
Journal of Transport and Land Use 1:1 (Summer 2008) pp. 21–39
Available at http://jtlu.org

Cities as organisms: Allometric scaling of urban road
networks
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Abstract: Just as the cardiovascular network distributes energy and materials to cells in an
organism, urban road networks distribute energy, materials and people to locations in cities.
Understanding the topology of urban networks that connect people and places leads to insights
into how cities are organized. is paper proposes a statistical approach to determine features
of urban road networks that affect accessibility. Statistics of road networks and traffic patterns
across 425 U.S. cities show that urban road networks are much less centralized than biological
vascular networks. As a result, per capita road capacity is independent of the spatial extent of
cities. In contrast, driving distances depend on city area, although not as much as is predicted
by a completely centralized model. is intermediate pattern between centralized and decen-
tralized extremes may reflect a mixture of different travel behaviors. e approach presented
here offers a novel macroscopic perspective on the differences between small and large cities
and on how road infrastructure and traffic might change as cities grow.

Keywords: Allometric scaling, urban form, Metabolic Scaling eory, network growth

1 Introduction

Access to destinations (i.e. opportunities such as jobs, stores, recreational locations,
etc.) is largely determined by how efficiently the underlying road network facilitates
the flow of people to their destinations. Access is highly constrained by the topology
of the network and to some extent by the form of transportation employed to traverse
it. A variety of definitions of accessibility have been proposed (e.g. Hansen 1959;
Horner 2004; Krizek 2005; Kwan et al. 2003), but all of these estimates of accessibility
consider how destinations and residents are distributed within the city. erefore, it
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is important to assess how the network topology connects residents to destinations in
order to improve the efficiency of road networks.

Accessibility is defined by two components: the location of opportunities within
the urban area and access to those opportunities by residents (Krizek 2005). eo-
retically, the location of opportunities is related to the concept of centrality as used
in graph theory and network analysis (Crucitti et al. 2006; Newman 2003). In this
context, centrality is a measure of how important a component of the network is rel-
ative to its neighbors and explicitly relates to the location of opportunities within a
network. Access to those opportunities is determined by travel times and distances,
and therefore depends both on the mode of transportation and the distance between
residents and opportunities. e mode of travel and travel distance are related because
higher mobility allows residents to live farther away from opportunities (Levinson and
Kumar 1997; Sultana and Weber 2007). e spatial distribution of opportunities and
the spatial relationship between opportunities and residents of urban areas is crucial
to understanding urban structure, and hence is crucial to effectively and efficiently
address planning issues in growing cities (Gifford 2005; Schrank et al. 2005).

Early attempts to put the concept of accessibility to practical use recognized these
two intrinsic aspects (see Ingram 1971). Such attempts have resulted in an array
of measures that quantify accessibility (Baradaran and Ramjerdi 2001; Handy and
Niemeier 1997; Miller 1999). e fact that each definition emphasizes different as-
pects of accessibility shows that different indicators are required to fully summarize
particular local characteristics of the urban infrastructure (Kwan et al. 2003). For ex-
ample, using secondary literature, Baradaran and Ramjerdi (2001) identify five major
theoretical approaches to quantify accessibility (travel-cost, gravity or opportunities,
constraints-based, utility-based surplus, and composite approach, showing that quan-
tified measures of accessibility are highly dependent on local conditions. But regardless
of how accessibility is quantified, the objective is often to evaluate how efficient a par-
ticular aspect of the urban infrastructure is (Baradaran and Ramjerdi 2001; Handy
and Niemeier 1997; Kwan and Weber 2003). At a macroscopic level, efficiency will
depend on the structural characteristics of the urban system. We develop a theoretical
framework largely independent of different definitions of accessibility in an attempt
to understand how accessibility varies with city size, where size is measured both by
population and spatial extent of the urban area.

Since accessibility is ultimately a spatial issue faced by city residents, it has been pro-
posed that accessibility research would greatly benefit from a people-based approach, as
opposed to more traditional place-based approaches (Miller 2005). While recognizing
the importance of this distinction, this paper aims to understand accessibility in ur-
ban areas using a broader approach. Our analysis merges the people- and place-based
approaches by considering the properties of networks that connect people to places.

is paper proposes a statistical approach inspired by recent developments of al-
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lometry and Metabolic Scaling eory (MST) in biology (Banavar et al. 1999; Brown
et al. 2004; West et al. 1997). For the purposes of assessing urban network accessibil-
ity, road networks of different sizes are studied, with an emphasis on understanding
how decentralization affects transport efficiency, where efficiency is defined as mini-
mizing transportation times and distances. is analysis shows that decentralization
is an important difference between urban road networks and the biological cardio-
vascular networks that MST was originally developed to describe. In particular, this
paper examines the relationship between macroscopic properties of urban road net-
works and urban area, population size and accessibility; 425 urban areas with different
populations and areas are compared, rather than looking at the local structure within
these cities. Based on this analysis, a theoretical framework is proposed to understand
how efficiently cities of different sizes distribute traffic through road networks. By sac-
rificing specific details of the local movement of people within the urban areas, this
approach unveils the most general set of features that determine accessibility across
different cities.

2 Cities as organisms

e approach used in this study is based on the premise that there is some commonality
in the ways that cities and organisms distribute resources through networks. In the
early 1970s, Howard T. Odum (Odum 1971, 1973) proposed that flows of energy and
materials in societies can be analyzed in the same way they are analyzed in organisms
and ecosystems. While this approach is not completely novel (e.g. Bon 1979), the
notion that societies or cities can be studied using tools from biology is increasingly
relevant as ecologists study the metabolism of cities (Decker et al. 2000, 2007), the
ecological footprints of cities and regions (Luck et al. 2001), and the ecological impacts
of human societies (Bettencourt et al. 2007; Vitousek et al. 1986, 1997; Wackernagel
et al. 2002).

Just as blood vessels of the vascular network distribute energy and materials to cells
in an organism, road networks distribute energy, materials and people in an urban area.
Recently, Metabolic Scaling eory (Brown et al. 2004) has explained a long-known
pattern that particular attributes of species scale non-linearly with body size (see Peters
1983, for a summary). Interestingly, similar non-linear patterns have been described
for cities, and no satisfactory explanation has been advanced to date (but see Batty and
Longley 1994; Makse et al. 1998). MST shows how aspects of the vascular network
necessarily change systematically with the volume of the organism that is supplied by
the network (Banavar et al. 1999; West et al. 1997). Further, MST shows how network
properties determine many other properties of organisms, such as metabolic rate (the
rate of flux of energy and materials in an organism), growth (Moses et al. 2008; West
et al. 2001), and reproductive rate and lifespan (West and Brown 2005). us, by
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understanding properties of the distribution networks within organisms, it is possible
to understand an important set of primary constraints on how organisms function
(Brown and West 2000).

According to MST, energy is distributed in organisms by networks that are char-
acterized by hierarchical branching and “space-filling,” meaning that resources are de-
livered to cells throughout the organism. For example, in the systemic cardiovascular
network, blood flows from a central pump (the heart), through the aorta to progres-
sively lower-capacity arteries and finally to capillaries. A similar hierarchical network
of veins returns blood back to the heart. Such networks allow flow of blood between a
central heart and cells throughout the organism.

Urban road networks are similar to the cardiovascular network in that they form
hierarchical branching structures that deliver traffic throughout the the city. Free-
ways connect to boulevards which connect to lower-capacity surface streets with the
design goal of distributing people and cars throughout the city. In addition to these
similarities, this study highlights an important difference between road networks and
cardiovascular networks: road networks have no central point analogous to the heart
that is the source and destination of all flow in the network. e similarities and dif-
ferences between cardiovascular systems and road networks are outlined in Table 1. In
addition to the geometric similarities between the two systems, there is an important
conceptual similarity in function. As the main form of transportation of energy and
materials in a city, road networks constrain the “metabolism” of a city, which we define
as the rate at which energy, materials and people are moved through the city. Acces-
sibility is a particularly significant measure of urban metabolism because it measures
the rate at which people are transported to destinations. e framework proposed here
allows researchers to focus on the rate at which cars arrive at their destinations as an
index of both accessibility and urban metabolism, with important implications for the
organization of urban areas.

Cities Organisms

Metabolism Car delivery rate (to
destinations)

Oxygen delivery rate to cells

System size City area (Acity) Body Volume (Vorg)
Network size Road surface area (Aroad) Cardiovascular volume (Anet)
Density Population density (ρ) Cell density (ρ)
Predicted scaling Aroad ∝ ρA3/2

city Vnet ∝ ρV 4/3
org

Table 1: Comparison of cities and biological systems
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3 Metabolic Scaling Theory

e efficient delivery of energy and materials to every cell within an organism is a ma-
jor biological challenge. MST posits that in order to ensure survival and reproduction
through evolutionary time scales, organisms have evolved vascular networks that bal-
ance competing constraints of maximizing metabolic rate, minimizing transportation
distances and times, and minimizing the length and construction of the transporta-
tion network itself. MST shows that centralized, space-filling, hierarchical resource
distribution networks, such as the circulatory systems of mammals, are solutions to
this optimization problem because they deliver blood from a central heart to all parts
of the organism as efficiently as possible. e geometric properties of such networks
generate a series of scaling patterns that have long been observed in biology (Calder
1983; West et al. 1997).

It is well known that most rates in biology scale with the size of organism (Peters
1983), meaning that they are proportional to mass raised to some exponent. Biologi-
cal rates can be expressed as r ∝ M b where r is the rate of interest (e.g. metabolism,
geographic distribution range, heart rate among others), M is body mass, and b is the
scaling exponent. MST explains that b = 3/4 for metabolic rate (Peters 1983) be-
cause of the scaling properties of distribution networks (West et al. 1997). MST also
uses network scaling properties to explain scaling for blood circulation time, b = 1/4.
Further, MST shows that other biological properties such as lifespan, speciation rate
and growth rates are also indirectly dependent on the rate at which networks deliver
resources to cells, and explains why many attributes of organisms show 1/4 power scal-
ing with M . While biologists typically study how rates scale with M , the mathematical
development of the theory focuses on why rates vary systematically with organism vol-
ume, Vorg. Since the density of cells in organisms does not change systematically with
mass, M and Vorg are linearly related. e key result of MST describes how the vol-
ume of the delivery network (Vnet) scales nonlinearly with the volume of the organism
(Vorg) and linearly with the density of delivery sites (ρ) within the organism.

Vnet ∝ ρV 4/3
org (1)

A detailed derivation of Eq. 1 based on fractal geometry is given in West et al.
(1997). is result can be understood intuitively by realizing that as the volume of the
organism grows, there are simultaneously more cells, and the average distance between
the heart and any cell increases. e increase in distance per cell is proportional the
radius of the organism, or V 1/3

org , and the number of cells is proportional to Vorg; mul-
tiplying these two terms gives the 4/3 exponent in Eq. 1. Biology imposes a further
constraint that Vnet is a constant percentage of Vorg so that Vnet ∝ Vorg. Combining
this constraint with the constraint that metabolism (B) is linearly related to the number
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of network delivery sites generates the relationship B ∝V 3/4
org , and the scaling of other

biological rates and times follow. us, MST explains a number of long-standing ob-
servations in biology as resulting from the scaling properties of distribution networks.
is is the conceptual framework used herein to explain the allometric relationships
between urban road networks and city population and area.

4 Using MST to characterize road networks

Translating MST predictions to road networks is straightforward under the assumption
that roads are delivering cars to and from the city center. e 4/3 exponent in Eq.
1 reflects the 3-dimensional structure of organisms. e exponent in Eq. 1 can be
generalized to a system in any dimension, by Snet ∼ S b

sys where Snet is the size of the
network and Ssys is the size of the system in dimension D , and b = (D + 1)/D . In
particular, for a 2-dimensional city area:

Aroad ∝ ρA3/2
city. (2)

us, MST predicts that the surface area of the road network (measured in lane
miles) scales linearly with population density, but non-linearly with city area. us,
as cities increase in spatial extent, they will require proportionally more lane miles per
unit city area (accounting for differences in traffic velocity changes the predictions only
slightly). It is possible to rearrange Eq. 2 using ρ = N/Acity where N is population
size to show the expected relationship between road network area (Aroad) and city area
(Acity) using MST as a framework, so that

Aroad ∝N A1/2
city. (3)

West et al. (1997) give a thorough but complicated derivation of Eq. 3 based on the
geometry of fractal branching networks; this paper gives a more intuitive explanation
(see also Banavar et al. 1999). To simplify the explanation used in this study, the
analysis begins with circular cities and an assumption of uniform population density
and constant velocity on roads (Figure 1). ese assumptions are not meant to be
realistic, but altering them only changes scaling constants, not the scaling exponents
that are the focus of the present analysis. e assumptions are addressed further in the
discussion below.

Figure 1a shows a cartoon of a small city with population N . Figure 1b shows a
city twice as large but with more than three times the number of people, N . e roads
are built to follow the MST model: each individual has one lane that leads from their
house to the city center, like the leaves connected to the trunk of a tree. Here, the only
destination is the city center. Clearly, the length of road necessary to connect a location



Allometric scaling of urban road networks 27

       

a b

Figure 1: Model showing road network of a centralized city. Note that city (a) has half
the area of city (b).

on the city perimeter to the city center is the radius of the city, R, where, by definition
R ∝ A1/2. Further, the average distance from a resident to the center of the city is
also proportional to R, regardless of the average population density of residents. us,
in this simple centralized model, the average amount of road each person requires to
reach the center of the city is proportional to A1/2

city. At this point, another assumption
of MST is invoked: the network should be capacity-preserving in order to maintain a
constant flow rate through the network. In other words, to avoid congestion, a road
that connects two smaller roads must have twice as many lanes. Alternatively, this can
be pictured as separate roads, each one lane wide, going from the city center to each
residence. en, given N residences, the total lane miles (Aroad) is proportional to
N A1/2

city (Eq. 3). In this example the large city has both a higher population density
and a larger area. e per capita lane miles are greater in the larger city only because
of its larger area; per capita lane miles are unaffected by density.

With an understanding that the right-hand side of Eq. 3 simply represents the
population size multiplied by the average distance to destinations, an alternative model
may be considered. Figure 2 shows two cities with the same Acity and N as in Figure
1. However, instead of a fully centralized model of traffic flow, this example assumes
a fully decentralized model. Destinations (circles) have been added throughout the
city; for simplicity, the density of destinations has been set as equal to the population
density (although the relationship between facility density and population density may
not be precisely linear; see Gastner and Newman 2006b and Banerjee pers. comm.).
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is model assumes that people travel to the closest destinations, for example, the
closest gas station, grocery store, bank, etc. (In Figure 1 they travel to the closest two
destinations). en the average distance (d ) between residents and the destinations to

       

   

  

        
   

  

   

  

   
  

a b

Figure 2: Model showing road network of a decentralized cities of different sizes. Note
that city (a) is half the size of city (b).

which they travel is independent of Acity but dependent on density (ρ). In particular,
from dimensional analysis, d = ρ−1/2. is relationship can be seen in Figure 2. Here,
d is independent of Acity but decreases as ρ increases. In contrast with Figure 1, Figure
2 shows that the larger city has a lower per capita travel distance. As in Eq. 3, Aroad is
proportional to N times d , so that Aroad ∝ Nρ−1/2. Since, by definition, ρ = N/A,
this can be written as

Aroad ∝ (N Acity)
1/2 (4)

At this point, two alternative models of traffic flow are available: Equation 3 is based
on MST and a completely centralized model of traffic flow; Equation 4 is based on
a completely decentralized model of traffic flow. ese are obviously extremes of a
continuum of possible traffic scenarios, which can be used to assess where along the
continuum real road networks and real traffic patterns fall.

Equations 3 and 4 are now used to test the hypothesis that urban areas and or-
ganisms exhibit similar scaling relationships. By addressing the ways in which urban
road network scaling differs from scaling in biological systems, this study attempts to
establish an explicit relationship between city size and accessibility. In particular, this
analysis considers how road network design influences per capita travel distance, time
delay, and minimization of built lane miles, as well as how variation in city spatial
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extent, population density and network geometry affect these metrics across different
cities of different sizes. Variation in per capita travel distance across cities is a pri-
mary focus, as the most important component of travel cost and accessibility (Hansen
1959; Levinson and Kumar 1997). Road networks are assumed to be 2-dimensional;
although some cities have population housed in tall buildings, these cases are reflected
in population density. Ultimately, this work suggests how spatial extent and popu-
lation density interact with aspects of urban design to alter accessibility in different
cities.

5 Data andmethods

Data for this study include lane miles and daily vehicle miles driven for 425 urban
areas with population sizes ranging from 5 × 103 to over 3.5 × 107 in 2004 across
the United States. Urban boundaries are circumscribed to Metropolitan and Microp-
olitan Statistical Areas as defined by the U.S. Office of Management and Budget for
2005 (http://www.census.gov/population/www/estimates/metroarea.html). A metro
area contains a core urban area of 50,000 or more population, and a micro area con-
tains an urban core of at least 10,000 (but less than 50,000) population. ese data are
collected by the Federal Highway Administration (FHWA) in its Highways Statistics
Annual Reports published by the U.S. Department of Transportation (FHWA 2005).
Additionally, data on commuting times for 314 urban areas were obtained from the
American Community Survey available on the Census Bureau’s American FactFinder
site (http://www.census.gov/acs/www/). Because data are submitted by the states and
may be collected with different methodologies that may introduce errors, the FHWA
analyzes each state for consistency against its own past years of data and also against
other state and federal data. e impact of such inconsistencies is expected to be in-
significant in the present analysis, given the number of urban areas analyzed and the
wide range of population sizes employed in this research. Moreover, to the authors’
knowledge, this data set contains the best available data on highways, motor vehicles,
and driving statistics across U.S. cities.

All variables used were log10-transformed and compared using Standardized Ma-
jor Axis regression (SMA, also known as type II-regression or reduced major axis; see
Warton et al. 2006 for further details on why SMA is the appropriate statistical tool
for this type of analysis). Although Ordinary Least-Square regression is traditionally
used, SMA is most appropriate when variables cannot be categorized as dependent
and independent, or when both variables are suspected to include measurement er-
rors. Harrisonburg (Virginia) was removed from the commuting time analysis due to
inconsistencies with respect to overall trends shown by the remaining 313 cities.

Observed properties of urban networks are compared to centralized and decentral-
ized predictions (Eqs. 3 and 4) by measuring the deviation of the slope b from unity.

http://www.census.gov/population/www/estimates/metroarea.html
http://www.census.gov/acs/www/
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In order to represent both centralized and decentralized models on the same plot, Eqs.
3 and 4 are rearranged by dividing both sides by A1/2

city.

6 Results

Figure 3a shows the predictions for Eq. 3 versus observations, and Figure 3b shows
predictions from Eq. 4 versus observations. An accurate scaling prediction is indicated
by a slope of 1, which indicates agreement with the exponents in the equations. Figure
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Figure 3: Double logarithmic plots of predicted scaling of network area (Ar oad ) as total
lane miles versus predicted population (N ) and city area (Ac i t y ) as the observed
values based on (a) equation 3 and (b) equation 4. Observed relation based
on SMA regression is shown as a red line and expected based upon our model
in blue.

3a shows a slope very different from 1, indicating that data are not consistent with
the central network model. Figure 3b shows an exponent indistinguishable from 1,
consistent with a the decentralized model. e centralized prediction (Eq. 3) fails to
capture the scaling relationship, while the decentralized prediction (Eq. 4) gives the
right scaling and accounts for 93 percent of the variation in urban lane miles (Table
2).

Until this point, the analysis has focused on questions about how road networks are
built. Next comes a related but different question: What distances do people actually
drive as a function of city area and population density? is question can be answered
using the same framework illustrated in Figures 1 and 2, modifying Eq. 3 and Eq. 4 by
replacing Aroad with total miles driven, which is also reported directly by the FHWA.
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Table 2: Observed and predicted fit using Standardized Major Axis regression. Note
that a slope of one is expected from our model for each situation (See Eqs. 3
and 4). p < 0.0001 for all relations.

Centralized Decentralized�
(N Acity)

1/2�b �
N A1/2

city
�b

b 95% (C I ) R2 b 95% (C I ) R2

Lane miles (Aroad) 1.54 (1.53 1.62) 0.925 1.02 (1.00 1.06) 0.929
Miles driven (Aroad) 1.37 (1.34 1.40) 0.961 0.89 (0.87 0.92) 0.950

Figure 4 shows a slightly different pattern than Figure 3. e data are consistent
with neither the centralized nor decentralized model. e scaling exponent on Fig-
ure 4b is 0.89 and is statistically different from the exponent of 1 in Figure 3b. is
indicates that total miles driven scales differently than lane miles.
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Figure 4: Double logarithmic plots of predicted scaling of network area (Ar oad ) as total
miles driven versus predicted population (N ) and city area (Ac i t y ) as the ob-
served values based on (a) equation 3 and (b) equation 4. Observed relation
based on SMA regression is shown as a red line and expected based upon our
model in blue.

is is shown more clearly in Figure 6, in which the axes are rearranged in order to
plot both model predictions on the same figure. Driving distances fall somewhere be-
tween the extremes of completely centralized and completely decentralized traffic flow.
If travel in cities were completely centralized (as is the assumption in Eq. 3), the scaling
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exponent is predicted to be 1; if travel is completely decentralized, an exponent of 0.5
is predicted. e observed exponent is 0.66 (95%C I = [0.65,0.68]) , so that miles
driven reflect a network that is only partially decentralized, and as city size increases,
miles driven increase faster than built lane-miles. is exponent indicates that there
is not a strong signal of a centralized network; however, the significance of the SMA
shows that there is some effect of city area on driving distance, so that miles driven
increase faster than road capacity in larger cities. Figure 3b indicates that driving dis-
tances are neither completely centralized nor completely decentralized, but somewhere
in between. is suggests that some travel is to central business districts, and some is to
services distributed according to population density. We hypothesized that per capita
commuting traffic might be more centralized than other forms of travel. A direct test of
this hypothesis would require measures of commuting distances across urban areas. Us-
ing commuting times as a proxy for commuting distance, we show that commuting is
no different than travel in general shown by the nearly linear relation between commut-
ing time and total miles driven in Figure 5 (slope = 0.98, 95%C I = [0.95,1.001]).
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Figure 5: Double logarithmic plots of relationship between total driven miles and total
commuting times in minutes.
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7 Discussion

is study has begun an analysis of how driving distances and road network capacities
scale with city area, population size and population density. e motivation for this
work grew out of long-standing empirical results and recent theoretical advances in
biology that show compelling, and potentially very general, nonlinear relationships
between the capacities of networks and sizes of systems in which they are embedded.

e analysis presented in this paper has shown that urban road networks are funda-
mentally different from vascular networks in that they are not (at least not completely)
centralized. An examination of road networks across U.S. cities reveals that road net-
works are built as though traffic is completely decentralized—that is, as though people
typically travel to their nearest store or neighbor or bank, rather than across town or to
the central business district. is finding is summarized by the close linear correspon-
dence between the decentralized prediction (Eq 4) and the data in Figure 3b, which
contrasts with the poor fit of the centralized prediction (Eq 3) in Figure 3a. We found
it surprising that roads are built this way.

Testing whether people actually drive the same way that roads are built (using total
daily vehicle miles traveled in these same cities) revealed that that actual driving dis-
tances show a slightly different scaling than the scaling of road capacities. As shown in
Figures 4a and 4b, driving patterns are not very well characterized by either model, but
they are between the two extremes and somewhat closer to the decentralized prediction
(see Figure 6).

is intermediate pattern may reflect a mixture of different traveling patterns. Per-
haps commuting tends to be to the central business district, in which case commuting
patterns would be closer to the centralized case. However, commuting times (we did
not have access to commuting distances) are found to be remarkably similar to traffic in
general (Figure 5). ese results suggest that both commuting and recreational traffic
have a mixture of both centralized and decentralized components.

7.1 Limits of the model

While the distribution of population density within a city is important to many as-
pects of urban planning (Batty and Longley 1994), the model used in this study is
concerned only with average population density and is insensitive to how that density
is distributed within the city. For example, if population density is a monotonically
decreasing function of distance to the city center (Batty and Longley 1994), the average
distance from any residence to the center remains linear with the radius of the city.

Population density serves as a surrogate for the density of destinations in this re-
seach. Gastner and Newman (2006a), Lammer et al. (2006) and Kühnert et al. (2006)
collected data for urban areas in the U.S., and found a strong correlation between pop-
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Figure 6: Road network scaling of total miles driven compared to centralized and de-
centralized predictions. Observed relation based on SMA regression is shown
as a red line and expected based upon our model in blue.

ulation density and the density of stores and services in those cities. Interestingly, the
relationship was often nonlinear, with a scaling exponent slightly less than one. us,
approximating the density of locations with the density of residents may have intro-
duced a slight systematic bias in the analysis. Further exploration of how the density
of destinations scales with city size and population density would be of value.

Another potential source of systematic bias is the use of population size as a proxy
for the number of cars on the road. e relevant question is whether there is a linear
relationship between the two. To the extent that larger and more densely populated
cities have more public transportation, this could introduce systematic bias. Testing
a smaller subset of data (Litman 2004) in which public transportation was accounted
for produced qualitatively similar results to those shown in Figures 3 and 4.

e initial assumption of constant traffic velocity is clearly violated in real cities. It
matters to this model because road capacity should ideally include traffic velocity as well
as lane miles. We tested whether a crude accounting for velocity would qualitatively
change our results. We assumed that all highways had a velocity of 50 m.p.h. and all
other roads had a velocity of 25 m.p.h.. Including this adjustment, we still found that
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road capacities closely matched the decentralized prediction (Eq. 4). Again, we think
that incorporating more thorough velocity models or more detailed velocity data into
this scaling framework would be worthwhile. is is a particularly interesting area of
research, because velocity also slows substantially as blood flows from larger to smaller
arteries within vascular networks. It would be particularly interesting to know if such
slowing is a general feature of distribution networks and whether it affects the scaling
of transport times.

Finally, while validation of theory is always contingent on the quality and availabil-
ity of data, the generation of quantitative and specific predictions is an important tool
to understand complex phenomena such as allometric scaling of urban areas. Here,
this study has relied on data aggregated by the FHWA at the level of MSAs. It has
been suggested that summary data such as the Highway Statistics report (FHWA 2005)
might be too coarse or inherently faulty to support any conclusions because of potential
heterogeneity in acquisition methodologies among states. While such inconsistencies
might be of concern in some studies, we expect data inconsistencies to be negligible
when comparisons are carried out across urban areas with widely different population
sizes and road network areas. For example, miles driven would have to vary system-
atically with city size to affect our conclusions. Measurement errors would have to be
large with respect to the two-orders-of-magnitude difference in population size across
cities; it seems unlikely that such significant error would have gone undetected given
the multiple uses and analyses carried out with this particular data set.

7.2 Implications of the model

is work has interesting implications for accessibility. It provides an explanation
based on biological principles as to why travel distances are reduced by high popu-
lation density and optimal distribution of locations (i.e. for employment, shopping,
recreation, etc.). While this pattern has been studied in spatial economics (Isard 1972),
it is still important to note that simple geometric constraints on transport through net-
works shape macroscopic patterns of cities and organisms. In larger cities, workers have
access to a larger number of opportunities (Levinson and Kumar 1997), and there is
increased innovative activity (Bettencourt et al. 2007), suggesting increasing returns as
cities grow. However, this work shows that there are also diminishing returns since
there is a larger per-capita travel cost in larger cities.

If cities were completely centralized, then large cities would have very low mobility.
Even in the case of partially decentralized cities, congestion is highest among the largest
U.S. cities (Schrank et al. 2005; but see Morrison and Abrahamse 1983). Congestion,
in turn, has led to the emergence of polycentrism to sustain continuous growth. In fact,
polycentrism may emerge from urban sprawl, as has been documented for most large
urban areas (see Giuliano and Small 1991; Sultana 2000; Sultana and Weber 2007, for
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specific examples), and can be thought of as a response to increasing costs associated
with the nonlinear scaling of urban network (Horner 2004).

is analysis suggests that traffic congestion is not a necessary consequence of urban
sprawl. If cities are built so that travel is primarily between proximate destinations,
rather than to central business districts, per capita travel is independent of city size.
However, in practice there is a small but significant signal of traffic flow that depends
on city size (Figure 6). is research has also uncovered a deviation between how roads
are built and how people drive in different-sized cities. Built lane miles scale differently
with population size than do driven miles, as indicated by the exponent of 1.0 in Figure
3b and 0.89 in Figure 4b. is slight but statistically significant difference can mean
a large disparity between built and driven miles in the largest cities, and suggests that
the ratio of road capacity to travel needs is significantly lower in cities with the largest
population sizes.

e scaling approach taken here necessarily makes simplifying assumptions in or-
der to uncover basic properties of how road networks and travel distances change with
city size and population density. ese models, translated from other disciplines, offer
valuable macroscopic perspectives on the differences between small and large cities and
on how the road infrastructure and traffic might change as cities grow. Others have
found that biological models offer valuable insights into how cities function (e.g. Bet-
tencourt et al. 2007; Decker et al. 2000). e degree to which travel and transport are
to centralized versus decentralized locations is an interesting difference between cities
and the biological systems for which this theory was originally developed. is same
distinction, travel to central versus spatially distributed destinations, is a key variable
in understanding traffic in different cities. e statistics of per capita travel distances
suggest that some degree of polycentrism exists in the largest cities. In biology this
would be analogous to larger organisms having multiple hearts.
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