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Abstract Smart city data come from heterogeneous sources including various types of the Internet of

Things (IoT) such as traffic, weather, pollution, noise and portable devices. They are characterized with

diverse quality issues, and with different types of sensitive information. This makes data processing and

publishing challenging. In this paper, we propose a framework to streamline smart city data management,

including data collection, cleansing, anonymization, and publishing. The paper classifies smart city data

in sensitive, quasi-sensitive, and open/public levels, and then suggests different strategies to process and

publish the data within these categories. The paper evaluates the framework using a real-world smart city

data set, and the results verify its effectiveness and efficiency. The framework can be a generic solution

to manage smart city data.

Keywords Data framework · smart cities · data privacy · data quality · data sensitivity

1 Introduction

1.1 Contextualization

The term “smart cities” dates back to 1980s when there was no common definition agreed globally [12].

Modern cities with a wide use of information and communication technologies (ICT) are coined as smart

cities. More recent introduction of the IoT technologies, characterized by the applications of technology,

physical and digital connectivity, and advanced algorithms [40], has further supported the technical focus

of defining smart cities. The digitized smart cities produce various types of data, which are often trans-

formed for facilitating discovery and accession. This process is known as data publishing. The published

data are then made accessible via query and/or publish/subscribe facilities [3]. Over the accessing inter-

faces, the data are eventually integrated into higher-level services or applications that in return enhance

the quality and performance of smart city services.
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The increased production of data (including personally related data) has also raised an increasing fo-

cus on privacy protection. Sharing these datasets across smart cities becomes a challenge and therefore

publishing the datasets without breaking privacy regulations call for innovative approaches. For example,

according to the policy of information disclosure, data can be categorized in two classes, non-sensitive

data, and sensitive data. Non-sensitive data can be treated as open data published without copyright re-

striction or privacy issue. The data within this category could be governmental documents about public

policies, urban or environment development plans, city transportation, population, etc., which are the area

closely related to the life of citizens. ICT solutions of managing open data require that the data should be

formatted and made accessible so that citizens themselves can reuse the data at their discretion, or compa-

nies can use the data and data-access to create new, innovative services or applications [23]. Non-sensitive

data can be processed according to open standards in order to make the data discovered, accessed, and

shared easily. Linked data and linked open data1 are often regarded as the de-facto open standards for

the data fusion in smart cities. Data in the other category, sensitive data, are those usually comprising

confidential information. The data access to sensitive data is usually strongly restricted by law because

the access to the data can result in compromising a person, a system, an application, or other business

functions. The access can only be granted to people with personal authorization or those with a business

need to know, such as police, and civil administrators. Therefore, a mechanism is needed to model privacy

requirements and user privacy preferences so that privacy policies can be enforced in a data platform. For

example, the well-known role-based privacy model define exclusive roles [15] where each role is assigned

a minimum set of permissions to perform specific tasks.

Smart city data are published for applications or city services to create new opportunities of knowledge-

based decision making. The data are collected from a variety of sources, which are often very diverse and

complex, e.g., having different types, formats, meanings, and sizes. Furthermore, smart city data usually

have a lot of quality issues, e.g., lacking consistency, completeness, correctness, and accuracy, etc. At the

same time data quality is crucial to provide correct information for decision making. In other words, bad

quality data may lead to incorrect analytic results, wrong decision-making, with potentially disastrous

results. Although there exist many platforms which publish data without processing procedures, quality

KPIs and quality controls, we argue that a robust data platform should provide data with a certain de-

gree of quality guarantee, e.g., publish well-prepared data sets, or otherwise provide some indicators of

showing data quality issues.

The objective of this paper is to propose a novel framework for smart city data management where we

prioritize data quality assurance and privacy protection in smart city data publishing. We propose some

innovative methods and have developed the necessary tools for streamlining smart city data publishing.

The paper presents a smart city data management framework, called CITIESData. The framework aims at

being a generic solution for smart city data fusion and management. To protect data privacy, the proposed

approach first classifies the data according to a three-level sensitivity model, i.e., sensitive, quasi-sensitive,

and open data (sensitive means the data has the attributes that can directly identify an individual, e.g.,

social security number; while quasi-sensitive means that the attributes can identify an individual when

linking to the external sources such as social network, which include age, gender, address etc.). According

to these classifications, different strategies are applied to manage sharing and publishing of the data

with different sensitivity levels. To manage the data quality, this paper implements an Big Extraction-

Transformation-Loading platform (BigETL) for cleansing large data sets, and implement a regression

model for grading data quality, as the indicator for labelling data quality for user reference. The proposed

data framework can be applied, tailored, or extended to manage different types of smart city data.

In summary, the paper makes the following contributions: 1) proposes a smart city data management

framework that is able to share/publish data with different sensitivity levels; 2) implements the framework

to streamline data processing, as well as implements the software packages for data quality checking and

1 http://www.w3.org/DesignIssues/LinkedData
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data anonymization; 3) proposes a regression-based quality checking model according to the features ex-

tracted from a data set; 4) evaluates the proposed framework, and validates its effectiveness and efficiency

in managing diverse smart city data.

The remainder of the paper is structured as follows. Section 2 summarizes the related work; Section 3

presents the architecture of the proposed framework; Section 4 describes the implementation, including

an ETL program, a data quality checking model, data cleansing, anonymization and publishing; Section 5

evaluates the framework; Section 6 concludes the paper with the directions for future work.

2 Related Work

Smart cities mainly focus on applying information and communication technologies to all aspects of the

life of cities; therefore, the smart city is closely related to ICT concepts, including Big Data, Internet of

Things, and the next generation of Internet [34]. Smart cities can make an intelligent response to different

kinds of needs, such as public safety and city services, environmental protection, social activities, and

improved daily livelihood of the citizens [27]. A Smart ICT platform is the core of the interaction between

different stakeholders in a smart city. It is responsible for, among other things, mediating the interaction

between data owners/publishers and applications/services [25].

Smart city data and quality issues. Smart city data comes from heterogeneous sources, e.g., various

types of Internet of Things, such as traffic, weather, pollution, and noise. [13] summarizes smart city

data of different domains, including smart homes, cities, retail, transportation, energy, and environments.

Payam et. al. [1] consider the temporal and spatial characteristics of smart city data, which represent the

activities related to cities and people changing over time and locations. They also point out the challenges

of handling smart city data and propose a lightweight semantic model which combines data interpolation

and analytic models to create data quality parameters, but no further details are given in their work. Data

quality has attracted much research interest, e.g., [5, 6, 26, 29, 32, 38, 41]. The authors [5, 29, 38] tend

to classify data quality issues into multiple dimensions, including accuracy, completeness, consistency,

timeliness, interpretability and accessibility, but they have not discussed how to qualify data quality quan-

titatively. In this paper, we highlight quality issues of smart city data, and propose a regression model to

quantify data quality, aiming at providing a reference to users before using the data.

Privacy-preserving data publishing. Privacy-preserving data publishing has received a considerable

attention in the past decades, e.g., [7, 22, 24, 35]. There are vast amounts of work on privacy models

and anonymization techniques. The k-anonymity model [35] is one of the earliest privacy preserving

data publishing models. In a k-anonymous table, each record is indistinguishable from at least k-1 other

records with respect to their quasi-identifier (QI) values. Several enhancements of k-anonymity models,

including l-diversity [21], t-closeness [16] and (α, k)-anonymity [39], were proposed to provide stronger

privacy guarantee. Generalization and suppression are the two most popular anonymization methods [35].

Generalization is applied on the quasi-identifiers and replaces a QI value with a “less-specific but the se-

mantically consistent value” [17], while suppression is to hide a QI value entirely. In our framework we

mainly focus on protecting privacy and securing data management, although we also use both anonymiza-

tion techniques to protect sensitive information. The privacy protection is implemented through the design

of the data platform where different sharing or publishing strategies are used according to data sensitivity

levels.

Data publishing and platforms. Many cities have made their own governmental data publicly avail-

able through data portals, such as New York City 2 , London 3, San Francisco 4, and Dublin 5, and the

2 https://nycopendata.socrata.com
3 http://data.london.gov.uk
4 https://data.sfgov.org
5 https://data.gov.ie
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Danish cities, Aarhus 6, Aalborg 7, Odense 8 and Copenhagen 9. Many of these portals are built on top of

an open source data platform, CKAN 10, which operates as a comprehensive data repository for the data

from a plethora of government agencies. CKAN is widely regarded as a standardized solution disseminat-

ing open data. Besides, various data platforms have been presented in the research literature. For exam-

ple, [20] presents a linked data platform, QuerioCity, to publish, search and link city data from static data

sets or stream data from sensors. [11] proposes a data platform, AECIS, to automate data discovery and

urban stream data integration. [31] presents a streamlined process to collect, store and disseminate moni-

tored data in an urban environment. [4] presents a City Data Pipeline to seamlessly access the data from

other data providers. The application, VIVO11, populates research data, including researcher interests, ac-

tivities, and accomplishments, which enables researchers to discover other researchers and collaborators

across institutions. [9] presents a linked data platform, LinkedLab, to manage the data from research com-

munities. Likewise, our platform aims at managing data publishing services, but furthermore our platform

is designed to streamline the whole data process in a secure environment, including collecting, cleansing,

anonymization, and data publishing. Moreover, we particularly emphasize data quality issues, privacy

protection, and data exchanging. The other works described above are capable of dealing with smart city

data, but they are not concerned with data quality, and privacy in terms of data sensitivity.

3 Overview of the Framework

The primary goal of this framework is to streamline smart city data publishing while data privacy and data

quality are guaranteed. Figure 1 illustrates the system architecture of the proposed framework, which in-

cludes the process of data extraction, cleansing, transformation, anonymization, and publishing. The pur-

pose of publishing data is for data discovering, data accession, and data fusion. The following describes

the architecture in more detail:

The left-most column in Figure 1 represents smart city data from heterogeneous sources, such as the

data streams from smart meters and sensors, including various types of IoT data (e.g., traffic, weather,

pollution, noise, and energy consumption); data from operational systems or data warehouses; and other

types of data.

The middle two columns are the data staging area and data transformation layer, respectively. The

data staging area is used to save the data from different source systems temporarily before data trans-

formations. A staging area can be any data storage system, such as operating file system, a database

management system, or main memory. The data from source systems are extracted into the staging area

for the subsequent data transformations. The transformations may include cleansing the data (e.g., cor-

recting misspellings, resolving domain conflicts, dealing with missing elements, or parsing into standard

formats), combining data from multiple sources, removing duplicate records, and doing data anonymiza-

tion. These transformations are all prerequisite for the created quality data set to be shared/published.

The right-most column is the data storage, publishing, and retrieval layer. The data in this layer is

organized, stored, and made available for retrieval by data consumers, such as citizens, city authorities,

business organizations, and applications. The proposed framework publishes data according to a three-

level sensitivity model in terms of information disclosure, including sensitive data, quasi-sensitive data,

and public (open) data. According to this model, the data are shared or published using different strategies.

Sensitive data is shared with authorized users within a virtual machine based trust environment in the

6 http://www.odaa.dk
7 http://www.odlaa.dk
8 http://odensedataplatform.dk
9 http://data.kk.dk

10 http://ckan.org
11 http://vivoweb.org
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Fig. 1 The Architecture of CITIESData framework

cloud – the data is not allowed to leave this environment when it is used. Quasi-sensitive data is shared

via a cloud-based storage system, e.g., a private OwnCloud12; whereas public data is published or shared

on an open data platform, such as Zenodo13, CKAN14, or DataCite15. Typically, the risk level of the data

can be changed through an anonymization process, e.g., sensitive data becomes non-sensitive after being

anonymized. An open data platform itself is integrated with a data management system, such as CKAN,

which allows data publishers to upload and publish data directly. However, an open data platform can also

be restricted to publish metadata (i.e., the data of describing other data). This feature, in fact, is useful for

sharing information from (quasi-)sensitive data, i.e., only publishing the metadata while not the (quasi-

)sensitive data itself. The benefit is that (quasi-)sensitive data can still be indexed and discovered through

the open data platform even though the data themselves are not accessible. If a user needs to access

(quasi-)sensitive data, (s)he has to link to a secure environment where user authorization is enforced. The

open data portal, thus, becomes a single entrance to search the data available in all data repositories. In

this way the solution becomes a feasible way to maintain privacy and openness of smart city data.

The flow chart in Figure 2 illustrates the process of accessing the published data. First, a user looks

for the desired data via the single visiting entrance, the data portal, where the data are organized into

different categories. The metadata describes the information about the published data, including the name

of the data set, the unique identity, publisher, publisher organization, publishing time, and the link for

12 https://owncloud.org
13 https://zenodo.org
14 http://ckan.org
15 http://datacite.org
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accessing the data, etc. By following the link, the user can directly access the data if the data is published

in the local open data platform, i.e., the data is public. If the data is (quasi-)sensitive data, (s)he has to

request the permission of accessing the data by following the link to the private cloud store, where the

data is available after the necessary user authorization. If the data is from an external data repository, (s)he

may be linked to the external data publishing systems to obtain the data. The metadata in the open data

platform is exposed through a standard OAI-PMH protocol such that it can be harvested by other data

platforms or search engines, which helps data fusion between smart cities (Further details will be given

in Section 4.5).

Fig. 2 The flowchart of accessing the published data

4 The Implementation

4.1 Requirements of Smart City Data Platform

As mentioned previously, smart cities data come from heterogeneous sources, including various types

of Internet of Things data, such as traffic, weather, pollution and noise data. Smart city data processing

is rather challenging, due to the variety. It involves collecting, pre-processing, storing, analyzing and

visualization. There are many methods for processing and utilizing smart city data. For example, detecting

outliers and their removal can be applied to reduce the noise of the data. Distributed storage and data

aggregation techniques are applied to conquer the large volume of the data. Furthermore, the data may

contain lots of sensitive information since they are highly related to the daily life of citizens. The privacy

protection has to be handled accordingly. In this framework, we take these requirements into account and

implement a software platform and tools to streamline smart city data processing.
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4.2 BigETL: A Flexible Tool for Processing Smart City Data

Smart city data are featured with Big Data characteristics, such as high volume, variety, velocity, and

value (4Vs). To tackle these challenges, we develop a flexible ETL tool, called BigETL [18, 19], to deal

with scalable big smart city data sets. BigETL is the core component of our CITIESData framework, and

it is used for data pre-processing before the data is shared, published or analyzed. BigETL is open source

in the Github repository16.

In the following, we discuss how BigETL can meet the requirements for smart city data processing.

In Figure 3 the buildings blocks are shown. The overall system consist of a job scheduler using Quartz17,

and the user-defined processing modules (algorithms) that are specific to the data processing. BigETL

uses multiple data processing systems in its underlying layer. The current version supports Spark, Hive,

Linux Shell, SQL Engine, and Python environment, which gives a high flexibility to process different

types, formats, and sizes of the data. An algorithm is run directly within the system to achieve a certain

processing purpose, such as data cleansing, transformation, anonymization, anomaly detection, data qual-

ity scoring. The automatic control of multiple algorithms jointly processing data is through a workflow

triggered to run by the scheduler. BigETL supports reading and writing data from/to different source sys-

tems, including Hadoop distributed file system (HDFS), smart meters, databases (RDBMS and NoSQL),

and text files. A read/write program for a source system is developed by implementing a unique Java

programming interface offered by BigETL. Thus, it is easy to implement the read/write program for a

new source system.

Fig. 3 The building blocks of BigETL

BigETL can be used to process data streams from IoT networks, e.g., data streams generated by the

sensors of monitoring traffic flow, weather condition, air quality and noise as it supports Spark Streaming

as its underlying processing system. For processing near real-time data, users have to define the time

interval in Spark Streaming to decide how frequent the data should be extracted, e.g., typically every 15

minutes for smart meter data and every 1 minute for capturing traffic flow. Spark streaming can potentially

handle an unlimited size of parallel data streams in the cluster consisting of many nodes, which makes

it possible to handle scalable data streams from sensors for citywide deployments. When the data are

16 http://github.org/xiufengliu/bigetl
17 http://www.quartz-scheduler.org
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extracted and read into Spark streaming, the data are created as the Discretized Stream (DStream) which

represents a continuous data stream received from a source system, or a processed data stream gener-

ated by transforming an input stream. DStreams are the fault-tolerant objects partitioned across cluster

nodes that can be acted on in parallel. A number of operations, called transformations, can be applied to

DStreams directly, including map, filter, groupBy, and reduce, etc., as well as windowing operations with

user-specified window size, and slide interval. Data-dependent programs are implemented for different

sources and integrated into BigETL.

BigETL uses Hive as the system for batch processing of large data sets. These data may be from legacy

systems, transaction systems, or IoT data accumulated for bulk analytics. It is typically rather challenging

to use traditional data warehousing technologies to process the Big data sets, e.g., it may take very long

time. Hive is built on top of Hadoop framework [37], which has a good bulk capability. Furthermore, Hive

provides a user-friendly command line interface, by which users can implement MapReduce programs

by writing SQL-like statements. Its SQL-to-MapReduce translator automatically translates the HiveQL

script into the jobs running in a cluster. For smart city data, Hive will be used in the cases where large-scale

data sets are analyzed, while fast response time is not required. The results of MapReduce jobs are written

into Hive tables, which can be exported to an external database management system for further analysis.

Alternatively it can be directly accessed by cloud-based data management systems for data sharing, e.g.,

by mounting HDFS to OwnCloud. Spark can be another option for batch processing in addition to Hive,

but we consider the maturity of HiveQL and its relational-like table organizing the data in HDFS. We

have decided to use Hive for batch processing in our implementation.

We have designed BigETL to support several other processing systems to achieve sufficient flexibil-

ity for handle diverse smart city data. These other processing systems include Linux Shell, Python, Java

virtual machine, and RDBMS, which run in a single-server environment. In this way users can imple-

ment their programs using the different programming languages,i.e., Shell script, SQL, Java, and Python.

The programs implemented with different programming languages can be chained to run in a sequential

order within a server. This feature is useful for processing the data under complex conditions. BigETL

also provides a web-based graphic user interface for facilitating the implementations and provides basic

functionality to visualize data in tabular and chart formats, by which users can debug their programs and

validate the results.

A data processing program typically consists of multiple processing units, each of which is respon-

sible for a specific task. Figure 15 in Appendix shows a typical example of processing smart meter data.

This ETL job includes the following tasks: a data transferring program of reading data from a FTP server

to a local file system; a program which reads data from local file system to a database, doing in-database

data cleansing; a house keeping program of deleting the old data; and a notification program which sends

messages to users when the job succeeds and/or fails. All the tasks are organized into a series to fulfill

the whole data processing requirements. The joined processing steps are chained to form a workflow. The

task for each step runs in a separate underlying processing system. In fact, BigETL supports multiple data

workflows for processing the data from different source simultaneously. For example, the platform may

run a batch workflow to compute a data model on Hive, while at the same time, another workflow is run to

detect anomalies in Spark streaming. The jobs of workflows are coordinated by a centralized scheduling

system, which distributes the jobs according to the available computing resources.

We have implemented two types of scheduling algorithms to control the jobs, including deterministic

and un-deterministic. The deterministic scheduling algorithm is used to schedule a job to run at the exact

time specified by users. The duration of the job is deterministic and remains the same for repeated exe-

cutions. The jobs scheduled by this method are typically those that are required to run on a single server.

In contrast, the un-deterministic method is for scheduling the jobs to run in a cluster environment. In this

case the jobs may not have to run at the exact time specified by users but typically run at a later time.

The purpose is to ensure that there is only a single job running in the cluster at any time. The reason is

that Spark or Hive programs run on top of Java virtual machine in a distributed computing environment
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requiring some amount of memory. If multiple jobs were submitted to the same cluster, it may run out of

memory. Our implementation, instead, uses a queue to accommodate all the submitted jobs and sorts them

according to the time set by users. If multiple jobs have an identical scheduling time, the scheduler will

use the first-in-first-out (FIFO) strategy to submit the jobs. Here, we give up using the built-in job sched-

ulers of Spark and Hadoop (Hive is using Hadoop as its distributed computing framework) in BigETL,

which is to improve the flexibility of job management. For example, we can easily chain multiple jobs

and run them on the same platform.

4.3 Data Pre-processing Modules

In CITIESData framework, the goal is to use the data for analytics where data quality is critically impor-

tant to ensure the correctness of data models and analytic results. Furthermore, smart city data may contain

sensitive information that requires desensitization to protect the privacy. We will describe three functional

modules for pre-processing the data, including data cleansing, quality checking, and anonymization in the

following. These modules are integrated into the BigETL for pre-processing data automatically.

4.3.1 Module 1: Data Cleansing

One of the major characteristics of smart city data is their variety regarding quality. Data have to be

cleansed since poor data quality can lead to unreliable results of any data analytics. Smart city data are

from different sources and may have different quality issues. Data quality can be improved through the

cleansing process, also called data cleansing or data scrubbing [32]. Data quality is a complex problem.

Some quality problems can be easily found using rule-based detection methods, e.g., syntax problems

such as the validity of date, while some others are complicated, e.g., semantics problems like data point

order in a time series. In our framework, data cleansing can be done automatically by using the rule-based

methods, or manually by a visible analytics approach. The automation of data cleansing is as follows:

first, define the rules and the dependency in a BigETL’s web-based user interface; then define the time

interval for running the cleansing job, and finally, the job scheduler will trigger running the cleansing job

automatically. Our framework also supports running data cleansing jobs in a cluster if Spark or Hive is

used.

Sometimes it is difficult to define the cleansing rules in a computer-executable way for complex

data quality issues. The cleansing can be solved in a visual way, i.e., spot the problems visually and fix

them, e.g., detect the anomalous values in an energy consumption time series. The surrounding values of

an anomaly, combined with consumption patterns is an effective way to judge the suspicious values. By

using the proposed ETL tool, it is easy to see the whole picture of data and judge the anomalies quickly. In

addition, the data in BigETL can also be visualized through tabular and chart formats including pie, line,

bar charts; box and scatter plots, etc. Since BigETL supports a variety of underlying systems including

PostgreSQL, Hive, or an in-memory table in Spark, the data can be read from these systems, and displayed

in different chart formats. Users, therefore, can easily spot the complex data quality issues visually and

fix them.

4.3.2 Module 2: Data Quality Checking

It is a good practice to check the data quality before and after the data cleansing. The checking results

will provide an indication of data quality, and give a reference to users before the data are used. There are

two broad data quality checking methods identified, data profiling and data mining [28]. Data profiling

focuses on analyzing values of an individual attribute, e.g., check the data type, length, value range,

discrete values and their frequency, variance, uniqueness, occurrence of null values, patterns. The results
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show the quality of all aspects of the inspected attribute. Data mining is an more advanced method used

to detect various data quality related issues. The widely used methods include clustering, summarization,

association and sequence discovery. For example, clustering method can discover the unusual patterns

from large energy consumption data set. Functional dependencies between data attributes can be used

to discover the integrity of the data, and can also be used to fix the data, such as missing values, illegal

values and duplicate values.

We introduce quality scoring after the execution of data cleansing activities for user reference purpose

when the data have been published. Our approach uses the data profiling method combined with data

mining. The proposed approach uses a multiple linear regression algorithm to score the quality of data

derived from [33]. Since it is a supervised machine learning method, we first have to label the data, then

use the labeled data to train the linear regression model, and in the end, use the function to grade data

quality. We give the formal definition of this algorithm in the following. A data instance is assumed to have

m attributes, and its quality is determined by n independent attributes (n ≤ m), i.e., A0, A1, ..., An−1. A

weight is introduced for each determinant attribute when the overall data quality is graded, i.e.,

f =

n−1∑

i=0

ωi ∗ yi, ω0 + ω1 + ...+ ωn−1 = 1.0 (1)

where f is the data quality score function, yi is the quality value of the determinant attribute i, and ωi is

its weight. The quality value of each attribute i is computed by a linear regression function:

yi = β0 + βix
(1)
i

+ ...+ βkx
(k)
i

+ ǫi (2)

where x
(1)
i

, ..., x
(k)
i

are the features deciding the quality of the attribute i, β0, ..., βk are the coefficient,

and ǫ is an error term. An attribute can have different features to determine its quality. For example, for

hourly residential electricity consumption, the consumption values typically satisfy a normal distribution.

The features of the reading attribute may include the mean, the standard deviation, and the fraction of

present readings. Another example is that if the values fit a simple linear regression pattern, the features

may include a fraction of the present value, the slope and the interception. Therefore, the used linear

regression model varies to the types of the data being checked. We implement data-dependent programs

for checking different data sets, and the quality scores are published as part of the metadata on the data

portal. The quality score of each data set is updated for each incremental loading in our data platform.

4.3.3 Module 3: Data Anonymization

As mentioned earlier, some smart city data may contain sensitive information. These data are typically

the person-related data collected from the sources, including banks, government organizations (e.g., tax

and citizen offices), hospitals (medical history), utilities, social networks, smart phones, smart meters, and

other types of ubiquitous sensors. Since publishing such data immediately violate personal related privacy,

they have to be desensitized through a sequence of anonymization operations. Anonymization refers to

the approaches that seek to hide the identity and the sensitive data of record owners [10]. Formally, a table

of T containing sensitive attributes can be defined in a 4-tuple format, i.e.,

T =< ID,QI, SA,EA > (3)

where ID is a non-empty set of attributes that can explicitly identify record owners, such as name and

social security number (SSN); QI is a non-empty set of the attributes that can potentially identify record

owners by linking the external information, such as gender, age, and home address; SA is a non-empty

set of attributes that describes person-specific sensitive information such as disease, salary, and disability

status; and EA is a set of other attributes that do not fall into the previous three categories.
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Fig. 4 An example of data anonymization implementation with the requirements, k-anonymity ≥ 2 & l-diversity ≥ 2

There are two often-used metrics to indicate the anonymity of a data set, namely k-anonymity and

l-diversity [30]. If a table satisfies k-anonymity, every record in the table is indistinguishable from at

least k − 1 other records on every set of QI attributes. This ensures that individuals cannot be uniquely

identified by linking attacks. l-diversity means that for a given QI value, there are at least l distinct

values in the SA attribute. This is to avoid homogeneity or background knowledge attack. There are

two techniques to achieving the anonymity requirement, i.e., suppression and generalization [35].

For a better understanding, we now explain them by the example shown in Figure 4, which is to publish

employee data with the anonymity requirement of k-anonymity ≥ 2 and l-diversity ≥ 2. The following

anonymization steps are conducted. First, suppression is employed to hide the individual identifiers, i.e.,

hiding the values of ssn and name attributes. Second, generation is applied on the QI attributes to

achieve k-anonymity (k = 2 in this example). A hierarchy tree is built for the generalization on the age

attribute, which has the height of four. If the age is generalized from level-3 to level-2, three equivalent

anonymous groups are generated according to the QI attribute values, i.e., {r0, r1}, {r2, r3, r4} and

{r5, r6} (see the table in the middle in Figure 4). The anonymity of the resulting groups is ≥ 2, but the

minimum diversity of the groups is 1 since the rows r0 and r1 in the first group have identical values of the

SA attribute, i.e., salary = 1000. Therefore, the values in the column age have to be further generalized

to level-1, then the results satisfy the requirement (see the table on the right in Figure 4).

We have developed a software package for facilitating the anonymization process. The implementa-

tion of this example is shown in Figure 5. The code snippet is self-explanatory, including defining the

hierarchy trees of age and gender attribute values (see line 4–15), the attributes types (see line 17–22), the

anonymizer and the anonymization requirements (see line 24–28). The software package is distributed as

a library in CITIESData platform. The implementation of anonymization can be run by the BigETL tool

to anonymize sensitive data automatically by running the jobs.
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Fig. 5 The example of anonymization implementation

4.4 Data Sharing/Publishing Strategies

After the data is preprocessed, the data is loaded into the data management system for publication. Ac-

cording to the degree of information disclosure, we divide the data into three risk levels, including sen-

sitive, quasi-sensitive and open / open data. Each risk level of data will be published or shared using the

different strategies discussed below.

4.4.1 Sensitive Data

Sensitive data is the value from the quasi-identifier attribute QI , such as personal age, address, and prop-

erties. Sensitive data can be used to identify an individual by linking to external information. However,

the value of the identifier attribute ID explicitly identifies an individual, such as the name and social

security number. Therefore, these values will never be shared or published on our data platform. The ID

attribute value is anonymized by the suppression technique.

If analytical work requires use of sensitive data, which is the case in some data modeling, we use a

virtual machine (VM)-based approach to protect the use of sensitive data. In our framework, we employ

OpenNebula18, an open source cloud computing infrastructure management system, to create a trust exe-

cution environment for data users. The execution environment is located within the virtual machine where

users can run their applications using all risk-level data. The virtual machine is created from a custom

image with administrative privileges disabled and pre-installed the applications for data modeling or anal-

ysis. The root of the trust environment is the hardware component on the motherboard, called the Trusted

Platform Module (TPM), which is enabled to encrypt the data on the local hard drive. If a user needs

to use a trust execution environment, (s)he must create a virtual machine through OpenNebula, which

will find the appropriate computing resource to create the VM instance automatically through its resource

scheduling system. The environment is equipped with TPM and a secure Xen hypervisor containing a

Transparent Memory Encryption Component (TMEC). The secure Xen hypervisor controls interdomain

18 http://opennebula.org



CITIESData: A Smart City Data Management Framework 13

isolation to ensure that jobs that run on different virtual machines do not interact with each other. Sensi-

tive data and VM images are saved on a secure hard disk drive, and the results of user applications are

written to the same hard disk drive.

4.4.2 Quasi-sensitive Data

Quasi-sensitive data refer to the values of SA attributes. Quasi-sensitive data can be linked to sensitive

data to expose individuals, such as energy consumption data and employee salaries. Quasi-sensitive data,

however, are much less revealing if they are not linked to sensitive data. For many analysis tasks, quasi-

sensitive data are sufficient, such as pattern discovery and clustering based on the found patterns. Thus,

quasi-sensitive data can be managed and shared through a much looser environment, such as using the

cloud with appropriate user authentication. In our framework, we employ the cloud data management

system OwnCloud19 to share quasi-sensitive data. The OwnCloud service of our Smart City Project20 is

provided by the Danish Electronic Infrastructure (DeIC) 21, an organization providing e-infrastructures

(computing, storage, and network) to Danish universities. When we wrote this paper, the OwnCloud

service is still at the beta version. It is integrated with the Danish user access service 22 to support single

sign-on. As a result, all users from the Universities and the Institutes in Denmark can log into the DeIC

OwnCloud through their organization’s accounts and access the data.

The OwnCloud service is a Web application that utilizes a standard LAMP stack (Linux, Apache,

MySQL, PHP). All data in the OwnCloud are stored in the file system of the application server, but the

meta-information of the data and users are saved to the underlying MySQL database, such as the infor-

mation of files, the folder, shared properties, user preferences, and access permissions. There are multiple

ways to administrate the data in OwnCloud, including the Web interface, the WebDAV 23 interface, or

sync-clients for desktop and mobile phone. The interface supports various file operations, including up-

load, download, delete, rename, and share. In the OwnCloud, the quasi-sensitive data are organized into

different categories according to its types, such as district heating data, building data, electricity data, etc.

In addition, we implement a fine-grained permission control policy to manage data access permissions at

the folder level. We create a user group for each project and assign the membership to the project member

(see the top table in Figure 6). For each project group, the permissions including read, write and share are

granted (see the bottom table in Figure 6).

4.4.3 Public Data

Smart cities share a variety of data between citizens, government agencies, and organizations, such as

video, code, books, software, and government documents, called public data or open data. The wide

range of data definitions is not just limited to data sets, instead, it includes methods, source code, models

and packages, and many others. All data ranges should be able to be shared, for example, through a

common data platform. CITIESData uses zenodo as the public data platform to publish data. Zenodo

was developed by CERN at the OpenAIREplus project24. The reason we chose Zenodo as our open data

platform is that it natively supports the release of various data in different areas. Each data set published

in Zenodo will be assigned a unique digital object identifier (DOI) through which the dataset can be

referenced like an academic article. Our platform publishes the data from many researchers, including

19 https://owncloud.org
20 http://smart-cities-centre.org
21 http://www.deic.dk
22 http://www.wayf.dk
23 https://tools.ietf.org/html/rfc4918
24 http://www.openaire.eu
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Fig. 6 Permission management in OwnCloud

raw data sets, and their research results such as scientific papers, code and models. The Zenodo platform

enables the data and work to be discovered and cited by other researchers easily.

4.5 Metadata and Data Fusion

All of the data managed in our platform are available to the public for searching and indexing (for the

(quasi-)sensitive data, only the metadata is published in the open data platform). When the data are pub-

lished, some necessary information has to be provided, including the title, data author, organization and

others. When the data is submitted, the system automatically generates the metadata file according to

the standard of DataCite Metadata Schema25, which is accepted by the Zenodo data platform. Metadata

refers to the descriptors or tags that identify a document, data set, data model, or software. CITIESData

will be extended in our future work to support other schema standards.

Data fusion is the main motivation to build this smart city data management framework. Data fusion

plays a central role in the inner- and intra-cities communication. The metadata of all the data published in

our data platform is exposed via OAI-PMH protocol natively supported by Zenodo. OAI-PMH is an open

standard for exchanging structured metadata through URIs, HTTP, and XML [14]. In Zenodo, metadata

can also be exported in several other standard formats, including MARCXML, Dublin Core, and DataCite

Metadata Schema. As a result, metadata can be discovered and harvested by other data service providers

or search engines. This is crucial since it is the way to link isolated data, which helps data fusion in smart

cities.

5 Evaluation

We now evaluate the effectiveness and efficiency of our framework in publishing data. The system is

installed in the server, with an Intel(R) Core(TM) i7-4770 processor (3.40GHz, 4 Cores, hyper-threading

is enabled, two hyper-threads per core), 16GB RAM, and a Seagate Hard driver (1TB, 6 GB/s, 32 MB

Cache and 7200 RPM), running Ubuntu 12.04 LTS with 64bit Linux 3.11.0 kernel. We use the DeIC’s

OwnCloud service to store data and use Zenodo as an open data platform. In our experiments, we used

in-database data cleansing method to cleanse the data which used PostgreSQL 9.4. PostgreSQL has the

following settings: “shared buffers=2048MB, temp buffers= 256MB, work mem=512MB, checkpoint

segments=64” and the default values for other parameters.

25 http://schema.datacite.org/meta/kernel-3
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We use a real-world district heating data set for our evaluation. The original data set contains hourly

heating consumption readings of 53,000 households with a length of fourteen months, and the customer

information of all the households.

5.1 Effectiveness

We first evaluate the effectiveness of data transformation and data anonymization. A sample of the raw

data set is shown on the left side of Figure 7, which consists of customer data and heating consump-

tion data. The customer data contain sensitive information, including the customer names and addresses

(road and building number); while, the heating consumption data is time-series data with two metrics,

volume and heat energy, and read time (we omit showing other attributes for space reason). The heating

consumption data have some data quality issues, including duplicate rows and missing values for certain

time series. The data in both tables will be published according to the criteria of privacy and quality.

Fig. 7 The example of data transformation and anonymization

We follow the steps listed in Figure 8 to process and publish the data. The CITIESData platform

provides a Web-based user interface to implement ETL programs (see Figure 15 in Appendix A). On each

day, data from the data source are uploaded to the staging area, a ftp server. The data are then read and

processed by the ETL program running on BigETL. We use the database management system PostgreSQL

to do in-database data cleansing, i.e., the data is first loaded into PostgreSQL, and then the cleansing is

conducted in the database. The cleansing algorithm is implemented as a store procedure through the Pl/pg

SQL scripting language. The cleansing involves looking up the consumption data table using the business

keys, HouseholdID and Readtime, to identify duplicate records (rows with smaller timestamps are

discarded). Since the measures, volume and heat energy, are accumulative readings, the actual

consumption has to be calculated by the readings of two continuous hours. For the anonymization of

customer data, the processing operations include generating new surrogate keys for replacing the original

household IDs, suppressing the customer name by filtering, and generalizing the addresses by suppressing

the building number.

Data quality checking comes after the cleansing for the indication purpose when the data are pub-

lished. We first generate the multivariate linear regression model according to the Equation 2, which

is done through the training process. We use semiannual time series as the training data set, and use

the rest for verification. For the district heating data set, there are two deterministic attributes, volume

and heatEnergy. However, the attribute heatEnergy depends on volume, i.e., the heat energy

can be computed by the used volume. Therefore, we choose volume attribute for our study. We use

the mean, standard deviation, and the absent ratio of the values as the features to train the model. We
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Fig. 8 The process of publishing the heating data

deliberately omit some of the attribute values in the consumption time series, and label the quality

manually for the training data set (shown in the table on the left and on the right respectively in Fig-

ure 9). We grade the data based on our knowledge of the data used in our research work, i.e., we use

the data for comparing the heat consumption change of a building after a major renovation. The pres-

ence of the values is our primary consideration when we grade the quality of this data set. Here, we

use the simple formula, 100 ∗ (1 − absentRatio), to calculate the score. In the common use cases,

this process is usually carried out by a data expert with domain knowledge. We select the features in-

cluding the mean, standard deviation, and the absent ratio for the linear regression model, i.e., f =
β0 + β1 ∗ mean + β2 ∗ stddev + β3 ∗ absentRatio. Table 1 shows the coefficients and their validity

generated by the training process. The number of “*” indicates the significance level of each explanatory

variables. According to the results, the coefficient estimate of absent ratio has the most significance, as

well as the intercept which is a constant in the linear regression model. t- and p-values are the statistics

values of showing the evidence of the significant difference between population mean and a hypothesized

value. t and p are inextricably linked. A bigger t value represents the more significance.

Fig. 9 Preparation of the training data sets

Table 1 The coefficients and the validity of the multiple linear regression model

Explanatory vari-

able

Coefficient

estimate

Std. error t-value Two-tailed p-test Significance

Intercept 94.139 0.0729 7.21 1.24e-10 ***

mean 2.33 0.0325 4.51 0.0412 *

stddev -0.0533 0.0287 3.01 0.026 *

absentRatio -22.159 0.0814 8.21 2.08e-11 ***

0 ’***’, 0.001 ’**’, 0.01 ’*’, 0.05 ’.’, 0.1 ” Adjusted R2: 0.714, n=53,000

We now use the trained model to grade the data quality for all the time series. Figure 10 displays the

the distribution of data quality scores which fall within 80 to 98. Among of them, 46,004 time series are

within 90 and 98, accounting for 86.8%.
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Fig. 10 Data quality score distribution Fig. 11 Metadata of published data

In the end, we generate the metadata XML file according to the standard of DataCite Metadata Schema

v3.1. The contents of the XML file include the DOI for identifying the data set, the information of pub-

lisher, the data quality information in the description, and others (see Figure 11). The file is uploaded, and

published on the Zenodo open data platform.

5.2 Efficiency

We now evaluate the efficiency by comparing two types of data cleansing methods. The first method is

doing data cleansing by ETL using pygrametl [36], a Python programming-based ETL tool. The ETL

method does data transformation before the loading. The second method is called ELT, which conducts

in-place transformation in the data warehouse after the loading. In this method, we use PostgreSQL stored

procedures to cleanse the data, which are implemented using Pl/pgSQL programming language. The two

methods are scheduled to run on our BigETL tool using the underlying processing systems of pygrametl

and PostgreSQL. We divide time series into four pieces with a same window size, and the pieces are

processed in order according to the time. In both methods, we use PostgreSQL’s bulk-load utility, COPY,

to load data into the data warehouse. Using pygrametl, we do the on-the-fly data cleansing. For each of

the rows, the program looks up the target table in the data warehouse to check the existence of the row.

The lookup operation is conducted on the business key, householdID, and the timestamp, readtime,

on which b-tree index is created, and clustered index is created on householdID. While, for the ELT

method, we create the same indexes on these attributes, and use the SQL DISTINCT operator to filter

duplicate rows.

We first measure the efficiency from the point of the view of data consumers, i.e., to measure the

waiting time of getting the latest published data. Figure 12 shows the waiting times for both methods.

From the results, we could observe that the waiting times rise slightly for both methods, mainly due to

the increasing size of the data in the target table when verifying the duplicate records. The ELT method

can reduce waiting time more than the ETL method since the data can be efficiently processed in the data

warehouse.

We now measure the performance by the scale-up experiment. We scale the number of readings from

1 to 5 million, and measure the time for both processing methods. Figure 13 shows the processing time,

while Figure 14 shows the throughput (tested with 1 million readings). The processing time of the two

scales almost linearly with the increasing number of hourly readings, and the time of the ELT shows less

than ETL method in overall. The corresponding throughput of ELT is roughly 1.4 times the ETL method.

The results have shown that the in-database cleansing method (i.e., ELT) outperforms the classic cleansing
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Fig. 12 The waiting time of getting the latest published data

method(i.e., ETL). The main reason may be due to fewer data movements using the ELT method since

the data have been loaded, and the performance of ELT is also highly dependent on the underlying data

management system.

Fig. 13 Processing time Fig. 14 Throughput

5.3 Remark

There are various use cases for handling smart city data, which is typically challenging to use a uniform

data processing system or platform. In the above experiments, we showed an example of how to use our

platform to handle smart city data. We used energy data sets to evaluate our platform, and validated its

effectiveness and efficiency. As we have already mentioned, the proposed framework supports a number

of underlying data processing systems. This feature makes our framework distinct to others, i.e., supports

processing different types of smart city data from extracting to publishing within the same platform.

We believe that the proposed framework is a good candidate for a common solution for smart city data

management.
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6 Conclusion and Future work

Smart cities generate various data that need to be shared or published for different purposes. In this paper,

we have proposed the Smart City Data Management Framework, CITIESData. We have proposed a three-

risk level model, and categorised smart city data into sensitive data, semi-sensitive data, and public data,

which are published or shared by different strategies. In order to facilitate smart city data management, we

have developed a flexible and powerful ETL tool, BigETL, for big data processing. We also implemented a

linear regression algorithm and a library for data quality checking and anonymization. We have evaluated

the proposed data framework based on a real-world smart city data set, and the results have shown the

effectiveness and efficiency of using the framework.

In the future, first we will extend our BigETL tool to support more other data processing systems

in order to provide more flexibility and capability for processing diverse smart city data. Second, the

libraries for handling different data issues will be developed, such as anomaly detection and data quality.

Third, we will extend to support other schema standards for the metadata management.
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Fig. 15 The web-based user interface of implementing an ETL program on CITIESData platform


