images using CISA instance-level augmentation.
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2.7. Experiments

The experiment setup is as follows. We have to test the stability of our approach under
various conditions. For this, we experiment with three CV tasks:

• image classification;
• semantic segmentation;
• object detection.

For each task, we compare:

• easy 6-species setup;
• complex 18-varieties setup.

For the classification task, we also compare different type of models:

• convolutional model (ResNet50 [54]);
• transformer model (SWIN [55]).

As well as models with different capacities:

• medium (ResNet50);
• small (MobileNetv3 [56]).

We set the following hyperparameters: For the ResNet50 training, we choose: a
learning rate of 10−3 , cross-entropy loss function, SGD optimizer, exponential learning
rate decay with gamma set to 0.95, and weight decay 2× 10−3.

For the MobileNetv3 training, we choose: a learning rate of 10−2, cross-entropy loss
function, SGD optimizer, exponential learning rate decay with gamma set to 0.95, and
weight decay 3× 10−4.

For the SWIN training, we choose: a learning rate of 5× 10−4, cross-entropy loss
function, Adam optimizer, cosine annealing learning rate decay, and weight decay 10−5.

For the UNET++ training, we choose: a learning rate of 3× 10−5, binary cross-entropy
with logits loss function, Adam optimizer, cosine annealing learning rate decay, and weight
decay 10−5. Images were resized to 512 × 512 px.

For YOLOv8 training, we choose: a learning rate of 10−3, SGD optimizer, exponential
learning rate decay with gamma set to 0.95, and weight decay 5× 10−4. Images were
resized to 640 × 640 px.

We explicitly compare convolutional [57] and transformer [58] models. These are
the two most popular types of computer vision models today. They differ in receptive
field. Convolutions operate locally (Equation (3)), while transformers look at the greater
scale (Equation (4)). The success of augmentation with one model type does not guarantee
success with another.

O[x, y] = (I ∗ K)(i, j) = ∑
j=1

∑
i=1

I[x− i, y− j]K[i, j], (3)

where O is the resulting feature map; K is a kernel.

A(Q, K, V) = so f tmax(
QKT
√

dk
)V, (4)

where Q, K and V are weight matrices; d is the dimensionality of an attention head.
In each experiment, we measure the model performance using five-fold cross-validation.

We use early stopping to terminate model training; therefore, the number of training epochs
for different models varies. Classification models are pre-trained on the ImageNet dataset.
Segmentation and detection models are pre-trained on the COCO dataset.

We compare several ways to find backgrounds that match the context of the test set, includ-
ing Contrastive Language–Image Pre-Training (CLIP) [52] image retrieval, VQGAN (ruDALL-
E [50]) image generation, and diffusion (Stable Diffusion [51]) image generation.

In each experiment excluding the baseline, we first pre-train a model on the CISA-
augmented dataset and then fine-tune the original dataset.
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2.8. Evaluation Metrics

To determine the suitability of the training dataset prior to the training procedure,
we propose to use the Fréchet Inception Distance (FID) metrics [59]. It is a commonly
used choice to evaluate the performance of GAN models. FID measures distance between
the distribution of generated images and the original natural samples. However, in our
case, the idea behind FID computation is to determine the similarity and feasibility of the
generated training samples and test data. A low FID value depicts the better case when we
manage to obtain an artificially realistic dataset close to the original test dataset distribution.
To compute FID, we use Equation (5).

FID = ||µr − µg||2 + Tr(∑
r
+∑

g
−2
√
(∑

r
∑
g
)), (5)

where r and g indexes denote real and generated datasets, correspondingly; µ is the mean of
the Inceptionv3 model [60] features of a dataset; ∑dataset is the variance matrix of a dataset;
Tr is the trace operator.

For assessing classification results, we use accuracy, because the dataset is balanced.
To evaluate semantic segmentation, we calculate pixel-wise intersection over union (IoU,

Equation (6)).

IoU =
TP

TP + FP + FN
, (6)

where TP is the number of true positive samples; FP is the number of false positive samples;
FN is the number of false negative samples.

To evaluate object detection results, we calculate mAP@0.5 (Equation (7)). It means
that for the prediction, we use the threshold IoU = 0.5.

mAP@0.5 =
1

#classes ∑
c∈classes

TP(c)
TP(c) + FP(c)

, (7)

To measure the statistical significance of our results, we calculate the Spearman rank-
order correlation coefficient (Equation (8)). We choose Spearman’s over Pearson’s correla-
tion because the relation between the FID and accuracy is monotonous but non-linear.

ρ = 1−
6 ∑ d2

i
n(n2 − 1)

, (8)

where ρ is the Spearman’s correlation coefficient; di is the distance between two ranks of
each observation; n is the number of observations.

3. Results

The results of the experiments are shown in Tables 5–14.
In Table 5, one can find the results of the classification of six species with the ResNet50

model. CISA with stable diffusion backgrounds shows a 2.3% relative percentage change
compared with the baseline.

In Table 6, one can find the results of the classification of 18 varieties with the ResNet50
model. CISA with stable diffusion backgrounds shows a 14.2% relative percentage change
compared with the baseline.

In Table 7, one can find the results of the classification of six species with the Mo-
bileNetv3 model. CISA with stable diffusion backgrounds show a 1.2% relative percentage
change compared with the baseline.



Mathematics 2023, 11, 1818 14 of 24

Table 5. Classification results for ResNet50 model on test images for six species.

Source of Augmentation
Background Prompts Pre-Training Accuracy ↑ Fine-Tuned Accuracy ↑ FID ↓

Baseline — — 95.2 ± 0.7 —

Patterns — 93.5 ± 1.2 94.7 ± 0.8 12.93

easy 95 ± 0.9 97 ± 0.6 10.76
CLIP complex 95 ± 1 96.6 ± 0.7 10.92

all 95 ± 1 96.7 ± 0.7 9.6

ruDALL-E all 94 ± 0.9 95.5 ± 0.8 11.1

easy 95 ± 0.9 97.4 ± 0.5 9.43
Stable Diffusion complex 94.9 ± 1 97.1 ± 0.6 9.81

all 95 ± 1 97.3 ± 0.6 8.7

easy 95.8 ± 0.7 98 ± 0.4 7.15
Natural backgrounds complex 95.1 ± 0.8 97.8 ± 0.4 7.9

all 95.3 ± 0.8 98 ± 0.4 6.14

The bold value depicts the best model, excluding models that are trained with natural backgrounds.

Table 6. Classification results for ResNet50 model on test images for 18 varieties.

Source of Augmentation
Background Prompts Pre-Training Accuracy ↑ Fine-Tuned Accuracy ↑ FID ↓

Baseline — — 50 ± 2.3 —

Patterns — 48 ± 2.5 54.9 ± 2.3 12.93

easy 49.5 ± 3 56.4 ± 2.2 10.76
CLIP complex 49 ± 2.7 56.1 ± 2.3 10.92

all 49.3 ± 2.9 56.3 ± 2.1 9.6

ruDALL-E all 49 ± 3 56 ± 2.4 11.1

easy 50.5 ± 2.8 57.1 ± 1.9 9.43
Stable Diffusion complex 50 ± 3.1 56.9 ± 2 9.81

all 50.2 ± 2.9 57.1 ± 1.8 8.7

easy 50.8 ± 2.2 57.4 ± 1.7 7.15
Natural backgrounds complex 49.6 ± 3 56.8 ± 1.9 7.9

all 50.1 ± 2.4 57.2 ± 1.8 6.14

Table 7. Classification results for MobileNetv3 model on test images for six species.

Source of Augmentation
Background Prompts Pre-Training Accuracy ↑ Fine-Tuned Accuracy ↑ FID ↓

Baseline — — 90 ± 1.3 —

Patterns — 88 ± 2.2 89.9 ± 1.1 12.93

easy 90 ± 1.7 90.9 ± 1.1 10.76
CLIP complex 89.1 ± 1.9 90.7 ± 1.2 10.92

all 89.7 ± 1.9 90.9 ± 1 9.6

ruDALL-E all 89 ± 2 90.8 ± 1.2 11.1

easy 90 ± 1.5 91.1 ± 1 9.43
Stable Diffusion complex 89.4 ± 1.8 90.9 ± 0.9 9.81

all 89.8 ± 1.6 91 ± 0.9 8.7

easy 90 ± 1.6 91.3 ± 0.9 7.15
Natural backgrounds complex 88.9 ± 2 90.8 ± 1 7.9

all 89.8 ± 1.4 91.2 ± 1 6.14

In Table 8, one can find the results of the classification of 18 varieties with the Mo-
bileNetv3 model. CISA with stable diffusion backgrounds show a 6.6% relative percentage
change compared with the baseline.
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Table 8. Classification results for MobileNetv3 model on test images for 18 varieties.

Source of Augmentation
Background Prompts Pre-Training Accuracy ↑ Fine-Tuned Accuracy ↑ FID ↓

Baseline — — 38 ± 3.1 —

Patterns — 36.5 ± 2.8 39.5 ± 2.3 12.93

easy 37 ± 3 39.8 ± 2.7 10.76
CLIP complex 36.8 ± 2.7 39.6 ± 2.5 10.92

all 37 ± 2.9 39.8 ± 2.8 9.6

ruDALL-E all 37.2 ± 3.1 39.9 ± 2.5 11.1

easy 37.9 ± 3 40.4 ± 2.6 9.43
Stable Diffusion complex 37.3 ± 3.2 40 ± 2.7 9.81

all 37.7 ± 2.9 40.5 ± 2.6 8.7

easy 38 ± 2.4 40.9 ± 2.1 7.15
Natural backgrounds complex 37.2 ± 2.8 40.4 ± 2.4 7.9

all 37.9 ± 3 40.8 ± 2.3 6.14

In Table 9, one can find the results of the classification of six species with the SWIN
model. CISA with stable diffusion backgrounds show a 1% relative percentage change
compared with the baseline.

Table 9. Classification results for SWIN model on test images for six species.

Source of Augmentation
Background Prompts Pre-Training Accuracy ↑ Fine-Tuned Accuracy ↑ FID ↓

Baseline — — 96.8 ± 0.5 —

Patterns — 92.8 ± 1.1 95.9 ± 0.7 12.93

easy 93.9 ± 1 97.5 ± 0.6 10.76
CLIP complex 94.2 ± 0.8 97.6 ± 0.5 10.92

all 94.1 ± 0.9 97.6 ± 0.6 9.6

ruDALL-E all 93 ± 1 96.6 ± 0.5 11.1

easy 94.1 ± 0.8 97.7 ± 0.6 9.43
Stable Diffusion complex 94.2 ± 0.9 97.7 ± 0.5 9.81

all 94.3 ± 0.8 97.8 ± 0.4 8.7

easy 94.7 ± 0.8 98.1 ± 0.5 7.15
Natural backgrounds complex 94.9 ± 0.6 98.2 ± 0.4 7.9

all 94.9 ± 0.7 98.2 ± 0.3 6.14

In Table 10, one can find the results of the classification of 18 varieties with SWIN
model. CISA with stable diffusion backgrounds show a 6.4% relative percentage change
compared with the baseline.

In Table 11, one can find the results of the semantic segmentation of six species with the
UNET++ model. CISA with stable diffusion backgrounds show a 2.7% relative percentage
change compared with the baseline.

In Table 12, one can find the results of the semantic segmentation of 18 varieties with
the UNET++ model. CISA with stable diffusion backgrounds show a 6% relative percentage
change compared with the baseline.

In Table 13, one can find the results of the object detection of six species with the
YOLOv8 model. CISA with stable diffusion backgrounds show a 2.2% relative percentage
change compared with the baseline.

In Table 14, one can find the results of the object detection of 18 varieties with the
YOLOv8 model. CISA with stable diffusion backgrounds show a 6.8% relative percentage
change compared with the baseline.
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Table 10. Classification results for SWIN model on test images for 18 varieties.

Source of Augmentation
Background Prompts Pre-Training Accuracy ↑ Fine-Tuned Accuracy ↑ FID ↓

Baseline — — 51.4 ± 2 —

Patterns — 47.5 ± 2.6 52 ± 2 12.93

easy 48.8 ± 2.7 53.9 ± 1.8 10.76
CLIP complex 49.1 ± 2.5 54 ± 2 10.92

all 49 ± 2.4 54 ± 1.9 9.6

ruDALL-E all 48.4 ± 2.8 53 ± 2.1 11.1

easy 49.8 ± 2.7 54.5 ± 1.8 9.43
Stable Diffusion complex 49.9 ± 2.9 54.7 ± 1.7 9.81

all 49.9 ± 2.6 54.6 ± 1.6 8.7

easy 50.2 ± 2.1 55.1 ± 1.8 7.15
Natural backgrounds complex 50.3 ± 2.3 55 ± 1.8 7.9

all 50.4 ± 2.2 55.1 ± 1.6 6.14

Table 11. Segmentation results for UNET++ model on test images for six species.

Source of
Augmentation

Background
Prompts Pre-Training IoU

↑
Pre-Training
Accuracy ↑

Fine-Tuned IoU
↑

Fine-Tuned
Accuracy ↑ FID ↓

Baseline — — — 89.5 ± 0.3 95.4 ± 0.25 —

Patterns — 85 ± 0.6 91.7 ± 0.5 91.2 ± 0.6 96.3 ± 0.3 12.93

easy 87.3 ± 0.3 93.2 ± 0.2 93.5 ± 0.3 98.2 ± 0.1 10.76
CLIP complex 86.9 ± 0.4 92.9 ± 0.4 93.4 ± 0.2 98.1 ± 0.1 10.92

all 87.2 ± 0.4 93.1 ± 0.3 93.6 ± 0.3 98.1 ± 0.1 9.6

ruDALL-E all 86.4 ± 0.6 92.2 ± 0.4 91.9 ± 0.5 97.7 ± 0.2 11.1

easy 88.3 ± 0.3 94.1 ± 0.3 94.5 ± 0.2 98 ± 0.2 9.43
Stable Diffusion complex 86.9 ± 0.5 93.8 ± 0.3 93.8 ± 0.2 97.9 ± 0.2 9.81

all 88.2 ± 0.3 94.1 ± 0.2 94.4 ± 0.3 98 ± 0.2 8.7

easy 88.8 ± 0.3 94.6 ± 0.3 95.3 ± 0.1 98.2 ± 0.15 7.15
Natural

backgrounds complex 88.6 ± 0.4 94.3 ± 0.2 94.8 ± 0.3 98.2 ± 0.15 7.9

all 88.8 ± 0.4 94.5 ± 0.3 95.2 ± 0.2 98.2 ± 0.15 6.14

Table 12. Segmentation results for UNET++ model on test images for 18 varieties.

Source of
Augmentation

Background
Prompts Pre-Training IoU

↑
Pre-Training
Accuracy ↑

Fine-Tuned IoU
↑

Fine-Tuned
Accuracy ↑ FID ↓

Baseline — — — 74.5 ± 0.5 85.6 ± 0.5 —

Patterns — 70.2 ± 0.9 81.9 ± 0.8 73.2 ± 0.6 85.8 ± 0.6 12.93

easy 72 ± 0.5 84.7 ± 0.5 78.1 ± 0.4 89.8 ± 0.5 10.76
CLIP complex 71.9 ± 0.8 84.6 ± 0.5 77.3 ± 0.3 89.6 ± 0.4 10.92

all 72.1 ± 0.7 84.7 ± 0.6 77.5 ± 0.4 89.9 ± 0.4 9.6

ruDALL-E all 71.6 ± 0.6 84.3 ± 0.7 76.1 ± 0.5 89.2 ± 0.5 11.1

easy 72.9 ± 0.5 85.5 ± 0.35 80 ± 0.3 90.5 ± 0.4 9.43
Stable Diffusion complex 71.4 ± 0.7 84.8 ± 0.4 78.9 ± 0.4 89.6 ± 0.5 9.81

all 72.5 ± 0.5 85.4 ± 0.4 80.2 ± 0.4 90.7 ± 0.4 8.7

easy 73.9 ± 0.6 85.5 ± 0.4 81.7 ± 0.2 91.8 ± 0.3 7.15
Natural

backgrounds complex 71.8 ± 0.7 84.6 ± 0.5 80.9 ± 0.3 91.6 ± 0.4 7.9

all 73.5 ± 0.6 85.5 ± 0.4 81.5 ± 0.3 91.9 ± 0.3 6.14
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Table 13. Object detection for YOLOv8 model on test images for six species.

Source of Augmentation
Background Prompts Pre-Training mAP ↑ Fine-Tuned mAP ↑ FID ↓

Baseline — — 57.9 ± 0.5 —

Patterns — 54.9 ± 0.4 58.2 ± 0.4 12.93

easy 55.6 ± 0.4 59 ± 0.3 10.76
CLIP complex 55.7 ± 0.5 58.9 ± 0.4 10.92

all 55.6 ± 0.6 58.9 ± 0.3 9.6

ruDALL-E all 55.2 ± 0.6 58.9 ± 0.5 11.1

easy 55.7 ± 0.4 59.1 ± 0.3 9.43
Stable Diffusion complex 55.5 ± 0.5 59 ± 0.5 9.81

all 55.7 ± 0.3 59.2 ± 0.4 8.7

easy 56.1 ± 0.6 60.1 ± 0.3 7.15
Natural backgrounds complex 56.2 ± 0.4 60.2 ± 0.4 7.9

all 56.2 ± 0.5 60.1 ± 0.3 6.14

Table 14. Object detection for YOLOv8 model on test images for 18 varieties.

Source of Augmentation
Background Prompts Pre-Training mAP ↑ Fine-Tuned mAP ↑ FID ↓

Baseline — — 38.3 ± 1.1 —

Patterns — 35.6 ± 1.2 39.2 ± 0.6 12.93

easy 36.1 ± 0.9 40.2 ± 0.8 10.76
CLIP complex 35.9 ± 1.2 40 ± 0.8 10.92

all 36.1 ± 1.1 40.2 ± 0.9 9.6

ruDALL-E all 36.2 ± 1.1 40.5 ± 1 11.1

easy 36.7 ± 0.7 40.7 ± 0.9 9.43
Stable Diffusion complex 36.8 ± 0.9 40.9 ± 0.7 9.81

all 36.7 ± 0.8 40.9 ± 0.8 8.7

easy 37 ± 1 41.4 ± 0.7 7.15
Natural backgrounds complex 37.1 ± 1 41.3 ± 0.7 7.9

all 37 ± 0.9 41.4 ± 0.6 6.14

Figure 8 shows the segmentation model predictions on the test images. The source of
augmentation background for this model training is stable diffusion.

Figure 8. Example of model predictions.
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4. Discussion
4.1. CISA Efficiency

Our experiments show that CISA instance-level augmentation provides a stable im-
provement for all of the tested CV tasks. This works both for convolutional and transformer
models. The major observation is the importance of the context. Note that with random
patterns, augmentation sometimes works worse than the baseline.

The best choice is to use a natural background from the location where the CV system
will be used. This is possible when the camera is stationary. If there are multiple camera
locations, it is better to collect background images from all of them. Recall that background
images do not require any manual annotation.

Any other approach to collect similar images gives substantial improvement in com-
parison with other augmentation approaches. Both image retrieval and image generation
show promising results. In our experiments, stable diffusion beats all other approaches for
the majority of cases.

For more complex tasks, the boost is higher. The natural training dataset is still
required for fine-tuning. The results from the approach without the fine-tuning are worse
than the baseline.

Table 15 as well as Figures 9 and 10 show the correlation between the model perfor-
mance and FID. One can see that if an augmented training set is similar to the test set, it will
result in higher accuracy. It allows for choosing a better set of backgrounds without model
training. For more complex tasks, the correlation seems to be lower. For segmentation and
detection tasks, the correlation is very high.

Table 15. Correlation.

Model Task #Classes Correlation p Value ↓

ResNet50 classification 6 −0.64 4× 10−13

ResNet50 classification 18 −0.27 10−3

MobileNetv3 classification 6 −0.2 2× 10−1

MobileNetv3 classification 18 −0.18 4× 10−2

SWIN classification 6 −0.65 2× 10−10

SWIN classification 18 −0.37 8× 10−3

UNET++ segmentation 6 −0.94 2× 10−25

UNET++ segmentation 18 −0.95 2× 10−26

YOLOv8 detection 6 −0.75 3× 10−11

YOLOv8 detection 18 −0.57 6× 10−11

The importance of context for image augmentation has been previously demonstrated
in [37], where the authors created an additional neural network to select a proper location
on a new background to paste the target object. In turn, we focus on the retrieval and
generation of an extensive dataset using various sources of background images. Although
the proposed approach does not involve additional generative models for dataset augmen-
tation, it is a simple and powerful way to adjust recognition model performance. CISA
instance-level augmentation extends the pioneering research on image augmentation [35]
and recent studies [36], and it allows one to estimate dataset suitability before model
training based on FID measures between original and generated datasets.

4.2. Limitations

The proposed image augmentation scheme can be used when we have masks for
input images. The system can work with instance segmentation masks and semantic
segmentation masks. However, if there are no instance masks available, one can try to
generate pseudo-segmentation masks.

The system’s primary usage involves generating complex scenes from simple input
data; however, the scene can include a single object if needed. The key feature of the
system is its ability to generate a huge amount of training samples even for the task for
which the original dataset was not designed. For instance, having only an image and a
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multi-part mask as input, we can produce samples for instance segmentation, instance
parts segmentation, object detection, object counting, denoising, and classification. The
described system can also be beneficial for few-shot learning when the original dataset
is minimal.

Figure 9. Relation between FID and accuracy in the classification task.

Figure 10. Relation between FID and IoU in the segmentation task and mAP in the object detec-
tion task.
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To apply the proposed augmentation scheme successfully, the dataset should not be
exceedingly sensitive to scene geometry, since such behavior can be undesirable in some
cases. For example, if you use a dataset of people or cars, the described approach by default
can place one object on top of the other. Nevertheless, we can add some extra height
limitations or use perspective transformation in these cases.

Another point is that we should find appropriate background images that would fit
some particular case. Retrieval-based approaches used to generate new training samples
using CLIP can be significantly impeded, in particular, domains such as medical or remote
sensing. For instance, in [43], the authors aimed to generate thermal images, with defective
areas occurring due to the manufacturing process. It is a more complex task to retrieve
such unique backgrounds using CLIP. However, there are various special data sources that
do not contain annotated data but are useful as backgrounds for new samples. Another
possible limitation is that if it is not possible to know the test set context, we may expect a
slight performance drop.

Further study on CISA application for images derived from different sensors on differ-
ent wavelengths should be conducted. Multispectral and hyperspectral data, radiography,
and radar scanning have their own properties. Their artificial generation is currently under
consideration in a number of works [61]. However, it is vital to take into account the
nature of data, because image augmentations should not break any physical law of the
studied objects.

Recall that it is important to fine-tune the model on natural images to increase the
performance.

The time for scene generation is close to linear when we have enough memory to store
all objects and overhead for a scene. To estimate the average required RAM per scene, we
use Equation (9)

M = 3nhw[(1 + m)p + o + 2] + ‘o (9)

In this equation, we can neglect the overhead, ‘o < o << M, because it is considerably
smaller than the data itself.

Although GAN-based image augmentation approaches are capable of providing more
realistic images under certain conditions, the proposed CISA approach does not require
computational resources to train an additional generative model.

5. Conclusions

In this article, we introduce an image augmentation technique for few-shot learning.
The presented framework allows for generating large training datasets using only a few
input samples. It also provides training data for the tasks, including instance segmentation,
semantic segmentation, classification, object detection, and object counting, even if the
original dataset contains annotations for the instance segmentation task only. To show our
method’s advantage, we compared the model performances on the tasks with different
difficulties, we checked the models of different types and different capacities, and we
showed the substantial improvement for all of the listed cases. The average percentage
increase in accuracy across all the tasks on the fruits and vegetables recognition dataset
is 4.95%. Moreover, we extensively explored approaches to collect background images,
and we showed an efficient method used to choose the best background dataset without
model training. WE showed that the Fréchet Inception Distance (FID) metrics has a strong
correlation with model accuracy, and it can help to choose better backgrounds without
model training. The average negative correlation between model accuracy and the FID
between The augmented and test datasets was 0.55 in our experiments.
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