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ABSTRACT

Structural properties of single j DNA treated with
anti-cancer drug cisplatin were studied with mag-
netic tweezers and AFM. Under the effect of low-
concentration cisplatin, the DNA became more
flexible, with the persistence length decreased sig-
nificantly from ~52 to 15 nm. At a high drug concen-
tration, a DNA condensation phenomenon was
observed. Based on experimental results from
both single-molecule and AFM studies, we propose
a model to explain this kind of DNA condensation
by cisplatin: first, di-adducts induce local distortions
of DNA. Next, micro-loops of ~20 nm appear through
distant crosslinks. Then, large aggregates are
formed through further crosslinks. Finally, DNA is
condensed into a compact globule. Experiments
with Pt(dach)Cl2 indicate that oxaliplatin may
modify the DNA structures in the same way as cis-
platin. The observed loop structure formation of
DNA may be an important feature of the effect of
platinum anti-cancer drugs that are analogous to
cisplatin in structure.

INTRODUCTION

Cisplatin [Pt(NH3)2Cl2] is one of the most widely used
anti-cancer drug especially to treat testicular, head, neck,
non-small-cell lung and cervical cancers (1). It is generally
believed that the cytotoxicity of cisplatin derives from its
adduct with DNA. In aqueous solution, the two chloride
ions dissociate from the central platinum, and two water
molecules or hydroxide ions locate there, transforming
cisplatin to an active state (2,3). When the aqueous cis-
platin reacts with DNA, its water molecules are easily
substituted by the N7 atoms of guanine or adenine to
form both mono-adduct and di-adduct (4,5). The biologi-
cal effects of cisplatin on DNA are quite complicated.

According to previous studies, cisplatin–DNA adducts
may interact with cellular proteins in several modes, for
instance, hijacking transcription factors to block DNA
transcription, blocking off DNA polymerase or RNA
polymerase bypassing (6,7).

The cisplatin–DNA adducts mainly contain intrastrand
crosslinks: 65% 1,2-d (GpG), 25% 1,2-d (ApG), 5–10%
1,3-d (GpNpG), as well as a small portion of interstrand
crosslinks (8). X-ray structure of a 12-bp double-strand
DNA containing a single 1,2-d(GpG) adduct reveals that
the adduct bends the double helix 508 towards the major
groove. In addition, there is a 308 dihedral between the
two adjacent guanines (9,10). The NMR solution structure
of the same platinated DNA was also resolved, with a
bending angle of 788, and a 258 unwinding of the double
helix (11). In brief, cisplatin molecules are able to bind to
DNA target, make intrastrand and interstrand crosslinks,
and distort severely the double helix towards the major
groove as well as induce a partial unwinding near the
adduct sites (12).

Over the past decade, single-molecule techniques have
been developed as helpful methods to measure the proper-
ties of DNA–ligand-binding and DNA–protein interac-
tion. For instance, Hatch et al. (13) have studied the
salt-dependent stabilization of partially open �-phage
DNA by Escherichia coli SSB protein using magnetic
tweezers. Williams et al. have done a lot of work on
the interaction between DNA and proteins (i.e. HIV-1
nucleocapsid protein, T4 gene 32 protein, HMGB) by
single-molecule stretching experiments using optical twee-
zers (14–16). Effects of DNA-binding proteins such
as HU, IHF and H-NS on DNA mechanical properties
have also been measured with magnetic tweezers (17–19).
Besides, in recent years, some significant findings about
ionic effects and ligand binding to DNA have been
made with these single-molecule techniques. Different
DNA-binding modes of small molecules have been
observed by the single-molecule force spectroscopy (20).
Through the measurement of WLC (worm-like chain)
behavior of � DNA, it is revealed that multivalent ions
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such as CoðNH3Þ
3þ
6 reduce the persistence length of DNA

to 25–30 nm, obviously much below the normal value of
45–50 nm in monovalent salt (21). Also, DNA intercala-
tors such as EtBr and YOYO-1 lead to a similarly
decreased DNA persistence length (22). Furthermore,
step-wise DNA condensation under the interaction of
multivalent ions was revealed in single-molecule experi-
ments (23). In addition to optical and magnetic tweezers,
AFM is another widely used technique for DNA investi-
gation due to its high-quality image resolution, and it has
also been applied to drug discovery (24).

Previously, there were several studies exploring the
effects of cisplatin on the mechanical properties of
DNA. Gaub et al. (25) have used single-molecule force
spectroscopy to measure the structural changes of DNA
induced by cisplatin. Their results revealed that the B-S
transition was very sensitive to the binding of cisplatin.
Besides, the separation of the double helix was inhibited
as a result of interstrand crosslinks. In addition to B-S
transition, the elasticity of the DNA molecules has also
been studied by single-molecule experiment qualitatively
(26). The force versus extension curve was observed to be
altered. However, the authors did not give out the persis-
tence length and contour length. Besides, there were no
results about the effect of cisplatin concentration, or about
the change with time.

In the current work, we employed magnetic tweezers
technique and AFM to systemically study the effect of
cisplatin on the mechanical and structural properties of
� DNA. Single-molecule experiments using a magnetic
tweezers showed that cisplatin may reduce the persistence
length of DNA from �52 nm to less than 20 nm. AFM
imaging revealed that the much reduced persistence
length resulted from the formation of many local kinks
on DNA. Besides, WLC fitting of force versus extension
curve and AFM imaging both revealed that DNA contour
length was basically not affected. At high cisplatin concen-
trations, we observed with the magnetic tweezers that the
DNA extension gradually shortened under low force
(�1 pN) and this shortening was irreversible even at 20
pN stretching force. AFM imaging identified the mecha-
nism for this kind of DNA condensation: first, micro-
loops by long distance crosslinks were formed due to
DNA thermal fluctuation, then large aggregates were
formed, and finally the DNA molecule was condensed
into a compact globule. We think the formation of this
kind of loops by distant crosslinks is an important prop-
erty of DNA–cisplatin interaction. At last, Pt(dach)Cl2
was also studied for comparison. It was found that it
interacted with DNA in a similar manner as cisplatin.
We believe the current study will be helpful for under-
standing more deeply the effects of cisplatin on mechanical
and structural properties of DNA.

MATERIALS AND METHODS

Chemical reagents

Cisplatin was purchased from Sigma-Aldrich (USA),
Pt(dach)Cl2 was obtained from the Institute of Precious
Metal in Kunming of China. � DNA for magnetic

tweezers experiment was from New England Biolabs. It
was isolated from � phage c1857 S7, 48502 bp in length,
with 12-nt single-strand overhanging at both ends. The
catalog number was N3011. The 12-nt oligomers with
modifications (see below) and � DNA for AFM imaging
were from the Sino-America Biotechnology Company in
Shanghai of China. For the magnetic tweezers experi-
ments, we used streptavidin-coated magnetic polystyrene
microspheres with a diameter of 2.8 mm from Dynal
Biotech (Norway). Solutions were made with 18.2 M�
deionized water purified through the Milli-Q Water
Purification System (Millipore Corporation, France).
AgNO3 and all the other chemicals are all reagent grade.

In vitro platination

Cisplatin was converted to diaqueous derivative by react-
ing with two equivalents AgNO3 in solution at room tem-
perature for 24 h in the dark. Then the mixture was
centrifuged at 13 000 rpm for 10min twice to remove the
AgCl precipitation thoroughly (27). Reactive Pt(dach)Cl2
solution was prepared in the same way. DNA was incu-
bated with platinum solution of various final concentra-
tions at 378C in the dark.

DNA construction for single-molecule study

The two 12-nt single-stranded ends of � DNA molecules
were annealed respectively with two 12-nt chemically
labeled single-stranded oligomers, 30-biotin-cccgccgctgga
and 30-digoxygenin-tccagcggcggg, according to the stan-
dard procedures (28). Afterwards, streptavidin-coated
paramagnetic polystyrene microspheres with a diameter
of 2.8 mm were bound to DNA through interaction with
biotin (29). DNA molecules carrying a microsphere at
one end and digoxygenin at the other end were then
ready for use.

Magnetic tweezers setup

A home-built transverse magnetic-tweezers system was
employed in our single-molecule experiments (Figure 1).
A single DNA molecule with a paramagnetic microsphere
at one end, as constructed above, was ligated to the
polished edge surface, covered by anti-digoxygenin, of
the sandwiched cover glass in the flow cell. With single
biochemical links at its two extremities, the DNA

Figure 1. Experimental setup for transverse magnetic tweezers. The
flow cell is constructed by sandwiching a 0.17mm thick cover glass
between two slides. The applied force is controlled by changing the
distance between the magnetic microsphere and the magnets. DNA
can also be rotated by rotating the magnets.
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molecule was torsionally unconstrained. DNA molecule
was pulled by permanent magnets about 5mm away at
the right side of the flow cell. Applied force can only be
altered by changing the distance between the magnets and
microsphere through moving the magnets. Besides, rota-
tion of the microsphere could be achieved by rotation of
the magnets. The flow cell was placed in an inverted
microscope (IX71, Olympus, Japan) which was employed
to observe the movement of the microsphere relative to the
polished edge surface of the cover glass in the flow cell. A
CCD camera (DV885, Andor Technology) was used to
record the position of the microsphere in real-time.
DNA extension was determined as the distance between
the microsphere and the polished edge surface of the cover
glass by a homemade program. The applied force was
calculated according to the position fluctuations of
the microsphere in the direction perpendicular to the
DNA extension (30).The buffer used in all the single-
molecule experiments was 10mM Tris–HCl, pH 7.5,
with 5mM NaCl.

Single-molecule measurement

We carried out the single-molecule experiments with the
magnetic tweezers in the following steps.
(i) Ligated the microsphere-bound DNA molecules to

the polished edge surface of the cover glass in flow cell.
Then rinse the cell with buffer to clean out the free
particles.
(ii) Grabbed a ligated particle and confirm that it was

connected to the surface through a single DNA molecule.
First, the extension of the � DNA should be close to 16.5
mm under a high tension (20 pN). Next, we set the applied
force to about 0.2 pN, and rotated the particle for 400
turns. If no shortening was observed, there should be
only one DNA molecule ligated. Then, for further confir-
mation, a force versus extension measurement was
employed. By fitting the data with the WLC model, a
persistence length at 52� 2 nm and a contour length at
16.5� 0.5 mm should be obtained (31). In each experi-
ment, a molecule grabbed was checked to be single in
the above way.
The persistence length and contour length of DNA were

obtained by fitting the force versus DNA extension curves
with the WLC model (32),

F ¼
KBT

A

1

4ð1� <L> =L0Þ
2
�
1

4
þ
<L>

L0
þ
Xi�7
i¼2

�i
<L>

L0

� �i
" #

1

where F is the stretching force, L is the DNA extension,
A and L0 are the persistence length and the contour length
of the DNA molecule, respectively. The coefficients used
are a2=�0.5164228, a3=�2.737418, a4=16.07497,
a5=�38.87607, a6=39.49944 and a7=�14.17718.
(iii) Carried out the WLC behavior measurement. First,

flow cisplatin at a given concentration to the flow cell.
During this process, DNA was kept stretched under 20
pN force. Next, adjust the applied force. Then record
the position of the microsphere in real-time. After the

DNA extension becoming stabilized, perform force
versus extension measurement (33).

For measuring the change of the DNA persistence
length with time in the presence of cisplatin, after the
DNA was tethered successfully to the surface, and con-
firmed to be a single molecule, 77 mM cisplatin was
slowly injected to the flow cell. Then we repeated the
force versus extension measurement at different times
during a total time interval of more than 12 h. DNA was
kept stretched under high tension between two consecutive
measurements.

(iv) Carried out DNA shortening measurement. After
the DNA ligation, and confirmed to be single molecule,
770 mM cisplatin was injected to the flow cell while 20 pN
force was used to keep DNA under high tension.
Afterwards, we adjusted the magnetic force to a lower
value so that the DNA molecule could exist with a high
flexibility. DNA extension was recorded in real-time. In
control experiment, DNA was always stretched by a force
of 20 pN. By comparing the different results at low and
high forces, the influence of DNA thermal fluctuation on
its interaction with cisplatin may be seen.

AFM sample preparation and imaging

Free unmodified � DNA was incubated with cisplatin fol-
lowing the standard procedure described above. All
manipulations were carried out in 10mM Tris–HCl, pH
7.5. The concentration of DNA was 50 ng/ml.

To study the change of DNA configuration with time by
AFM imaging, a 10 ml solution of 50 ng/ml DNA and
77 mM cisplatin (the cisplatin: nucleotide ratio is about
0.5) or 770mM cisplatin (the cisplatin:nucleotide ratio is
about 5) was incubated at 378C in the dark. An aliquot of
1 ml was taken out at the indicated times and diluted to a
DNA concentration of 1 ng/ml for AFM scanning. In the
study of Pt(dach)Cl2, the experiments were performed in
the same way as above.

We have employed two different techniques to adsorb
DNA molecules onto mica surface.

(i) To stretch DNA on mica to an extended morphology
for AFM imaging, we used one kind of molecular comb-
ing method: one freshly cleaved mica was immobilized on
an inclined plane, then a 10 ml droplet with 1 ng/ml DNA
and 1mM Ni2+ was deposited on the top of the surface
(34). After the droplet flowed from the surface top to
bottom, the extra solution was absorbed away tenderly
with a micropipette.

(ii) To adsorb DNA on mica surface with their natural
configuration (35), samples were prepared by depositing
a 10 ml droplet of 1 ng/ml DNA in 10mM Tris–HCl
(pH 7.5) and 5mM Mg2+ onto freshly cleaved mica.
After 5min, mica surface was washed with 200 ml Milli-
Q filtered water for several times and blown dry in a gentle
stream of nitrogen gas.

The imaging was performed in air with a multi-mode
AFM with nanoscope IIIa controller (Digital Instruments,
Santa Barbara, CA, USA) in the tapping-mode. Silicon
probe RTESP14 from Veeco (America) was employed,
with a resonance frequency of 315 kHz. ‘E’ scanner was
used. The scan frequency was 1Hz per line, and the scan
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size was from 1 to 5 mm. DNA tracing and measurement
were done semi-automatically using Image J software.

RESULTS

WLC elastic behavior

The WLC model describes the elastic behavior of duplex
DNA under tension, where DNA is treated as a
semi-flexible chain, and its flexibility is reflected by the
persistence length (32). The contour length is another
parameter, corresponding to the maximum DNA length
when it is inextensible under high tension. For a single �
DNA molecule, previous experiments revealed a persis-
tence length of 45–50 nm (21) and a contour length of
about 16.5mm. Both static bending and thermally induced
dynamic bending may result in the change of persistence
length, and Yan et al. (36) have systemically reported the
theoretical modeling results of DNA persistence length
reduction by DNA-binding proteins as well as intercala-
tors with various binding modes.

In our experiment, we first recorded the extension
change of DNA with time after cisplatin was added.
Figure 2A shows that at 77 mM cisplatin, the DNA exten-
sion gradually shortens with time, and after about 4 h, it
reaches a steady state. Then we performed the force versus
extension measurements. Figure 2B shows typical results
for DNA alone (as a control), DNA interacting with
77 mM cisplatin and with 15.4mM cisplatin. From the
WLC fitting according to Equation 1, the obtained persis-
tence lengths are 52.4, 15.0 and 25.0 nm, respectively.
Their contour lengths obtained from the fitting are all
close to 16.5 mm (16.4, 16.6 and 16.6mm, respectively). In
addition, a force versus extension measurement was also
performed for DNA with 46.2mM cisplatin. The final per-
sistence length is 20.6 nm, between that for 77 and 15.4mM
cisplatin. It is clear that when DNA was treated with cis-
platin for a plenty of time, its persistence length was
decreased, while the contour length showed little
variation.

To further study the decrease of DNA persistence
length with time, we introduced 77 mM cisplatin to DNA
in flow cell, and repeated measuring the force versus exten-
sion curves at different times. From fitting of the curves
with Equation 1, we obtained contour lengths that did not
change much with time (data not shown). The persistence
length, however, decreased rapidly during the first 4 h and
then became stabilized (Figure 2C), with the final value
(�14.9 nm) being in agreement with the result of direct
measurement after DNA extension becoming stabilized
(Figure 2B). This behavior of persistence change is not
difficult to understand: at the beginning, there are quite
a lot of binding sites on DNA for cisplatin, thus the
number of bound cisplatin molecules increases with
time, resulting in continuous variation of the DNA struc-
ture. After the binding sites are becoming saturated with
cisplatin, cisplatin-binding and thus DNA structure
change are slowed down and finally stabilized.

As to why cisplatin-binding changes the structure and
persistence length of DNA, we need to consider the bind-
ing mode of cisplatin to DNA. We know cisplatin makes

Figure 2. Single-molecule experiments under low concentration of cis-
platin. (A) After 77 mM cisplatin was added to the flow cell, the force
exerted on DNA was adjusted to 1.3 pN, and the end to end distance
was recorded in real-time. After about 4 h, DNA extension reaches a
steady state. (B) The force versus extension curves for bare DNA
(black), DNA treated by cisplatin of 77 mM (red) and 15.4 mM (blue)
after the extension reached the steady states. The lines are the best fits
of the data to Equation 1. (C) The change of persistence length with
time when 77 mM cisplatin was added to DNA in the flow cell.
Persistence length was obtained from fitting of the force versus exten-
sion curves to Equation 1 measured at the indicated times. After about
4 h, the persistence length reaches a steady state.
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intrastrand crosslinks between 1,2-d (GpG), 1,2-d (ApG),
1,3-d (GpNpG) of DNA, as well as a few interstrand
crosslinks, and distorts DNA to the major groove about
508 (9,10). According to Yan et al.’s theory (36), this kind
of local bending will induce a decreased persistence length.
In fact, there are also other DNA-binding ligands capable
of altering DNA persistence length with various binding
modes. For instance, single molecule experiments have
revealed that the minor groove binder distamycin-A, the
major groove binder a-helical peptide, and the DNA inter-
calator EtBr reduce the DNA persistence length to 26.7,
29.4 and 20.7 nm, respectively (22). Our present work is
the first quantitative report of the effect of cisplatin on
DNA persistence length measured with single molecule
method.
To observe more directly the effect of cisplatin on DNA

structure, we then used AFM scanning to image DNA in
the presence of 77 mM cisplatin.
By using the method as described in the Materials and

methods section, � DNA molecules could be stretched
linearly on the mica surface as shown in Figure 3A. This
indicates that the force exerted by the withdrawing inter-
face between mica and the liquid is strong enough. In the
presence of cisplatin, after an incubation of 6 h, some local
kinks appeared (Figure 3B), corresponding to the forma-
tion of adducts which bend DNA. This kind of DNA
morphology is in agreement with the single-molecule
observation which revealed a reduced persistence length.
After 12 h, DNA coiling became more serious (Figure 3C
and D). When observing carefully, we could see many tiny
globules with a typical size of �20 nm and an average
height of �1 nm (note that a single dsDNA strand on

mica surface is about 0.5 nm in height). We assume that
this kind of structures are micro-loops, formed in a mode
different from the crosslinks of adjacent GpG, ApG or
GpNpG bases. The identification of this kind of structures
and mechanism of their formation will be discussed later.

Actually, we have also scanned � DNA molecules incu-
bated with cisplatin of lower concentrations (1 and
15.4 mM) for 12 h. We observed that DNA was compara-
tively extended with only several local kinks under the
condition of 1 mM cisplatin, while the DNA took a
shape like that in Figure 3C with 15.4 mM cisplatin (data
not shown).

Furthermore, to study the change of DNA contour
length after interaction with cisplatin by AFM, we carried
out experiments with 2 kb DNA of which the contour was
easy to trace (37). These 2 kb double-strand fragments
were produced by PCR using � DNA as a template and
50-tggtcgttcagggttgtcgga-30 and 50-cgccttgccctcgtctatgta-30

as primer sequences, then purified by gel extraction.
Only linear DNA without loops on mica surface were
measured. As the theoretical contour length of 2 kb
DNA is �680 nm, we regarded DNA molecules much
less than 680 nm as incomplete ones that were not included
in the length statistics. The average contour lengths of the
free and cisplatin-treated DNA on mica surface were 656.8
and 653.1 nm, respectively (Figure 4). It is clear that cis-
platin just bends DNA backbone, and does not affect the
contour length much, in agreement with the results for �
DNA obtained with magnetic tweezers.

DNA shortening

DNA-shortening effect has been previously reported in
literatures studying cisplatin–DNA interaction. In one
case, molecules of 260-bp DNA incubated with cisplatin
in the dark at 378C for 24 h was scanned by AFM and
shown to have a 30% decrease in contour length (38).
Also, in a quite early work in 1978, EM pictures revealed
a DNA shortening phenomenon when a high concentra-
tion of the drug was used (39). Although this shortening
effect has been observed, a reasonable explanation was
still lacking. Moreover, this kind of structure changes is
rarely mentioned in literatures studying the binding mode
of cisplatin to DNA. Here we used both single-molecule
technique and AFM imaging method to study the
mechanism of DNA shortening that occurred at high cis-
platin concentration.

First, we incubated � DNA with cisplatin of high con-
centration (�513 mM) for 12 h. Then the solution was
introduced into the flow cell. After DNA ligation, we
stretched the DNA by the magnetic tweezers. It was
observed that almost all DNA molecules exhibited sur-
prisingly short lengths (data not shown). Even the highest
force (20 pN) could only stretched most of them to lengths
of less than 7 mm. The longest one we observed was
11.4 mm, still much less than � DNA’s contour length
(16.5 mm). These results are different from those observed
in the previous experiments at low cisplatin concentration,
where the contour length was almost invariable. Thus we
believe different new structures may be formed at high
drug concentration.

Figure 3. AFM images of � DNA alone or incubated with 77 mM
cisplatin at different times. (A) Unmodified DNA in the absence of
cisplatin. The DNA was stretched on mica surface (see Materials and
methods section). (B) In the presence of cisplatin, 6 h incubation.
(C) and (D) 12 h incubation. DNA coiling became more serious, accom-
panied by formation of tiny structures (micro-loops, as indicated by
arrows). All scale bars are 500 nm.
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To observe the DNA shortening process more quanti-
tatively, we then carried out another experiment. As
described in the Materials and methods section, � DNA
was constructed in the flow cell. After drug addition with a
final concentration 770 mM, a low force (�1 pN) was used
to stretch the single DNA molecule. At this low force,
DNA was in a flexible state. Under this condition, we
observed that the DNA extension decreased rapidly to
less than 3 mm in about 100min due to its interaction
with cisplatin (Figure 5A). Note that the DNA had been
checked to be intact after ligation according to the reason-
able persistence length and contour length. However, its
extension under �1 pN was less than the normal value of
14 mm at the beginning. This should be due to the fact that
cisplatin–DNA interaction already occurred to some
extent during the process of drug flowing and force adjust-
ment. The experiment was repeated several times while the
results were similar.

We found that the shortening process as shown in
Figure 5A was irreversible: even a high force (20 pN)
could only stretch the condensed DNA to a maximum

of �11 mm, much less than its full contour length of
16.5mm. As a control, we repeated the experiment while
using a high force (20 pN) from the beginning. In this case,
we observed that the DNA was unable to shorten in the
presence of the high concentration cisplatin (Figure 5B).
The above results indicate that the new structures that

cause DNA shortening cannot be formed at a high stretch-
ing force (20 pN). But once they are formed at a low force,
they cannot be disrupted by a 20 pN high stretching force.
To determine the new DNA structures that formed

accompanying DNA shortening, AFM scanning of
DNA was carried out at the cisplatin concentration of
770 mM. The measurements were carried out at different
incubation times.
After an incubation of 1 h, DNA became curled

(Figure 6A), in contrast with the extended structure
on mica surface in the absence of drug (Figure 3A).
Actually, this kind of coiling was different from that
observed at low cisplatin concentration (77mM,
Figure 3). Here, besides local distortions such as kinks,
local condensations were also presented, as indicated

Figure 4. (A) AFM image of free 2 kb DNA adsorbed onto mica surface. (B) AFM image of 2 kb DNA treated by 15.4mM cisplatin for 1 h. All scale
bars are 500 nm. To avoid the influence of molecular combing on DNA length, samples were made by adsorption with Mg2+ and without combing
according to the second technique for preparing AFM samples as indicated in Materials and methods section. (C, D) Distribution of lengths
measured for free DNA molecules and molecules treated by 15.4 mM cisplatin. The mean contour lengths are 656.8 � 31.5 nm (average of 108
molecules) and 653.1 � 41.0 nm (average of 111 molecules), respectively, for the two cases of free and cisplatin-treated DNA.
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by arrows. With incubation time increasing, DNA became
coiled more and more compactly, possessing more and
more local structures (Figure 6B and C). After an incuba-
tion of 6 h or longer, the DNA molecules took a shape
that was a collection of small aggregates (Figure 6D and
E). Finally, after an incubation of 12 h, DNA was con-
densed to a globule with a typical height of �6 nm and a
width of �100 nm (Figure 6F).
To better understand the change of DNA structures,

we also carried out experiments with the method of natu-
rally adsorbing DNA onto mica surface by Mg2+, without
combing. Mg2+ provides weak adsorption between DNA
and mica, thus DNA can diffuse in 2D on the surface and
get to equilibrium state finally (40). It is a useful way to
observe DNA molecules without strong influence from the
surface. The AFM pictures are presented in Figure 7. By
comparing the results of molecular combing with natural
adsorption, we find that: (i) for DNA with local kinks at

Figure 5. Single-molecule experiments under high cisplatin concentra-
tion (770 mM). (A) A typical variation of the DNA extension. The
external force exerted on the DNA was �1 pN. The sharp decrease
corresponded to the time of drug flow. (B) Control experiment where
DNA was kept stretched by a high force (20 pN) close to its contour
length. Although 770mM cisplatin was added, DNA hardly shortened.

Figure 6. AFM images of DNA incubated with 770 mM cisplatin.
(A) Incubation of 1 h, the arrows indicate the local condensations;
(B) 2 h; (C) 4 h; (D) 6 h; (E) 8 h and (F) 12 h. All scale bars are 500 nm.

Figure 7. AFM images of � DNA adsorbed naturally onto mica surface
by 5mM Mg2+. (A) Untreated (free) DNA. (B) DNA treated by 77 mM
cisplatin for 6 h. (C) DNA treated by 770 mM cisplatin for 1 h. (D)
DNA treated by 770 mM cisplatin for 6 h. All scale bars are 500 nm.
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low cisplatin concentrations (77mM), molecular combing
just makes DNA less coiled, without affecting the local
kink structures much (see Figures 3B and 7B); (ii) at
high cisplatin concentrations (770mM) and when DNA’s
morphology becomes more complex (Figures 6A and 7C),
DNA appears, with the natural adsorption method, more
coiled and more compact while showing no more struc-
tures except for local kinks. In combination with the
results from molecular combing (Figure 6A), it can be
confirmed that long-distance crosslinks do exist
(Figure 7C); (iii) at high cisplatin concentrations
(770 mM) and for long incubation time (Figures 6D–6F
and 7D), the two methods give similar results because
the DNA structures are too compact to be opened by
molecular combing. In brief, the two AFM methods
may let us obtain similar conclusions about the structural
changes of DNA in the presence of cisplatin.

It is worth mentioning that the experimental results in
the bulk (Figure 6) are somewhat different from the single
molecule results (Figure 5) in terms of the condensation
speed. The same concentration of drug makes the DNA
condensate more rapidly in the single molecule experi-
ment. The reason should be that the ratio of cisplatin to
DNA molecules is higher in the latter case.

Effect of oxaliplatin on DNA structure

To see if the DNA structural changes under the action of
cisplatin as observed above are inducible by another simi-
lar anti-cancer drug oxaliplatin, we next carried out simi-
lar AFM studies with Pt(dach)Cl2. We used Pt(dach)Cl2
instead of oxaliplatin itself in the experiment because it
induces the same adduct structure as oxaliplatin while it
is more active in DNA-binding in vitro.

Oxaliplatin is the third generation of the platinum anti-
cancer drug, which demonstrates anti-tumor activity
in cell lines with acquired cisplatin resistance (41).
Oxaliplatin has a non-hydrolyzable DACH carrier
ligand instead of diammine compared to cisplatin, and
produces the same kind of inter- or intra-strand crosslinks
as cisplatin, with the 1,2-(GpG) adduct bending the
double helix towards the major groove by about 308
(42), somewhat less severe than cisplatin. Here we used
AFM imaging to study the structural modification of
DNA by Pt(dach)Cl2 and to see if this kind of platinum
anti-cancer drug analogous to cisplatin in structure altered
the DNA structure in a similar manner as cisplatin.

We incubated DNA with Pt(dach)Cl2 at a concentration
of 77 or 770 mM according to the standard procedure.
After an incubation of 12 h, AFM imaging was then per-
formed in the same way as for cisplatin. Under the condi-
tion of 77 mM drug, DNA looked flexible, with obvious
kinks as well as some tiny globules assumed to be micro-
loops (Figure 8A). When 770 mM drug was used, DNA
was condensed into a compact globule (Figure 8B).

Comparing with previous results of cisplatin, it can be
seen that Pt(dach)Cl2 resembles cisplatin in the modifica-
tion of DNA structures. The difference is that the effect of
Pt(dach)Cl2 is less strong than that of cisplatin.
Comparing Figure 8A with Figures 3C and D, we can
see that DNA is still in a relatively relaxed form after

incubation with 77 mM Pt(dach)Cl2 for 12 h. Also, the
final globules formed by 770 mM Pt(dach)Cl2 have a
height of �3 nm and a width of �200 nm, thus looser
than those formed with 770 mM cisplatin (�6 nm height
and �100 nm width, Figure 6F).
To investigate the mechanism of Pt(dach)Cl2–DNA

interaction, we further carried out another experiment to
observe the structural evolvement with time. Total 770 mM
drug was used. As can be seen, first, some kinks of DNA
appeared (Figure 9A). Then the DNA became curled on
the mica surface with several visible micro-globules
(Figure 9B), then the small structures developed to large
aggregates (Figure 9C), and finally the molecule was con-
densed into a compact globule (Figure 9D), similar to the
DNA condensing process in the presence of cisplatin
(Figure 6).
From the above experimental observations, we come to

the conclusion that Pt(dach)Cl2 induces kinks to DNA

Figure 9. AFM images of DNA incubated with 770mM Pt(dach)Cl2
with different times. (A) 1 h; (B) 3 h; (C) 7 h; (D) 12 h. The scale bars
are 500 nm.

Figure 8. AFM images of DNA incubated with different concentrations
of Pt(dach)Cl2 at 378C for 12 h. (A) 77 mM drug. (B) 770 mM drug.
DNA condensed to a compact globule with a typical size of �200 nm
and a height of �3 nm. The scale bars are 500 nm.
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helix, makes DNA more flexible, and leads to formation
of micro-loops and bigger structures in the same way as
cisplatin. The difference is that the DNA structure changes
induced by Pt(dach)Cl2 are comparatively a little weaker,
in agreement with the adduct’s crystal structure (42).

DISCUSSION

Combining the experimental results obtained with both
single molecule and AFM imaging methods, we propose
a new model for DNA shortening by cisplatin-binding
(Figure 10). As is well known, cisplatin forms both
di-adduct such as GpG, ApG and mono-adduct. In the
latter case, the mono-adduct is still free to bind to other
nucleotides. Since DNA may fluctuate thermally in solu-
tion, bases distant from each other may be brought to
short distances. Thus if one nucleotide possesses a
mono-adduct, a micro-loop might be formed through
binding of the mono-adduct to the other distant nucleo-
tide. This kind of micro-loops should be just what we
observed at 77 mM cisplatin (Figure 3C and D). When a
high concentration of cisplatin is used, these small loops
may be further crosslinked, leading to the shortened mor-
phology and finally the rather compact structure
(Figure 6). According to the above model, it is expected
that crosslinks between different DNA molecules may
happen in the same way as internal crosslinks when
DNA concentration is high. Indeed, at the DNA concen-
tration of 50 ng/ml as used in our AFM experiments, we
have observed such crosslinks (data not shown). But this
phenomenon should not affect our conclusion about the
effect of cisplatin on DNA structure and condensation.
Theoretical work on loop formation of DNA reveals

that kinks can not only reduce the loop size severely
from 550 to 110 bp, but also increase the probability of
loop formation dramatically (43). Therefore, those
di-adducts by adjacent crosslinks may also play an impor-
tant role in promoting the loop formation, explaining why
so many loops formed in our experiments.
Clearly, when the DNA is stretched by a high force,

the thermal fluctuation cannot overcome the tension on
DNA, thus it is expected that the probability is low for

micro-loops to form. This was supported by the control
experiment, where the DNA molecule was kept in a
stretched form and 770 mM cisplatin was unable to con-
dense DNA to short length (Figure 5B). The DNA exten-
sion remained almost constant during the whole recording
time, indicating no particular structure was formed.

Similar kind of DNA-shortening effect has been
reported for the DNA-binding protein Fis which bends
DNA in a nonspecific manner (44). Single-molecule
experiments revealed that the DNA condensation
occurred abruptly when DNA tension was reduced to a
protein-concentration-dependent threshold of less than 1
pN. The authors suggested that the condensation hap-
pened via Fis stabilizing DNA self-crossing generated by
thermal fluctuation. Note that, in their case, 9 pN force
could entirely disentangle the condensed DNA, which is
different from our present case where the micro-loops and
big structures formed by cisplatin were difficult to be
opened even under a high tension of about 20 pN.

Actually, the 770 mM cisplatin concentration we used is
too high and it is only practical for the in vitro experiment.
We chose to use such a high concentration in order to
accelerate the drug interaction with DNA. According to
our studies, there are mainly two factors that influence the
formation of loop structures. One is the drug concentra-
tion and the other is the incubation time. We identified
with AFM that DNA incubated with 15.4mM cisplatin for
even 48 h showed no micro-loops except for local kinks
(data not shown). With 77 mM cisplatin and an incubation
time of 6 h, there were hardly any micro-loops either
(Figure 3B). After an incubation of 12 h, quite a lot of
micro-loops were formed, but bigger structures were
still absent (Figures 3C and D). However, with 770 mM
cisplatin, even 1 h incubation time could produce quite a
lot of new structures (Figure 6A).

From our observations, it is obvious that the thermal
fluctuation of DNA is quite important for the formation
of micro loops and DNA condensation. In the WLC
measurement, DNA was under tension during most of
the time, thus loop formation was suppressed, resulting
in a basically invariable contour length. In addition, for
a short DNA (comparable to its persistence length), it is
difficult to bend severely, thus is unable to form the

Figure 10. Proposed model for DNA shortening by cisplatin. Both di- and mono-adducts are formed. Due to the thermal fluctuation, micro-loops
might occur through long-distance crosslinks. Then further distant crosslinks make the DNA condense to a collection of aggregates, and finally, the
DNA is compacted to a globule.
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loop structures. This should just be what happened in the
previous works (38). We assume the formation of micro-
loop structures to be an important property for cisplatin–
DNA interaction with drug concentration of tens of
micromoles per liter and an incubation time of about
12 h. Previously, it was generally believed that cisplatin
modified the DNA structures through intrastrand and
interstrand crosslinks between adjacent bases, our present
study further shows that distant crosslinks should also
play important roles in the drug–DNA interaction.

Our AFM imaging experiments with Pt(dach)Cl2 sug-
gest that oxaliplatin interacts with DNA in a similar way
as cisplatin. Besides oxaliplatin, there are also several
other platinum anti-cancer drugs that resemble cisplatin
in structure, such as carboplatin (45), JM118 (46) and
ZD0473 (47). They all bind to double helix, make intras-
trand and interstrand crosslinks, and distort DNA
towards the major groove in a similar manner. Based on
the studies of cisplatin and oxaliplatin, it is reasonable to
think that these similar platinum anti-cancer drugs modify
DNA structures in the same two-mode manner: (i) first,
the drug induces interstrand or intrastrand crosslinks of
adjacent bases, making DNA more flexible. Thus, in the
single molecule analysis using a magnetic tweezers, DNA
exhibits a decreased persistence length, and in AFM ima-
ging DNA shows a lot of local kinks. (ii) Then, the drug
induces formation of loops through crosslinks of distant
nucleotides brought together by DNA thermal fluctua-
tion. At low drug concentrations, DNA exhibits a lot of
micro loops, while at extremely high drug concentrations,
the structures with micro loops will be further crosslinked
to form collection of large aggregates and finally the DNA
is condensed to a compact globule.

CONCLUSIONS

Mechanical properties of single � DNA molecules in the
presence of the anti-cancer drug cisplatin were investi-
gated by a magnetic tweezers. Compared with free �
DNA, the modified DNA was more flexible, with its per-
sistence length decreased from �52 to �15 nm. This beha-
vior is in agreement with the previously known binding
mode of cisplatin: forming intrastrand and interstrand
crosslinks and distorting the double helix towards the
major groove. The permanent static bending causes a
decrease of the WLC persistence length. AFM imaging
of � DNA treated by cisplatin of the same concentration
revealed more directly the curled structure of DNA with a
lot of local kinks. Besides, AFM imaging also showed that
the contour length of DNA was not affected obviously by
cisplatin.

Importantly, we have found another behavior of cispla-
tin–DNA interaction: the formation of loop structures
due to DNA thermal fluctuation and then DNA conden-
sation. In the single molecule experiments using the mag-
netic tweezers, the extension of DNA decreased rapidly
upon addition of a high concentration cisplatin. The
condensed DNA was unable to be stretched back to its
contour length even under a high force (20 pN). AFM
scanning revealed the processes of DNA condensation.

First, micro-loops with a size of �20 nm appeared,
caused by crosslinks of mono-adducts with distant binding
sites due to DNA thermal fluctuation as well as a reduced
persistence length. Then large aggregates were formed.
Finally DNA was condensed into a large compact globule.
Pt(dach)Cl2 was also analyzed by AFM imaging. Our

experiments reveal that Pt(dach)Cl2 (or oxaliplatin) makes
DNA flexible and induces DNA loop structures in the
same manner as cisplatin, though a little weaker.
We think the occurrence of loop structures may be an

important feature of DNA modification by this kind of
platinum anti-cancer drugs. The present study should be
useful for further understanding of the biological function
of the platinum anti-cancer drugs and for the design of
new drugs in the future.
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