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Abstract

The increasing volume of ChIP-chip and ChIP-seq data being generated creates a challenge for standard,

integrative and reproducible bioinformatics data analysis platforms. We developed a web-based application called

Cistrome, based on the Galaxy open source framework. In addition to the standard Galaxy functions, Cistrome has

29 ChIP-chip- and ChIP-seq-specific tools in three major categories, from preliminary peak calling and correlation

analyses to downstream genome feature association, gene expression analyses, and motif discovery. Cistrome is

available at http://cistrome.org/ap/.

Rationale
The term ‘cistrome’ refers to the set of cis-acting tar-

gets of a trans-acting factor on a genome-wide scale,

also known as the in vivo genome-wide location of

transcription factors or histone modifications. Cis-

tromes were initially identified using chromatin immu-

noprecipitation (ChIP) combined with microarrays

(ChIP-chip) [1]. However, with the recent advent of

next generation sequencing (NGS) technologies, ChIP

combined with NGS (ChIP-seq) [2] has become the

more popular technique due to its higher sensitivity

and resolution.

Computational analyses of cistrome data have become

increasingly complex and integrative. Investigators often

examine the data from many different angles by com-

bining cistrome, epigenome, genomic sequence, and

transcriptome analyses. Many algorithms and tools have

been published over the years to facilitate such analyses.

However, these tools require investigators to have both

the hardware resources and computational expertise to

install, configure, and run these different algorithms

effectively. Integrated platforms such as CisGenome [3]

and seqMINER [4] have been developed to streamline

data analyses; however, the maintenance of these plat-

forms demands suitable hardware resources and compu-

tational skills. In addition, these tools lack useful

features such as the integration of cistrome data with

gene expression analysis, data sharing between research-

ers, and reusable analysis workflows.

To address the above challenges, we developed the

Cistrome platform to provide a flexible bioinformatics

workbench with an analysis platform for ChIP-chip/

seq and gene expression microarray analysis. Cistrome

was built on top of Galaxy [5], an open-source web

based computational framework that allows the easy

integration of different tools. Cistrome integrates use-

ful functions specific for ChIP-chip/seq and gene

expression analyses. These functions were implemen-

ted in a modular fashion to allow easy incorporation

of new tools in the future. Cistrome was deployed on

a supercomputer server with a publicly available web

interface. The current Cistrome server allows 15 jobs

running at the same time. Restrictions of input files

for each Cistrome tool are described in Table S1 in

Additional file 1. We provide Cistrome source codes

freely available through bitbucket [6]. The various

functions within the analysis platform are explained in

the following sections, and a workflow summary is

illustrated in Figure 1.
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Data preprocessing
Before interpreting the biological results from ChIP-chip

or ChIP-seq data using the Cistrome platform, research-

ers can upload raw data from their microarray or

sequencing facilities and then preprocess those data

using Cistrome peak-calling tools. Alternatively,

researchers can also upload intermediate results from

their own analysis tools. As illustrated in Figure 1, the

peak calling step generates two types of intermediate

files: peak location files (in BED format), indicating the
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Figure 1 Workflow within the Cistrome analysis platform. Cistrome functions can be divided into three categories: data preprocessing, gene

expression and integrative analysis. A general workflow using Cistrome is to upload datasets, preprocess them using peak calling tools to

generate peak locations in BED format and signal profiles in WIGGLE format, upload gene expression data to produce specific gene lists, and

then use various integrative analysis tools to generate figures and reports. The bottom figure shows the web interface of the Cistrome platform

based on the Galaxy framework. The left panel shows available tools, the middle panel shows messages, tool options, or result details, and the

right panel shows the datasets organized in the user’s history, including datasets that have been or are being processed (in green and yellow,

respectively), or waiting in the queue (in gray). CEAS,; DC, Data Collection module; GEO, Gene Expression Omnibus; NPS, Nucleosome Positioning

from Sequencing; TF, transcription factor.
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predicted transcription factor binding sites or histone

modification sites, and signal profile files (in WIGGLE

format) of binding or histone modification across the

genome.

Several methods can be used to import data into Cis-

trome. The ‘Upload File’ function can import a file from

the user’s computer or from an HTTP or FTP file server

in the same manner as in Galaxy. In most cases, sequen-

cing facilities will manage the low level base calling and

read mapping processes. The least processed Cistrome

data formats that we allow are the SAM/BAM [7] or

BED formats for ChIP-seq sequencing mapping results,

CEL files for ChIP-chip using Affymetrix tiling arrays,

or PAIR files from NimbleGen custom arrays. Research-

ers may have already used other algorithms to generate

intermediate results, such as BED format files for

regions of interest on the genome or WIGGLE format

files for signal information. In such cases, users can also

upload intermediate result files onto Cistrome and apply

our downstream tools while being mindful of the accep-

table formats (Table S1 in Additional file 1). In addition,

we implemented two new data types for expression

microarray data sets from Affymetrix and NimbleGen

technologies. Raw expression microarray data and a text

file describing the phenotype information (for example,

before and after transcription factor activation) should

be packaged in a zip file before being uploaded through

the general upload tool.

Cistrome contains peak-calling tools for both ChIP-

chip and ChIP-seq data. We deployed the MAT tool [8]

for Affymetrix promoter or tiling arrays and have sup-

ported nine different array designs from Caenorhabditis

elegans to human. Affymetrix CEL files are required as

input. For NimbleGen two-color arrays, MA2C [9] was

deployed. Because researchers usually have their own

customized NimbleGen two-color array designs, array

design (.ndf) and position (.pos) files and raw probe raw

signal files (.pair) should all be uploaded to run MA2C

on the Cistrome website. Both MAT and MA2C are

able to handle control data or replicates as input data

and can generate a BED file for peak locations and

WIGGLE file for normalized probe signals as the out-

put. Cistrome provides the MACS (Model-based Analy-

sis of ChIP-Seq) [10] tool for ChIP-seq data obtained

from various short read sequencers (for example, Gen-

ome Analyzer and HiSeq 2000 from Illumina or SOLiD

from Applied Biosystems). MACS can improve the accu-

racy of the predicted binding sites by modeling the

length of the sequenced ChIP fragments and the local

bias due to chromatin openness. MACS can run with or

without controls and allows the widely used SAM/BAM

format and another six mapping result formats (Table

S1 in Additional file 1) as input. The outputs include

peak regions and peak summits (the precise binding

location estimated by the algorithm) in BED format and

ChIP fragment pileup along the whole genome at every

10 bp in WIGGLE format. When the diagnosis option is

turned on, MACS subsamples the data to determine the

number of peaks that can be recovered from a subset,

thus estimating the saturation status of the current

sequencing depth. We deployed MACS version 1.4rc2

on Cistrome, which supports single-end or paired-end

sequencing in BAM or SAM format.

With the rapid growth of ChIP-chip and ChIP-seq

datasets in public repositories, it has become increas-

ingly important to be able to integrate information from

cross-platform and between-laboratory ChIP-chip or

ChIP-seq datasets. We recently developed the powerful

meta-analysis tool MM-ChIP (Model-based Meta-analy-

sis of ChIP data) [11] and deployed it under the peak-

caller application category of Cistrome. The MM-ChIP

tool includes two separate functions: MMChIP-chip per-

forms ChIP-chip meta-analysis based on WIGGLE files

from the MA2C and MAT tools, and MMChIP-seq uses

NGS alignments in BED format as input to combine dif-

ferent ChIP-seq libraries of the same factor under the

same conditions. The resulting peak locations (in BED

files) and signal profiles (in WIGGLE files) can be visua-

lized as a custom track on the UCSC genome browser

and used as input for other downstream analysis tools

that will be discussed later. In addition to these specific

peak callers for different platforms or purposes, there is

a general peak caller in Cistrome that can take any

whole genome signal profile in WIGGLE format, nor-

malize the signals, and then attempt to find the signifi-

cant regions by comparing to a null distribution built

from background data.

Expression microarray analysis tools
The Cistrome Expression pipeline uses R and Biocon-

ductor [12] packages to perform basic gene expression

analyses. The data analysis starts with the processing of

a set of signal intensity files for Affymetrix expression

arrays (.cel) or NimbleGen arrays (.xys). Datasets may

also include a phenotype (.txt) file that describes and

groups the set of expression files. The next step in the

pipeline calculates the expression index of this dataset

using one of four possible methods: robust multichip

average (RMA) [13], justRMA, gcRMA and MAS5. The

result is a normalized expression set (.eset) that can be

represented as refSeq, Entrez, or ProbeSet IDs in plain

text format. When mapping the ProbeSet IDs to refSeq

or Entrez IDs, the custom CDF files from BRAINAR-

RAY [14] are used. The genes that are differentially

expressed between conditions (for example, before and

after a transcription factor is knocked down) are often

used to explore the function of the transcription factor

together with cistrome data. When a normalized
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expression set is used as input, Cistrome can identify

differentially expressed genes using any of the following

methods: limma moderated t-test, ordinary least-

squares, and permutation by re-sampling. Correction for

false positive (type I) errors may be performed using

either the Bonferroni correction or Benjamini-Hochberg

false discovery rate (FDR) methods. The output from

this tool is a list of differentially expressed genes, log2-

transformed fold changes and FDR-corrected P-values of

differential expression. The differential expression result

can be processed into gene lists, such as up-regulated or

down-regulated genes, using one of the public work-

flows as described in Table S2 in Additional file 1. The

gene lists can be further incorporated with other Cis-

trome tools.

Several downstream analysis modules are also avail-

able. A transcription factor tool allows the user to find

the transcription factors with the highest level of expres-

sion. The selection is done based on an expression index

cutoff value, and further filtering can be performed to

restrict the resulting list to the Gene Ontology (GO)

terms for transcription regulation activities. A correla-

tion tool allows the user to detect all genes for which

their expressions correlate with another given gene. This

correlation result can also be filtered by applying the

GO terms. The GO enrichment tool helps researchers

explore the functions for a list of genes, such as the up-

regulated genes after a transcription factor knockdown

or the genes with transcription factor bound in promo-

ter regions. Enrichment can be compared to the back-

ground of all genes or a subset of genes on the array.

This tool uses Bioconductor GO and GOstats [15]

packages together with a query to the DAVID (Database

for Annotation, Visualization and Integrated Discovery)

web server [16]. The visualization tool in this category

allows users to visualize and compare the expression

index distributions of multiple lists of genes (for exam-

ple, genes with proximate transcription factor binding

compared with all genes) using box plots or histograms.

Integrative analysis
Downstream analyses for a cistrome study require speci-

fic or integrative tools. The value of Cistrome is that it

enables biologists to use a broad range of bioinformatics

tools to easily generate report-quality figures and tables,

and to simplify routine analysis using reproducible pipe-

lines. In Cistrome, we provide tools for correlation stu-

dies, genome feature association studies and motif

analysis together with public workflows to link these

tools together.

Usually, researchers require at least two biological

replicates to show the consistency of an experiment. An

intuitive way to show consistency is to ask if the repli-

cates can be correlated in some meaningful

measurement. Correlation can also answer the question

of whether or not two transcription factors are co-loca-

lized. For instance, two biological replicates with low

correlation might suggest poor data quality, or highly

overlapping cistromes between two factors might sug-

gest interactions between the factors. For these reasons,

we deployed two levels of tools in Cistrome to calculate

correlations: one to compare protein-DNA binding sig-

nals and the other to investigate the overlap of the pre-

dicted binding sites. First, Cistrome can calculate

Pearson correlation coefficients for multiple signal pro-

files on a whole-genome scale or by restricting the cal-

culation to a set of genomic regions defined by the user.

A Pearson correlation coefficient close to 1 implies that

the replicates are consistent or two factors are corre-

lated. To save computation time, these tools use win-

dow-smoothing methods to calculate the mean or

median values within non-overlapping fixed-size win-

dows. This approach decreases the number of data

points involved in the calculation. The results are repre-

sented as scatter plots or heatmap images in either PDF

or PNG format as illustrated in Figure 2a. The second

level of correlation can address how many of the pre-

dicted binding sites (peaks) from several replicates, dif-

ferent factors or different conditions overlap. We

provide a tool for drawing a Venn diagram using two to

three BED format peak files. The circles and overlapping

regions in the Venn diagram can be proportional to the

actual number of peaks and overlaps (Figure 2b).

Functional DNA regions in genomes are often evolu-

tionarily conserved between different species [17-19].

Therefore, evolutionary conservation of ChIP-chip/seq

peaks compared with flanking non-peak regions is often

a good indicator of good data quality and correct data

preprocessing. In Cistrome, the ‘Conservation Plot’ tool

can take one or more cistromes in BED files as input,

and use UCSC PhastCons conservation scores [20] to

produce a figure showing the average conservation score

profiles around the peak centers (Figure 2d). This analy-

sis could be extended to compare the conservation dif-

ferences between multiple cistromes.

Another useful task is to find the genomic features or

genes associated with transcription factor binding or

histone modification sites. For instance, H3K4me3 is

enriched in the promoter regions of active genes [21],

and H3K36me3 is enriched in transcribed exons [22].

Finding the target genes is critical to understanding the

function of transcription factors, such as transcription

repression or activation. Therefore, a set of tools from

the CEAS (Cis-regulatory Element Annotation System)

[23] package, including SitePro, GCA (Gene Centered

Annotation), Peak2Gene and the CEAS main program,

has been deployed in the Cistrome web interface. Site-

Pro can draw the average signal profiles around given

Liu et al. Genome Biology 2011, 12:R83

http://genomebiology.com/2011/12/8/R83

Page 4 of 10



genomic locations. When multiple locations or sets of

signal files are used as input, SitePro can address ques-

tions such as how the signals of multiple factors change

at the same locations between different conditions or

how the same factor changes in different sets of geno-

mic locations. The GCA tool can find the peaks that are

closest to the transcription start site (TSS) of each gene

and calculate the coverage of the peaks of the gene body

in a spreadsheet. The Peak2Gene tool can find the near-

est genes for each peak. The CEAS main program gen-

erates multi-paged figures as either a PDF document or

PNG image. In general, when a BED file for peaks and a

WIGGLE file for signals are used as input, the resulting

report includes the peak enrichment on chromosomes

and various genomic features, such as gene promoters,

downstream regions, UTRs, coding exons or introns,

and the average signal profile around TSSs and tran-

scription termination sites (TTSs), the meta-gene body

(all genes are scaled to 3 kbps), concatenated exons

(coding regions), or concatenated introns. When gene

lists are provided (for example, a list of genes with the

highest and lowest levels of expression for the same

sample in a ChIP-chip or ChIP-seq experiment), CEAS

will plot the average signal profiles for different gene

groups in different colors for the TSS, TTS, gene bodies,

exons, or introns (Figure 2c). This function can be

coupled with gene expression tools described in the pre-

vious section to show whether the signals of the tran-

scription factor or histone marks are related to

transcription repression or activation.

In addition to the average signal profiles at a given set

of genomic locations, as shown in CEAS, the visualiza-

tion and clustering of signal profiles from different fac-

tors at specific locations provides another angle of

insight. Through the observation of patterns, we can

also find the co-factors (co-activators or co-repressors)

that tend to work together on their regulated genes. The

Cistrome ‘Heatmap’ tool can extract the signals centered

at every given genomic location, perform either a k-

means clustering or a sorting by maximum, mean, or
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Figure 2 Correlation and association tools. (a) Correlation plots using different histone marks in C. elegans early embryos [43]. Cistrome

correlation tools can generate either a heatmap with hierarchical clustering according to pair-wise correlation coefficients or a grid of
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median values within each region, and then draw a heat-

map. For example, the group of TSSs for active genes

should have H3K4me3 enriched at the TSS and a gra-

dual H3K36me3 enrichment downstream of the TSS,

whereas the group of TSSs for inactive genes would

have low signals of both H3K4me3 and H3K36me3.

Additional detailed clustering will be revealed when sig-

nal profiles of multiple factors are used (Figure 3). Mul-

tiple WIGGLE files for different factors or different

conditions can be used as input together with a set of

genomic locations defined in a BED file. These regions

could be nucleosome-free regions or transcription factor

binding sites instead of TSSs of genes. Clustering or

sorting can be based on all or some of the WIGGLE

files. The color schema of the heatmap is configurable

to adjust the contrast for better visualization between

high and low signals.

Transcription factor motif analysis is a key to under-

stand the specific DNA patterns of in vivo transcrip-

tion factor binding. Motif analysis can also identify the

co-factors that work together to activate or repress

gene expression because the binding sites of co-factors

should have similar DNA motifs. We deployed a new

motif algorithm called ‘SeqPos’ in Cistrome based on

the algorithm in [24]. By taking the peak locations as

the input, SeqPos can find motifs that are enriched

close to the peak centers. SeqPos can scan all of the

motifs that we collected from JASPAR [25], TRANS-

FAC [26], Protein Binding Microarray (PBM) [27],

Yeast-1-hybrid (y1h) [28], and the human protein-

DNA interaction (hPDI) databases [29]. SeqPos can

also find de novo motifs using the MDscan algorithm

[30]. The final significant motifs are listed in an

HTML page, as in Figure 4, where the user can sort

the motifs by z-score or P-value and click on each

motif to see detailed information, such as the probabil-

ity matrix, logos, and the motif consensus. A position-

specific scoring matrix can be copied or referred to

another tool within Cistrome called a ‘screen motif’ to

search a given set of genomic locations for all occur-

rences of a particular motif.

Cistrome has many other useful tools to help users

better manipulate their data. A lift over tool can con-

vert WIGGLE files from one genome assembly to

another if users want to combine old analysis results

with a new genome annotation. However, ab initio re-

preprocessing is recommended to generate new WIG-

GLE files for the new genome assembly. A WIGGLE

file standardization tool can convert the resolution of a

WIGGLE file to 8, 32, 64 or 128 bps. Two other tools

can extract data for certain chromosome out of a BED

file or a WIGGLE file. Furthermore, many Galaxy

functions that we considered to be very useful for

ChIP-chip/seq data analyses are also enabled in Cis-

trome. For example, the intersect tool for two interval

files, and the filtering/sorting/cutting tool for tab-

delimited text files are widely used in many of our pre-

compiled public workflows to post-process intermedi-

ate results then feed them into downstream tools

(Table S2 in Additional file 1).
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Figure 3 Heatmap analysis with k-means clustering. By combining H3K27me3, H3K9me3, H3K4me3, H3K4me2, H3K36me3 and MES-4 (the

histone H3K36 methyltransferase) ChIP-chip signals, as in Figure 2a, the Cistrome heatmap tool separates the ± 1-kbp regions for all of the C.

elegans TSSs into five clusters using k-means clustering. From top to bottom, the clusters are as follows: (1) about 3,000 TSSs related to active

genes have high H3K4me3 upstream of the TSSs and high H3K36me3 downstream of the TSSs; (2) about 2,000 TTSs have slightly lower

H3K4me3 levels downstream of the TSSs and no significant K36me3 enrichment; (3) about 2,000 TSSs have high H3K27me3 and H3K9me3

related to inactive genes; (4) about 2,500 TTSs with low H3K27me3, moderate H3K4me3 and high H3K36me3 enrichment around the TTS related

to genes in operons; and (5) about 10,000 TTSs have no strong marks.
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Comparison to existing software
Cistrome was built upon the Galaxy framework to pro-

vide a user-friendly, reproducible and transparent work-

bench for cistrome researchers. Researchers can easily

and intuitively reuse and share data, incorporate pub-

lished data, and publish their results on the website.

Compared with the more general Galaxy main site [31],

the Cistrome system was specifically designed for down-

stream data analysis accompanied by ChIP-chip or

ChIP-seq technologies and includes basic analyses from

peak calling to motif detection. In the future, the Cis-

trome analysis platform module will be linked to our

local Data Collection (DC) module where publicly avail-

able ChIP-chip and ChIP-seq data are downloaded and

preprocessed.

There are several integrative software packages

designed for ChIP-chip and ChIP-seq analysis, including

the widely used CisGenome platform [3] and the

recently published seqMINER platform [4]. CisGenome

works as a package of command line software for Linux,

Windows and Mac OSX and provides a GUI and gen-

ome browser only for the Windows operating system.

seqMINER works as standalone GUI software based on

Java. The major difference between Cistrome and these

packages is that we focus on a web solution to eliminate

the trouble of maintaining various software and the

demand for powerful hardware from the user. Another

advantage of using a web server is that we can continue

to provide Cistrome improvements, such as bug fixes

and additional features, that are transparent to the user.

Galaxy infrastructure enables every Cistrome tool to

remember the run-time parameters in the server. When

a Cistrome function is updated, users can rerun an ana-

lysis or reproduce a result using several simple mouse

Figure 4 Cistrome SeqPos motif analysis. A screenshot of the SeqPos output. The enriched motifs at the androgen receptor binding sites

without FoxA1 binding are displayed in an interactive HTML page. When the user clicks on the row of a particular motif, the motif logo and

detail information are shown at the top of the page.
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clicks. Last but not least, Cistrome has been provided

with the workflow and data sharing features from the

Galaxy framework. Users can customize their own pipe-

line to increase productivity. Additionally, users can

share their raw data and analysis results with collabora-

tors and the public through the web interface. An over-

view of a comparison of the functionalities of Cistrome,

CisGenome and seqMINER is provided in Table 1

(detail in Table S3 in Additional file 1).

Conclusions and future directions
We have deployed a comprehensive ChIP-chip and

ChIP-seq analysis platform called Cistrome by integrat-

ing publicly available research tools and newly devel-

oped algorithms from our group under the Galaxy

framework. Cistrome covers most of ChIP-chip/seq ana-

lysis tasks, from data preprocessing, expression analysis,

integrative analysis, reproducible pipeline, to data pub-

lishing; this integrated approach allows biologists to ana-

lyze and visualize their own ChIP-chip/seq data for

publication. We plan to extend Cistrome in the follow-

ing areas: first will be to support the increasing number

of ChIP-seq datasets by building a Cistrome DC module;

second, we plan to continue adding additional research

tools and improve the existing features to provide more

sophisticated integrative workflows, especially for

epigenomics data. We will address these plans in detail

in the following paragraphs.

Each ChIP-chip/seq platform has its own cistrome

data analysis challenges. ChIP-chip platforms include til-

ing arrays from Affymetrix, NimbleGen and Agilent, and

ChIP-seq platforms include NGS machines from Illu-

mina, Applied Biosciences and Helicos. A typical human

ChIP-seq experiment sequenced on one Illumina GAIIx

lane generates approximately 20 GB of fastq data. With

more researchers adopting ChIP-chip/seq methods and

NGS technologies that are improving at rates beyond

Moore’s law [32], the production of cistrome data is

increasing exponentially. Currently, databases such as

the National Center for Biotechnology Information

(NCBI) Gene Expression Omnibus (GEO) [33] and the

European Bioinformatics Institute (EBI) ArrayExpress

[34] host array data, and databases such as the NCBI

Sequence Reads Archive (SRA) [35] and the EBI SRA

host sequencing data [36]. However, experimental biolo-

gists often cannot understand or reuse these deposited

data in their raw form. Although some processed data-

sets have been submitted to these databases, they are

difficult to compare and integrate due to diverse data

generation platforms and analysis algorithms. Therefore,

parallel to the Cistrome data analysis module, we are

designing another major component of Cistrome: the

Table 1 Overview comparison of functionalities of Cistrome, CisGenome and SeqMINER

Cistrome CisGenome 2 SeqMINER 1.2.1

Data preprocessing

ChIP-chip
preprocessing

Yes. Affymetrix or NimbleGen platform Yes. Affymetrix or other
platform through conversions

Not available

ChIP-seq
preprocessing

Yes Yes. No support for SAM/BAM Not available

General peak calling Yes. Through wiggle file for signals No direct solution Not available

Cross-platform
analysis

Yes. Across different ChIP-chip platforms, or across
different ChIP-seq libraries

Not available Not available

Expression analysis

From normalization,
differential
expression, to gene
ontology

Yes. Affymetrix or NimbleGen platform Not available Not available

Integrative analysis

Genome association
study

Yes. Chromosome or gene feature enrichment;
aggregation plot; genes or peaks centered annotation;
conservation plot; k-means clustering heatmap

Yes. Closest genes around
peaks

Yes. K-means clustering at
peak sites; interactive
heatmap; aggregation plot

Correlation between
samples

Yes. Whole genome or peak centered Pearson
correlation; Venn diagram

Not available Yes. Pearson correlation at
enriched regions

Motif analysis Yes. Find enriched known or de novo motifs; map
motifs to genomic locations

Yes. Find de novo motifs; map
motifs to genomic locations

Not available

Other tools Liftover both BED/WIGGLE files; low level operations on
text manipulation and format conversion through
Galaxy

Many useful scripts for format
conversions, to calculate
overlaps and so on

Not available

Genome browser
visualization

Redirect to mirrored UCSC genome browser on
Cistrome, or external genome browsers supported by
Galaxy

Local installed genome
browser on Windows
operating system

Not available
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DC module. The Cistrome DC will be a manually

curated data warehouse. The data stored in the DC

module include both raw and preprocessed data - peak

locations and signal profiles - that are ready to be

imported into the current Cistrome analysis platform.

We plan to develop a user-friendly interface to let users

easily search and browse the datasets. We also plan to

build a bridge from the current analysis module to the

Cistrome DC so that users can choose to package their

analyzed data and publish them in the Cistrome DC

upon paper publication.

Concurrent with an increasing interest in epigenomics

research, increasing amounts of histone modification

ChIP-seq, nucleosome-seq, and DNase-seq data are

becoming available to the public. We plan to add

another specific peak caller, Nucleosome Positioning

from Sequencing (NPS), to Cistrome to target histone

modification data [37]. When ChIP-seq data are used at

the nucleosome resolution (that is, where experimental-

ists use micrococcal nuclease to digest DNA) NPS can

provide better data interpretation than the general

ChIP-seq peak caller MACS. NPS can give the well-

positioned nucleosomes as output and further detect the

dynamic chromatin regions with moving nucleosome or

DNase sites between conditions. Our newly developed

algorithms, called Binding Inference from Nucleosome

Occupancy Changes (BINOCh) [38], can follow up with

motif analysis in the dynamic regions to better under-

stand the transcription factor binding changes.

Many new features and tools for cistrome analysis are

included in our future plans. Basic file manipulation

tools - for example, the BedTools [39] suite - will be

added to Cistrome in the future. The goal is to provide

more flexible workflows for different demands. Because

the WIGGLE format used to save whole genome signal

profiles is too big to maintain and manipulate, we plan

to switch to a more space-efficient self-indexed binary

format: the BigWig [40]. We also plan to support pre-

processed RNA-seq data (for example, in RPKM (reads

per kilobase of exon model per million mapped reads)

form) in our expression analysis module. Galaxy has

included Cufflinks tools in main codes, and we will pro-

vide functions that are similar to those of the current

expression tools such as DESeq [41] or edgeR [42] and

incorporate them into other integrative analysis tools.

For example, by combining expression profiles and tran-

scription factor motif enrichment, we could predict the

correct transcription factors that collaborate with the

ChIPed factor.

Because Cistrome was built on Galaxy, we will con-

tinue updating the Galaxy framework codes for new fea-

tures, such as Galaxy Pages for the reproducible and

interactive supplementary material or Galaxy Visualiza-

tion to show data tracks in a genome browser view. We

also plan to follow in the steps of Galaxy and provide a

cloud computing solution for future scalability. We wel-

come feedback from users regarding new features and

better representations to make Cistrome a better

resource for the community.

Additional material

Additional file 1: Supplementary Tables S1, S2 and S3. File formats

and restrictions on the Cistrome server; public workflows; and detailed

comparison between Cistrome and CisGenome or seqMINER. Online

demonstration of a general ChIP-seq analysis can be found at the public

Cistrome site [44].
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