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Abstract

Cancer results from a breakdown of normal gene expression
control, so the study of gene regulation is critical to cancer
research. To gain insight into the transcriptional and epigenetic
factors regulating abnormal gene expression patterns in cancers,
we developed the CistromeCancer web resource (http://cistrome.
org/CistromeCancer/). We conducted the systematic integration
and modeling of over 10,000 tumor molecular profiles from The
Cancer Genome Atlas (TCGA) with over 23,000 ChIP-seq and

chromatin accessibility profiles fromour Cistrome collection. The
results include reconstruction of functional enhancer profiles,
"super-enhancer" target genes, as well as predictions of active
transcription factors and their target genes for each TCGA cancer
type. Cistrome Cancer reveals novel insights from integrative
analyses combining chromatin profiles with tumor molecular
profiles and will be a useful resource to the cancer gene regulation
community. Cancer Res; 77(21); e19–22. �2017 AACR.

Introduction
Gene expression misregulation plays a critical role in tumor-

igenesis and progression (1), so cancer-specific transcription
factor (TF) and cis-element activities of gene expression are
essential for understanding the molecular mechanisms of can-
cer. The Cancer Genome Atlas (TCGA) consortium has gener-
ated mutation, copy number variation, DNA methylation,
transcriptome profiling, as well as patient survival data for
over 10,000 primary tumor in over 30 cancer types (2). How-
ever, no chromatin immunoprecipitation sequencing (ChIP-
seq) data characterizing TF-binding locations have been pro-
duced from TCGA due to the technical difficulty of ChIP-seq
with limited cell numbers in primary tumor samples. Never-
theless, tens of thousands of ChIP-seq datasets are available in

the public domain, generated in a variety of cell line models
and primary tissues, by large consortia like the Encyclopedia of
DNA Elements (ENCODE; ref. 3) and Roadmap Epigenomics
(4), as well as by individual laboratories worldwide.

To study gene regulation in cancer, we designed compre-
hensive modeling approaches to integrate these publicly
available chromatin profiling data with TCGA data and devel-
oped the Cistrome Cancer web resource (http://cistrome.org/
CistromeCancer/) to report the data integration results. We
previously developed the Cistrome Data Browser (DB; ref. 5).
It contains over 23,000 processed and quality controlled (6)
ChIP-seq and chromatin accessibility (DNase-seq and ATAC-
seq) profiles from human and mouse genomes from sources
including Gene Expression Omnibus (GEO), ENCODE, and
Roadmap Epigenomics (Fig. 1A). We also developed Model-
based Analysis of Regulation of Gene Expression (MARGE;
ref. 7), a computational method for predicting cis-regulatory
(functional enhancer) profiles to interpret differential expres-
sion gene sets by leveraging a compendium of H3K27ac ChIP-
seq datasets from human or mouse genomes. We integrated
ChIP-seq and chromatin accessibility data from Cistrome DB
with TCGA profiles to impute functional enhancer profiles,
"super-enhancer" target genes, and active TF target genes for
each TCGA cancer type. The results of our integrative modeling
are available for browsing and download. A video demon-
stration can be found in Supplementary Video S1 as well as on
the website homepage.

Methods and Results
To integrate the orthogonal data contained in TCGA and

Cistrome DB, TCGA RNA-seq profiles were reclustered into
29 reannotated cancer types (Supplementary Figs. S1 and
S2; Supplementary Table S1). Cistrome Cancer has two main
functional modules: enhancer and target prediction (Fig. 1B),
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and TF target prediction (Fig. 1C). Details for the two modules
are described below as well as in the Supplementary Material.

Differentially expressed genes in cancers can be driven by
unknown TFs bound to distal enhancers, so genome-wide cis-
regulatory profiles imputed from public H3K27ac ChIP-seq can
be useful for understanding cancer-specific gene expression
regulation. To this end, we first identified upregulated genes
by comparing the RNA-seq data of tumor over normal samples
for each of the 15 cancer types that have over 15 normal
samples. For each H3K27ac ChIP-seq profile in the Cistrome
DB, the regulatory potential, which is defined as the ChIP-seq
signal weighted by the distance to the transcription start site,
was calculated for each gene, indicating the level of gene

expression reflected from H3K27ac. As a quantitative gene-
centric approach, the regulatory potential defined in MARGE
is more informative to identify target genes of "super-enhancers"
(8). We applied the logistic regression function inMARGE to over
1,200 H3K27ac profiles and retrieved 10 relevant H3K27ac pro-
files that bestmodel theupregulated genes in each cancer type. The
selected H3K27ac profiles in combination can better model
cancer-specific genes than any single H3K27ac ChIP-seq dataset
from an individual cancer cell line (Fig. 1B). Next, we adopted the
semisupervised learning approach in MARGE to weigh the select-
ed H3K27ac profiles and used the union DNaseI hypersensitive
sites ranked by the weighted integration of H3K27ac signal as the
predicted profile of the enhancers regulating these genes. The

Figure 1.

Cistrome Cancer. A, Data sources. Cancer molecular profiling data, including transcriptomic profiles, DNA methylation profiles, copy number variation,
and clinical survival information, were collected from TCGA. ChIP-seq and chromatin accessibility profiling data downloaded from GEO, ENCODE, and
Roadmap Epigenomics were curated, processed, and stored in the Cistrome DB. B, Enhancer prediction in cancer. For each cancer type, cancer-specific
genes (black) were identified as upregulated in tumor compared with normal samples; MARGE was used to calculate gene-regulatory potential scores
(heatmap) from a compendium of H3K27ac ChIP-seq profiles and to predict enhancer profiles from selected relevant H3K27ac samples. Multiple H3K27ac
profiles used in combination can better model breast cancer–specific genes than H3K27ac from a single breast cancer cell line MCF7. C, TF target
prediction in cancer. For each TF in each cancer, TF activity and expression correlation, corrected for confounding effects from DNA methylation, CNV, and
tumor purity, was used to identify putative target genes. TF ChIP-seq data best matching the putative target genes were integrated with expression
correlation to make the final prediction. The result is presented in a heatmap, in which the top rows represent the TF average expression level, percent
of tumors expressing the TF above baseline, and TF ChIP-seq predictability, in green, purple, and cyan, respectively. Predicted target genes in each cancer
type were listed in columns, where the color and size of each square represent the expression correlation and ChIP-seq regulatory potential score percentile.
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cancer-upregulated genes, predicted cis-regulatory (enhancer)
profile, as well as the "super-enhancer" targets quantified by
MARGE-integrated regulatory potential for each cancer type
can be downloaded for downstream analysis or visualized on
genome browsers.

TF targets in a given cancer type can be predicted. If a TF is
active in a given cancer type, its expression is correlated with its
targets across tumor samples, and its ChIP-seq profiles provide
evidence of strong binding; this information can be used to
predict potential targets of this TF. In addition, TF regulation of
target genes could be continuous from weak to strong in a
context-specific manner, rather than a strict binary mode of
regulation. Therefore, we chose a loose cutoff and provided
users detailed information on TF expression, TF and target gene
expression correlation, and TF binding evidence, so users
interested in specific TFs could set stricter cutoffs for in-depth
study in a specific cancer type. We consider a TF to be active in a
cancer type if a sufficient percentage of tumors express the TF
above a TF-dependent baseline (Supplementary Fig. S3A). We
identified putative targets of an active TF as those genes that are
correlated with the TF in the tumor samples to a significantly
higher level than random gene pairs in the same cancer type
(Supplementary Fig. S3B). We then examined all the ChIP-seq
datasets of this TF and used logistic regression to select a small
subset of ChIP-seq datasets whose regulatory potentials best
model the targets identified in the correlation analysis. In
addition, we used the likelihood ratio test to ensure that the
selected TF ChIP-seq profiles have a better signal than the best
matching chromatin input for the putative targets. Altogether,
we predicted target genes for 575 TFs and made them available
on the Cistrome Cancer website, with an example of androgen
receptor targets shown in Supplementary Fig. S4. For each TF,
users can see the TF expression reads per kilobase per million,
percentage of tumors expressing the TF above baseline, and
ChIP-seq regression likelihood ratio for each cancer type. In the
Cistrome Cancer web interface, each putative target gene for
each TF in each cancer is represented by a square, where the
color and size indicate supporting evidence from gene expres-
sion correlation and ChIP-seq binding, respectively (Fig. 1C).

We demonstrate the utility of Cistrome Cancer through
analyses of selected TFs. We found that FOXM1 is consistently
overexpressed in most cancer types (Supplementary Fig. S5A)
and that luminal breast cancer patients with high FOXM1
expression have poor clinical outcomes (P ¼ 0.018, Supple-
mentary Fig. S5B). Comparing FOXM1 target genes with targets
of other TFs identified in Cistrome Cancer, we found target
genes of MYBL2, EZH2, E2F1, E2F2, E2F8, CBX3, TTF2, BRCA1,
NCAPG, SSRP1, and LIN9 to have the largest overlap with those
of FOXM1 (Supplementary Fig. S5C). Analysis of ChIP-seq data
for these TFs reveals a high degree of binding overlap between
FOXM1, E2F1, and MYBL2 (Supplementary Fig. S5D), suggest-
ing that these three factors form a regulatory module in cancer.
These Cistrome Cancer results are consistent with previous
studies of FOXM1 showing its elevated expression and role in
cancer-related biological processes, including cell proliferation,
cell-cycle progression, and DNA damage repair (9, 10). The
target genes of FOXM1 inferred from Cistrome Cancer, includ-
ing cell-cycle regulators cyclin B1 and CENP-A, have also been
reported as FOXM1 targets in many cancer types (11).

As a second example, we found that STAT4 is significantly
overexpressed in kidney renal clear cell carcinoma (KIRC)

relative to normal kidney (Supplementary Fig. S6A) and that
high STAT4 expression is associated with poor survival (Sup-
plementary Fig. S6B). STAT4 ChIP-seq target genes have overall
higher expression in KIRC (Supplementary Fig. S6C) and,
consistent with known immune-related functions of STAT4
(12), target genes are enriched in immune-related functions,
such as T-cell activation, leukocyte activation, and immune
response. Like STAT4, IRF4 is known to have immune cell–
specific activity (13). However, IRF4 and its target genes are
downregulated in colon and rectal adenocarcinomas (COAD-
READ; Supplementary Fig. S6D–S6F), and higher IRF4 expres-
sion is associated with better prognosis (Supplementary Fig.
S6E). We used TIMER (14), a systematic computational
approach for analyzing tumor immune infiltrations, to estimate
the abundance of tumor-infiltrating lymphocytes and found
CD8 T-cell levels to be higher in KIRC tumors and lower in
COAD-READ tumors, relative to their respective normal tissues
(Supplementary Fig. S6G). Interestingly, CD8 T-cell abundance
is positively correlated with both STAT4 in KIRC (Supplemen-
tary Fig. S6H) and IRF4 in COAD-READ (Supplementary Fig.
S6I). This suggests that the transcriptional activity of STAT4 in
KIRC and IRF4 in COAD-READ tumors might reflect the level of
infiltrating immune cells instead of regulation in the tumor
cells themselves.

Discussion
A fewcaveats regardingCistromeCancer target genepredictions

are worth noting. First, Cistrome Cancer determines relevant
ChIP-seq datasets using a regression approach independent from
cell type annotations. This allows TF binding information to be
borrowed across cell types, butmay not be accurate in cases where
data are absent from closely related cancer types. Users should pay
attention to the likelihood ratio test statistics to assess the corre-
spondence between gene expression and TF binding. Second,
expression correlation between a TF and another gene does not
prove direct TF regulation of the gene, andCistromeCancermight
miss direct gene targets due to insufficient expression correlation
with the TF. Third, as observed in the STAT4 and IRF4 examples,
gene expression patterns observed across TCGA samples may
reflect differences in subpopulations represented within the over-
all population instead of gene expressionmisregulation in cancer.
Fourth, Cistrome Cancer TF target predictions are limited to those
TFs with ChIP-seq data. In some cancer types, there may be active
TFs that are not represented by suitable publicly available ChIP-
seq data. In evaluating Cistrome Cancer predictions, users should
take other available information into account rather than relying
on any measure in isolation.

In summary, Cistrome Cancer is a web resource that integrates
cancer genomics data from TCGA with chromatin profiling data
from Cistrome DB to enable cancer researchers to explore regu-
latory links between TFs and cancer transcriptomes. Exploratory
and interactive data visualization can be carried out using the
Cistrome Cancer web browser, and regulatory predictions can be
downloaded for further analysis. Cistrome Cancer will be a
valuable resource for experimental and computational cancer
biologists alike.
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