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Abstract

Advancements in volume electron microscopy mean it is now possible to generate thou-

sands of serial images at nanometre resolution overnight, yet the gold standard approach for

data analysis remains manual segmentation by an expert microscopist, resulting in a criti-

cal research bottleneck. Although some machine learning approaches exist in this domain,

we remain far from realising the aspiration of a highly accurate, yet generic, automated

analysis approach, with a major obstacle being lack of sufficient high-quality ground-truth

data. To address this, we developed a novel citizen science project, Etch a Cell, to en-

able volunteers to manually segment the nuclear envelope of HeLa cells imaged with Serial

Blockface SEM. We present our approach for aggregating multiple volunteer annotations

to generate a high quality consensus segmentation, and demonstrate that data produced

exclusively by volunteers can be used to train a highly accurate machine learning algorithm

for automatic segmentation of the nuclear envelope, which we share here, in addition to our

archived benchmark data.
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1 Main

Until recently the study of cell morphology with electron microscopy (EM) was often restricted

to qualitative illustration, as technological limitations prevented quantitative analysis of samples

in three dimensions. Development of novel volume EM methodologies, including Serial Blockface

Scanning Electron Microscopy (SBF SEM) [1] and Focused Ion Beam SEM (FIB SEM) [2], have

enabled automated acquisition of images through greater depths at high resolution [3], with one

microscope able to generate hundreds of gigabytes of aligned serial images per day.

However, our ability to analyse this data has not seen comparable advancement; segmentation

of EM images remains a difficult and time-consuming manual process. Hence, to fully realize

the analytical potential of EM, there is a great need to develop fast, generalizable and accurate

analysis solutions. Although some EM image analysis can be automated through application of

methods such as machine learning [4, 5, 6, 7, 8], these advances have mainly benefited specific

domains such as connectomics [9, 10], where the segmentation problem is focused on tracing

neurons and synapses in serial images from brain and nerves. This focus has generated a large

amount of ‘ground truth’ data which has been successfully used in deep learning to generate

algorithms to automate the task.

The same cannot be said of cell biology, where the segmentation challenge is more diverse, en-

compassing common organelles such as the nucleus, nuclear envelope (NE), mitochondria, endo-

plasmic reticulum and endosomes, as well as rare or transient organelles such as autophagosomes,

secretory granules and phase-separated entities. As in connectomics, the production of ground

truth segmentations has, to date, relied on the effort of the expert EM community. At present

rates of data generation, this community alone is unable to generate sufficient ground truth seg-

mentation data, representative of the appearance of the full range of organelles in different exper-

imental conditions and biological model systems. To enable data analysis at a scale beyond the

capacity of the research community, we engaged the help of a global community of willing volun-

teers through a novel online citizen science project, ‘Etch a Cell’ (www.zooniverse.org/projects/h-

spiers/etch-a-cell), which asked members of the public to manually segment the NE, which was

targeted for volunteer segmentation as it is the most easily identifiable subcellular structure for

which reliable automatic segmentation was not widely available.
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The NE is a double lipid bilayer found in most eukaryotic cells where it surrounds the nucle-

oplasm and encloses the genetic material of the cell. Alterations in the structure of the NE have

been associated with disease [11] including cancer [12, 13] and nuclear laminopathies [14]. How-

ever, despite the clear critical role of the nuclear envelope in cell function, the nanoscale three

dimensional structure of this organelle has been poorly understood to date. In addition to its

biological importance, segmentation of the NE is often a critical first step in the segmentation of

a cell, as this structure provides important context to the three dimensional spatial distribution

of other organelles.

Here, we present our method for establishing a high-quality consensus segmentation from

multiple volunteer annotations on the same image. We demonstrate that exclusively volunteer

produced data can be used to train a machine learning model for highly accurate automatic

segmentation of the NE. Finally, we present a novel multi-axis modification of our machine

learning algorithm that resulted in a marked improvement in model performance. We share all

benchmark data and algorithms produced for the use of the wider research community.

2 Results

2.1 Etch a Cell: an online citizen science project for nuclear envelope

segmentation

An online citizen science project, ‘Etch a Cell’ (EAC), was developed to enable large-scale seg-

mentation of the NE in volume EM data through public engagement. Although online citizen

science has been previously applied in similar contexts [15, 16], to our knowledge, this is the first

application of non-expert, volunteer effort for the segmentation of organelles in EM data. To

maximise the potential utility of the data produced for the research community, the commonly

used HeLa cell line [17] was selected for analysis. A benchmark serial image data set was gener-

ated at 10nm pixel resolution with SBF SEM (Fig. 1, Supplementary Movie. 1), and n = 18 cells

selected from this volume for volunteer segmentation (Supplementary Table. 1 details the unique

Cell ID assigned to each ROI and provides further descriptive information), resulting in a total

of n = 4241 slices for project inclusion after volume pre-processing (Supplementary Fig. 1A-D,
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and Methods). Raw data have been made available via the EMPIAR repository (deposition ID:

137, accession code: EMPIAR-10094, www.ebi.ac.uk/pdbe/emdb/empiar/entry/10094).

2.2 Development and deployment of Etch a Cell

Following an iterative design process lasting approximately six months (from October 2016 to

the beginning of April 2017), EAC was launched on 6th April 2017 as a publicly available

project on the Zooniverse online citizen science platform (www.zooniverse.org). Volunteers

could contribute segmentations through visiting an online classification interface (Supplementary

Fig. 1E), where they were presented with a cell slice at random. A detailed tutorial provided task

instructions (Supplementary Fig. 2), describing how to segment the NE with the novel ‘Freehand

Drawing Tool’ and how to resolve segmentation ambiguities through viewing the two neighboring

slices either side of the target slice (Supplementary Fig. 1C-E, and Methods). Each slice was

independently segmented by multiple volunteers with the number of classifications required set

at n = 30 (the ‘retirement limit’). Each individual segmentation could consist of an arbitrary

number of lines, which were recorded as an array of x,y pairs (Methods, Supplementary Fig. 1F).

2.3 An overview of volunteer interaction with Etch a Cell

In total, n = 104612 classifications were submitted by volunteers before the EAC workflow was

deactivated on 1st August 2019. As classifications could be made by unregistered volunteers, it

was not possible to establish precisely how many individuals contributed, however, classifications

submitted by logged in users were associated with n = 4749 user ids and n = 9444 IP addresses,

indicating between 5000 - 10000 individuals contributed. As is often observed for online citizen

science projects [18], a large number of classifications were received shortly after project launch

(Supplementary Fig. 3A), and the number of classifications submitted by each volunteer varied

greatly (from 1 to 5451), indicating a broad range of engagement levels amongst the community

contributing to this project (Supplementary Fig. 3B). Examining the Lorenz curve for the distri-

bution of volunteer classification contributions to the project (Supplementary Fig. 3C) and the

corresponding Gini coefficient (0.83), indicated that a small number of volunteers contributed a

large number of classifications, as is commonly observed in citizen science projects [18]. However,
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it should be noted that a significant proportion of the classifications submitted to the project

were made by individuals only submitting a small number, reiterating the importance of all

individual contributions.

2.4 Forming consensus from multiple segmentations - aggregating vol-

unteer annotations

To generate sufficiently high quality data for downstream analyses, each individual slice within

EAC was presented to multiple volunteers for segmentation. As expected, most volunteer seg-

mentations were distributed on and around the NE (Fig. 2A-C and Supplementary Movie. 2),

however, distinct classes of segmentation error were observed, including ‘graffiti’ (Fig. 2D, possi-

bly produced as an inadvertent consequence of well-intended classroom based engagement using

this project), ‘false positive segmentation’ in which non-NE pixels are segmented (Fig. 2E) and

‘false negative segmentation’ where NE pixels are missed (Fig. 2F). Of these error classes, the

graffiti class was comparatively rare (Supplementary Movie. 2).

To remove outlying data and establish a ‘consensus’ segmentation for each slice, it was nec-

essary to aggregate the multiple volunteer annotations. As the Freehand Drawing Tool was

developed specifically for EAC, it was necessary to develop a novel aggregation approach. Due

to the presence of noise, erroneous segmentations, and an unknown, variable number of line

segments within the data, this was not trivial, hence, multiple novel aggregation approaches

were developed and explored. Of these, the ‘Contour Regression by Interior Averages’ (CRIA)

algorithm was selected for our analytical pipeline, as it had a number of advantages compared

to other approaches as shall be outlined.

Briefly, the CRIA algorithm procedure involved the following steps: first, closed loops were

formed from each individual volunteer segmentation (Fig. 3A-C), which could consist of multiple

separate lines (Supplementary Fig. 1F). The closed loops were produced through connecting

separate lines after ordering them by minimizing distances. Next, interior areas were generated

from the closed loops (Fig. 3B). The interior areas were overlaid to generate a height map, with

the ‘height’ reflecting the level of agreement between the separate volunteer segmentations for

a single slice (Fig. 3D). The consensus segmentation was determined through taking a mean
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‘height’ level, hence the resulting, ‘final’, segmentation surrounds all the interior areas where half

or more of the volunteer segmentations were in agreement (Fig. 3E-F). This procedure was used

to aggregate all volunteer segmentations (Fig. 3G, Supplementary Movie. 3). The resulting

aggregated data has been made available at www.ebi.ac.uk/biostudies/files/S-BSST448/

Aggregations and the CRIA code is available at www.github.com/FrancisCrickInstitute/

Etch-a-Cell-Nuclear-Envelope.

In addition to producing high quality consensus segmentations (Fig. 3F-G) that showed high

visual similarity to expert data (Fig. 4A, B, D, E, G, H, Supplementary Movie. 4 and Supple-

mentary Movie. 5) this aggregation procedure had a number of notable benefits. Importantly,

the CRIA algorithm made use of all volunteer annotations in producing the final consensus seg-

mentation, therefore no volunteer effort went unused. In contrast to other methods explored, the

CRIA algorithm is fully automated and required no expert involvement, such as manual selection

of high quality segmentations to seed the algorithm. This is a critical advantage for a number of

reasons; avoiding a requirement for manual intervention minimizes the possibility of perturbing

the final, consensus, segmentation through introducing subjectivity and bias associated with a

single individual. Further, eliminating the need for expert assessment removes a significant an-

alytical bottleneck. Finally, and perhaps most notably, this approach has shown high quality

segmentations can be generated solely through collective non-expert effort.

2.5 Machine learning for NE segmentation

Aggregated volunteer NE segmentations were used to train a U-Net CNN architecture [19, 20]

for automatic segmentation of the NE in SBF SEM data. Model performance was assessed

through presenting the model with two previously unseen ROIs, and comparing the resulting

predicted NE segmentations to ‘ground truth’ (Supplementary Table. 1 and Methods provide

further information about ROIs used for model training, validation and testing).

Two complementary forms of ‘ground truth’ data were available; expert generated segmen-

tations (available at www.ebi.ac.uk/biostudies/files/S-BSST448/Expert) and aggregated

volunteer segmentations (Methods, Supplementary Table. 1 and Fig. 4) providing a means to

test two facets of model performance. In comparing the prediction to the aggregated volunteer
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data for each ROI, we were able to establish how well the model had learnt to perform the task of

NE segmentation from the training data provided, which consisted of exclusively volunteer pro-

duced segmentations. Comparing model performance to expert data enabled assessment of how

well the model (hence, indirectly, the volunteers) performed this task in comparison to experts.

The model performed well when compared to aggregated volunteer data. The Average Haus-

dorff Distance (AHD) between the predicted segmentation and the aggregated volunteer seg-

mentation was 1.638 pixels (corresponding to a distance of 16.377nm) for C001, and 1.767 pixels

(17.675nm) for C006. The F-measure, recall and precision of the model were 0.700, 0.792, 0.628

respectively for C001 and 0.687, 0.767, 0.621 for C006 (Table. 1). Although these metrics may

initially seem poor in comparison to similar previous work [21, 22], it should be emphasised that

we are examining the overlap between lines (the NE) rather than areas (the nucleus). Hence, for

easier comparison of our model with previously reported metrics, we also provide the F-measure

for the nucleus area for a single slice within each ROI. As anticipated, this metric shows a much

higher model performance of 0.995 (C001) and 0.991 (C006).

Reflecting differences in volunteer and expert segmentation skill, it was expected that we

would see reduced model performance (trained exclusively using volunteer produced data), when

comparing against expert-produced ‘ground truth’ data. We observed an AHD of 3.129 pixels

(31.287nm) for C001 and 3.890 pixels (38.904nm) for C006 between the prediction and expert

data. The F-measure, recall and precision were 0.340, 0.697, 0.225 respectively for C001, and

0.375, 0.697, 0.256 for C006 (Table. 1). Although most of these metrics indicate good model

performance, the F-measure and precision warrant further explanation. These measures are

particularly poor in the case of comparing the model to the expert data due to an idiosyncrasy

of the expert data. The width of the available expert data is narrower (30nm) compared to both

the aggregated and predicted width of the NE (70nm), and because of this we see a degradation

of the precision and F-measure metrics. This is because the model has assigned pixels as NE

that do not correspond with pixels annotated by the expert, therefore, the false positives rate

is seemingly inflated. Unfortunately, it was not feasible to amend our expert ground truth

through either asking an expert to resegment the ROIs (this was not practical due to time

constraints) nor was it recommendable to dilate the width of the expert segmentation (as this

would introduce greater errors e.g. incorrectly assigning cytoplasm pixels as NE). Despite this,
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upon visual inspection, it was found that the model performance was arguably superior to the

expert segmentation as more relevant pixels appeared to be assigned to the NE by the model

(Fig. 4), which raises questions regarding the legitimacy of ‘ground truth’ data produced by a

single expert, as shall be discussed later.

2.6 Improved model performance with Tri-Axis Prediction

Although the model performed well, expert visual inspection revealed some regions of under-

segmentation (Supplementary Fig. 4A). These regions were not randomly distributed across the

data, but were instead localized to sites at the top and bottom of the volume (the highest and

lowest z slices, Supplementary Fig. 4B,C), presumably due to the higher degree of visual ambigu-

ity in these regions caused by the presence of a greater number of NE islands and the membrane

being oriented parallel to the SBF SEM imaging plane. To improve the automated segmentation,

we sought to leverage additional information available in the volume. The data examined here

were downscaled in the xy plane to 50nm to be isotropic, therefore, it was possible to transpose

the stack and run the model on each axis (Supplementary Fig. 4D-F). This resulted in three

orthogonal NE predictions which were recombined to form a final segmentation, with pixels as-

signed to NE in all three predictions accepted (Supplementary Fig. 4G, Supplementary Movie.

6 and Supplementary Movie. 7) and over-segmented pixels removed using a connected com-

ponents analysis (Supplementary Fig. 4H). Visual inspection revealed a significantly improved

segmentation (Supplementary Fig. 4I), however, it was not possible to quantify this improvement

due to a lack of appropriate ground truth data.

The Tri-Axis Prediction (TAP) approach was applied to the entire volume (Fig. 4, Supple-

mentary Movie. 1, Supplementary Movie. 8 and Supplementary Movie. 9), and took a total

of 48 minutes to produce NE predictions for all nuclei within the volume (Fig. 4J), including the

n = 18 nuclei already segmented with volunteer effort (Fig. 4K and Supplementary Movie. 10).

TAP predictions have been made available at www.ebi.ac.uk/biostudies/files/S-BSST448/

Predictions. Serendipitously, a cell within the volume was undergoing mitosis, allowing us to

observe that our model performed well in this challenging context in which the NE had partially

broken down, despite not having been exposed to training data of this type (Fig. 5A and Sup-
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plementary Movie. 11). This is in contrast to some other approaches for NE identification which

rely on the presence of a clear boundary, such as flood or marker based watershed methods [23].

The ability of the algorithm to segment disassembled mitotic NE is particularly surprising given

the NE effectively regresses to become ER during mammalian cell division. Further analysis

of the features identified by the model may be useful in defining the transition of the NE to

the ER and back during mitosis. TAP was also applied to an alternative region from the same

resin-embedded sample imaged at higher resolution (5nm) on the same microscope (which also

contained both mitotic and interphase cells, Fig. 5B and Supplementary Movie. 12), and to a

HeLa cell from the same sample imaged by an alternative volume EM methodology (FIB SEM)

(Fig. 5C and Supplementary Movie. 13). Visual inspection of these data sets showed good

model performance indicating the model is generalisable to novel contexts, however, it should

be acknowledged that some erroneous over-segmented pixels can be observed, particularly in the

peripheral ER and edges of lipid droplets bordering the nuclear region in mitotic cells (Fig. 5B

and Supplementary Movie. 12), indicating there is scope for future improvement.

Finally, considering the overarching objective of this research was to facilitate faster analysis

of volume EM data, we calculated the time benefit of our predictive model. For an expert

to manually segment a single ROI would have taken approximately 30 hours [24]. Prediction

took approximately 1 minute per image stack for a single ROI, therefore, our model prediction

represents 1800 times faster data analysis.

3 Discussion

We show here that volunteer effort through online citizen science can be effectively applied to the

task of manual segmentation of organelles in electron micrographs, enabling data analysis at a

scale not achievable by experts alone. We demonstrate the data produced is of sufficient quality

for task automation through training a CNN capable of segmenting the NE at high accuracy.

Although prior work has shown crowdsourced volunteer effort can be productively applied to

comparable tasks, such as the marking of single particles from cryo-EM micrographs to generate

3D protein reconstructions [15], and to the marking of whole cells [16], to our knowledge this is

the first study to demonstrate the ability of volunteers to effectively perform manual freehand
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segmentation of an organelle in volume EM data.

Such large-scale, systematic segmentation makes quantitative examination of organelle mor-

phology feasible. This has the potential to drastically advance our understanding of NE mor-

phology and function, in both normal and diseased states such as cancer [12, 13] and nuclear

laminopathies [14]. Yet, even with the collaboration of a community of citizen scientists it will

not be possible to segment data at a scale proportional to current data production rates, and

this challenge will become greater with further technological advancement. Hence, we sought to

automate NE segmentation using volunteer produced segmentations as training data for a CNN

[19], resulting in a model able to segment the NE to a high standard in a matter of minutes,

rather than the hours, days or weeks required for manual segmentation. Critically, our model

was trained exclusively with volunteer segmentations and required no expert microscopist input

or intervention.

Although our model performed surprisingly well when applied to data produced under dif-

ferent conditions, there was scope for improved performance. Hence, we remain far from our

aspiration of a highly-accurate, yet broadly applicable approach for the automated analysis of

microscopy data for a single organelle, let alone each feature of interest in every volume acquired.

It is anticipated that future work in this arena may be accelerated through application of ap-

proaches including transfer learning [25] and multiclass predictive models [26]. However, unless

significant advances are seen in unsupervised machine learning approaches, it is expected that

an adequately trained generic model will still require a large quantity of ground truth annota-

tions, covering each organelle from a wide variety of imaging conditions. Clearly, the lack of

suitable training data remains a significant barrier to the development of a broad automated

approach, however, as we have demonstrated here, large training data sets can be produced

through volunteer engagement.

Many avenues exist for the extension of this research, including segmentation of other or-

ganelles, examination of data from other imaging modalities, and the analysis of data from

further cell lines or tissue types. We anticipate that such future projects would be signifi-

cantly expedited by the workflows and analyses established in this first iteration of EAC. How-

ever, consideration will be required to effectively apply the methods and tools presented here

to novel contexts. A significant degree of variation exists in the difficulty of manual segmen-
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tation of different organelles under different conditions, we will therefore need to refine and

modify novel projects. For example, in designing our second EAC project for the segmentation

of mitochondria (‘Etch a Cell - Powerhouse Hunt’ www.zooniverse.org/projects/h-spiers/

etch-a-cell-powerhouse-hunt) it was necessary to adjust the field of view presented to the

volunteer to ensure a reasonable number of mitochondria of an appropriate size were presented

for segmentation. For organelles that can only be unequivocally identified by functional mark-

ers (e.g. autophagosomes labelled with GFP) other study design adjustments will need to be

explored such as presenting correlative light images in conjunction with EM images to guide

segmentation.

Although challenging from a study design perspective, the possibility of designing a portfolio

of projects of varying difficulty provides a rich opportunity to engage volunteers through serving

a greater variety of skills and interests. Reassuringly, citizen scientists have proven capable of

performing a growing array of challenging tasks, from identifying supernovae [27] to visually

assessing the quality of brain registration in fMRI studies [28]. We have been astonished that it

is possible to train non-experts to recognise and segment complex organelles in minutes with just

an online tutorial. We therefore remain confident in the abilities of our volunteer community to

successfully perform novel segmentation tasks.

The challenge of motivating increased engagement and high-quality contributions will be-

come increasingly important as our repertoire of citizen science projects expands and diversifies.

Manual segmentation is a challenging task requiring a large time investment. We must there-

fore continue to develop novel modes of engaging our community and work to reduce the effort

required to segment each slice. Mechanisms to achieve reduced volunteer effort per slice may

include ‘smart subject assignment’ [29, 30] – the intelligent passing of slices of appropriate dif-

ficulty to volunteers. Further, it may be possible to actively retire slices from the project once

an acceptable segmentation quality has been achieved – this would enable volunteer effort to be

reduced for ‘easier’ images, and to instead be applied to images of greater difficulty.

Incorporating ‘computers in the loop’ may provide additional mechanisms for reducing seg-

mentation effort. Future pipelines may include presenting volunteers with predicted segmenta-

tions for correction, rather than full segmentation. Feedback loops between computer-prediction

and crowd-correction could enable real-time model refinement, improve predictions and therefore
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progressively-reduce need for volunteer correction, resulting in greater project efficiency. Pre-

dictive models need not be fully optimised to be useful; if a model is not yet able to accurately

segment its target organelle, it may still provide valuable information that could be fruitfully

leveraged, for example, the anticipated number of a particular organelle class and their approx-

imate location. This would provide a mechanism for assessing volunteer ability, segmentation

quality and subject difficulty.

We have demonstrated that experts can be removed from the task of manual segmentation,

however, researcher time remains necessary to generate the infrastructure supporting this effort

and for the continued refinement of multiple aspects of the analytical pipelines underlying these

studies. More critically, researcher effort continues to be needed to interpret and assess the quality

of volunteer or machine produced segmentations. This is a particularly challenging component

of this work, as the required quality of a ‘final segmentation’ is often intimately linked to the

research question being addressed. Related to the ubiquitous challenge of finalising segmentations

and establishing ‘truth’ in this domain: it can be difficult to definitively assign pixels of noisy

and nuanced micrographs to different regions, and much inter- (and intra-) expert variation can

exist. The potential for pixel-assignment disagreement raises an interesting possibility regarding

additional value of collectively producing segmentations; when multiple individuals annotate

each slice, rather than a single expert, it is possible to produce a level of confidence that each

pixel belongs to a certain region, rather than simply a binary designation. Such a segmentation-

confidence map may be more reflective of the reality of cell morphology, where a subset of pixels

may not definitely belong to a particular region. This may provide insight, with regions of

variable confidence being of possible biological relevance, for example, we may expect nuclear

pores in the NE to be less confidently designated as this organelle.

Future collaboration of the crowd and computing is poised to enable, for the first time, the

large-scale, generalizable, yet accurate, quantification of multiple subcellular structures across

many data modalities at the nanoscale.

12

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.223024doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.223024
http://creativecommons.org/licenses/by/4.0/


4 Online Methods

4.1 Cell model

HeLa cells were grown in culture then fixed in 2.5% glutaraldehyde and 4% formaldehyde in 0.1

M phosphate buffer (pH 7.4), and embedded as a pellet in Durcupan resin following the method

of the National Centre for Microscopy and Imaging Research [31].

4.2 Data acquisition

Serial blockface scanning electron microscopy (SBF SEM) data was collected using a 3View2XP

(Gatan, Pleasanton, CA) attached to a Sigma VP SEM (Zeiss, Cambridge). Small portions

of the cell pellets were mounted on pins using conductive epoxy resin (Circuitworks CW2400),

trimmed to form an approximately 400 x 400 x 150 µm pillar, and coated with a 2nm layer of

platinum. Images were acquired at 8192 x 8192 pixels using a dwell time of 6 µs (10nm reported

pixel size, horizontal frame width of 81.99 µm) and 50nm slice thickness. The SEM was operated

at a chamber pressure of 10 pascals, with high current mode inactive. A 20 micron aperture was

used, with an accelerating voltage of 3 kV.

Raw data consisted of a total of 518 images acquired sequentially, representing a depth of

25.9µm and total volume of 174135µm3 (10nm dataset, Fig. 1 and Supplementary Movie 1). One

image was excluded from analysis due to a technical fault resulting in loss of the cut material and

the production of a blank image. To enable further analyses and benchmarking, raw data have

been made available via the EMPIAR repository (deposition ID: 137, accession code: EMPIAR-

10094, www.ebi.ac.uk/pdbe/emdb/empiar/entry/10094). Digital Micrograph (DM4) files were

read into Fiji with the Bio-Formats library [32] and subsequently saved as TIFFs.

4.3 Expert production of ground truth data

Ground truth segmentations for two ROIs were obtained by manual annotation in the Amira

software package [33]. The two cells segmented by expert effort were Cell ID = C001 (ROI 1656-

6756-329) and Cell ID = C006 (ROI 3624-2712-201) (Supplementary Table. 1). Expert segmen-

tations have been made available at www.ebi.ac.uk/biostudies/files/S-BSST448/Expert.
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4.4 Volume pre-processing to produce images for online citizen science

Approximately 40 cells were visualized within the full volume (Supplementary Movie 1). Of

these, cells with nuclei not intersecting the edge of the field of view in any slice were manually

selected for study inclusion. This ensured each 2D slice presented to volunteers contained a

complete NE, simplifying the labelling of this structure and reducing the likelihood of mis-

identification. A total of n = 18 appropriate cell volumes were selected using this criterion.

Each selected cell was cropped from the full volume (Supplementary Fig. 1A-C) and exported

as a sequence of TIFF images using the following procedure within Fiji software; a 3D region

of interest was created around each selected cell, with a size of 2000 x 2000 pixels in x,y. The

number of slices (synonymous with ‘subjects’ in Zooniverse terminology) per cell ranged from 150

to 300 due to inherent differences in cell size and variability in cell completeness across the z-axis

in the data volume (12 of the 18 cells weren’t complete in the z-axis, Supplementary Table. 1 and

Supplementary Movie 1). To ensure reasonable web browser download times, the raw images for

each ROI were downscaled to 1000 x 1000 pixels in x,y, and converted from Digital Micrograph

DM4 format to JPEG with quality of 90% to reach an image size of approximately 600 KB using

the Fiji software package [34] with the Bio-Formats tool [32].

4.5 Development of Etch a Cell with the Zooniverse Project Builder

Cell images were presented to volunteers for NE segmentation via an online citizen science

project, ‘Etch a Cell’. This project was designed and deployed on the Zooniverse platform

(www.zooniverse.org) using the Project Builder (www.zooniverse.org/lab). The Zooniverse

Project Builder is a free, web-browser based toolkit that provides the core infrastructure neces-

sary for designing, building and implementing all components of an online citizen science project,

including the project workflow and supporting materials such as the project tutorial (Supplemen-

tary Fig. 2). Project development took approximately six months, during this time the project

workflow was designed and all supporting materials produced, including an in-depth tutorial to

comprehensively explain the NE segmentation task (Supplementary Fig. 2). Prior to launch, the

project was refined through a multi-step review process involving thorough assessment of the

project by both Zooniverse volunteers and the Zooniverse research team. For key Zooniverse
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terms please refer to help.zooniverse.org/getting-started/glossary.

4.6 Etch a Cell workflow design

The pre-processed slices were uploaded to EAC for volunteer segmentation using a python script

(www.github.com/FrancisCrickInstitute/Etch-a-Cell-Nuclear-Envelope) that interfaced

with the Zooniverse Panoptes API (www.github.com/zooniverse/Panoptes). Slices were em-

bedded within the project ‘workflow’. The ‘workflow’ of a Zooniverse citizen science project

refers to the series of tasks a volunteer is asked to complete when presented with data in the

project’s classification interface.

In the EAC project workflow, upon being presented with one of the uploaded cell slices at

random, volunteers were asked to perform the task of segmenting the NE using a Freehand

Drawing Tool applied directly to the image in a web browser (Supplementary Fig. 1E). Upon

submission of the classification, the individual lines drawn by the volunteers were recorded as

arrays of x,y pairs defining a line path (Supplementary Fig. 1F).

To support volunteers in the task of NE segmentation, a detailed project tutorial was provided

on the classification interface (Supplementary Fig. 2). To enable more accurate annotation,

pan and Zoom functionality was enabled. Further, to provide the volunteer with a limited

amount of three-dimensional context to help resolve segmentation ambiguities, the image to

be segmented was presented as the central image within a ‘flipbook’ of five images, with the

two neighbouring images on either side corresponding to the +/- 250 and 500nm planes in the

z-dimension (Supplementary Fig. 1D, E)

To produce data of sufficient quality for downstream analyses, each individual image was

presented to multiple volunteers to enable the generation of a ‘consensus’ from the aggregation

of multiple annotations. The minimum number of required annotations is denoted the ‘retirement

limit’, and was set at n = 30 for this project. Therefore, each individual image received at least

30 volunteer segmentations. A small subset of images received more than this, as a small number

of images continue to be presented to volunteers in the project classification interface after all

available data has been segmented.
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4.7 Citizen science data export

The EAC project workflow examined in this manuscript was deactivated on 1st August 2019

and the project data exported from the data exports page of the Zooniverse Project Builder as a

comma separated value (CSV) file. A single classification could consist of an arbitrary number of

individual lines (a line being defined as a single continuous stroke annotation). Each segmentation

is recorded in a JavaScript Object Notation (JSON) formatted string within the annotation field

of the CSV file. Each line within the annotation is represented as a series of (x,y) pairs defining a

line path (Supplementary Fig. 1F). The unaggregated segmentation data has been made available

at www.ebi.ac.uk/biostudies/files/S-BSST448/etch-a-cell-classifications.csv.

4.8 Data aggregation with Contour Regression by Interior Averages

(CRIA)

Multiple volunteer segmentations were produced for each slice uploaded to the EAC project. It

was therefore necessary to remove outlying data and establish a ‘consensus’ segmentation for each

slice. The Contour Regression by Interior Averages (CRIA) algorithm was developed to aggregate

the volunteer segmentations. In this approach, first, each individual volunteer segmentation was

converted into a closed loop. This procedure was performed for all segmentations associated

with each slice of the ROI. Next, these closed loops were converted to interior areas and stacked.

A consensus segmentation was determined by taking the outline of all interior areas where half

or more of the volunteer segmentations were in agreement (Fig. 3A-F). This procedure was

repeated for every slice within each ROI. Aggregated volunteer data has been made available

at www.ebi.ac.uk/biostudies/files/S-BSST448/Aggregations. CRIA code is available at

www.github.com/FrancisCrickInstitute/Etch-a-Cell-Nuclear-Envelope.

4.9 Model architecture

A U-Net CNN architecture [19, 20] was trained with aggregated volunteer segmentations for

the automatic segmentation of the NE. This architecture uses convolutional layers and an

autoencoder-style compression path. Hyper-parameter optimization was performed through ran-

dom search, resulting in selection of the following model parameters; patch size of (12, 256, 256),
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dropout rate of 0.3, 32 start filters, Adam optimizer with an initial learning rate of 0.0005, and

batch normalization. Informed by the expected and visible width of the membrane in the data

(60-80nm), a nuclear envelope width of 70nm was selected.

Training data for the model consisted of the aggregated volunteer segmentations. A voxel

resolution of 50nm was selected. Supplementary Table. 1 details the ROIs used for model training,

validation and testing. Two ROIs were selected for model validation: Cell ID = C005 (ROI 2052-

5784-112) and Cell ID = C010 (ROI 3588-3972-1). Two ROIs were used for model testing: Cell

ID = C001 (ROI 1656-6756-329) and Cell ID = C006 (ROI 3624-2712-201); these two ROIs had

been manually segmented by both expert and volunteers. One ROI (Cell ID = C013, ROI 1716-

7800-517) was excluded from training due to having received insufficient data from the citizen

science to perform data aggregation. Using a local high performance compute cluster (Methods,

Nvidia Tesla V100-SXM2-32GB) to train this model took approximately 4 hours ( 1 hour for

data pre-processing; 100 seconds per epoch = 3 hours in total).

The loss function used for the model was the smoothed dice coefficient (or F-measure), where:

dice loss = 1 − smoothed dice coefficient

4.10 Model performance Metrics

A commonly applied approach to assess the quality of a model prediction versus ground truth

for image data is to directly map the pixels between the two images. We report the F-measure,

which is similar to the Dice coefficient. This measures the coincidence of predicted cell membrane

to ground truth membrane. The F-measure of the nucleus area (as opposed to the NE) is also

reported to enable easier comparison with previous work. As this metric requires a closed area,

this was performed on a qualified single slice near the centre of the cell. Finally, we also report the

Average Hausdorff Distance (AHD), in both pixels and nm, between the predicted NE and the

position of the ground truth NE. This metric takes an average of all minimal distances between

pixels in the prediction (P) and ground truth (G):

AHD(G,P) =
1

‖G‖

∑

g∈G

{

min
p∈P

{d(g, p)}

}
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4.11 Tri-Axis Prediction (TAP)

A multi-axis modification of our machine learning model was implemented to improve perfor-

mance (Supplementary Fig. 4). Data were downscaled in the xy plane to 50nm to be isotropic,

and the stack transposed to run the model over each axis (Supplementary Movie. 6 and Sup-

plementary Movie. 7). The resulting three orthogonal NE predictions were recombined to

generate a final segmentation. All pixels assigned to NE in all three predictions were accepted,

and connected components analysis was to remove over-segmented pixels (Methods). This ap-

proach was named ‘Tri-Axis Prediction’ (TAP). TAP results for each ROI have been made avail-

able at www.ebi.ac.uk/biostudies/files/S-BSST448/Predictions. TAP code is available at

www.github.com/FrancisCrickInstitute/Etch-a-Cell-Nuclear-Envelope.

4.12 Post-processing of 3D volumes

Connected components analysis [35] was implemented as a post-processing step at multiple points

within the analyses presented. Within the single-axis implementation of the machine learning

model, connected components analysis was used to remove objects below a threshold of 10000

voxels. This threshold was selected as it resulted in the removal of small areas of erroneous over-

segmented pixels, while legitimate membrane was preserved due to its comparatively large size.

Connected components analysis was also used to isolate the predicted NE segmentation for the

target nuclei within each ROI, to discard any predicted NE associated with peripheral cells po-

tentially present. In the TAP modification of the machine learning model, connected components

analysis was similarly used to remove over-segmented pixels by removing objects below a thresh-

old of 10000 voxels and to identify and isolate the target nuclei within each ROI by selecting

the largest connected component. The Python package, scikit-image ([36]) was used to auto-

mate these aspects of the data analysis pipeline (www.github.com/FrancisCrickInstitute/

Etch-a-Cell-Nuclear-Envelope). Where NE segmentations produced by TAP are presented

for the whole volume (e.g. Fig. 4J) objects below a more stringent threshold of 100000 voxels

were removed using MorphoLibJ ([23]). 3D renderings of segmentations were generated using

Fiji’s 3D Viewer plugin [37].
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4.13 Computing Resource

Data analysis was performed on available high performance computing. This included Google Co-

laboratory (www.colab.research.google.com), Amazon Web Services (AWS) cloud computing

service (www.aws.amazon.com), and a local high performance compute cluster called “CAMP”

(Crick Data Analysis and Management Platform). For reproducibility and convenience, the final

analytical pipeline was packaged and tested on AWS.

4.14 Code availability

All assets relating to the analysis and training have been made available on public repositories and

a single automated pipeline for reproducing the work has been containerised using Docker to cap-

ture environment configurations. The agnosticity of the containerised pipeline has been tested by

running on a public cloud instance (AWS). Further information regarding re-running the pipeline

has been provided in the readme on GitHub. We provide both reproducibility instructions (using

the original data) and instructions for applying the trained model to other data sets. Code is

available at: www.github.com/FrancisCrickInstitute/Etch-a-Cell-Nuclear-Envelope.
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[4] C. Sommer, C. Straehle, U. Köthe, and F. A. Hamprecht. Ilastik: Interactive learning and

segmentation toolkit. In 2011 IEEE International Symposium on Biomedical Imaging: From

Nano to Macro, pages 230–233, March 2011.

19

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.223024doi: bioRxiv preprint 

www.colab.research.google.com
www.aws.amazon.com
www.github.com/FrancisCrickInstitute/Etch-a-Cell-Nuclear-Envelope
https://doi.org/10.1101/2020.07.28.223024
http://creativecommons.org/licenses/by/4.0/


[5] Ilya Belevich, Merja Joensuu, Darshan Kumar, Helena Vihinen, and Eija Jokitalo. Mi-

croscopy Image Browser: A Platform for Segmentation and Analysis of Multidimensional

Datasets. PLOS Biology, 14(1):e1002340, January 2016.

[6] Ignacio Arganda-Carreras, Verena Kaynig, Curtis Rueden, Kevin W. Eliceiri, Johannes

Schindelin, Albert Cardona, and H. Sebastian Seung. Trainable Weka Segmentation: a

machine learning tool for microscopy pixel classification. Bioinformatics, 33(15):2424–2426,

August 2017.

[7] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep

convolutional neural networks. In Advances in neural information processing systems, pages

1097–1105, 2012.

[8] Lucas von Chamier, Romain F Laine, and Ricardo Henriques. Artificial intelligence for

microscopy: what you should know. Biochemical Society Transactions, 47(4):1029–1040,

2019.

[9] Stephen M Plaza and Jan Funke. Analyzing image segmentation for connectomics. Frontiers

in neural circuits, 12:102, 2018.

[10] Micha l Januszewski, Jörgen Kornfeld, Peter H. Li, Art Pope, Tim Blakely, Larry Lindsey,

Jeremy Maitin-Shepard, Mike Tyka, Winfried Denk, and Viren Jain. High-precision auto-

mated reconstruction of neurons with flood-filling networks. Nature Methods, 15(8):605–610,

2018.

[11] Brian Burke and Colin L Stewart. Life at the edge: the nuclear envelope and human disease.

Nature reviews Molecular cell biology, 3(8):575, 2002.

[12] Daniele Zink, Andrew H Fischer, and Jeffrey A Nickerson. Nuclear structure in cancer cells.

Nature reviews cancer, 4(9):677, 2004.

[13] Kin-Hoe Chow, Rachel E Factor, and Katharine S Ullman. The nuclear envelope environ-

ment and its cancer connections. Nature Reviews Cancer, 12(3):196, 2012.

[14] Howard J Worman. Nuclear lamins and laminopathies. The Journal of pathology,

226(2):316–325, 2012.

20

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.223024doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.223024
http://creativecommons.org/licenses/by/4.0/


[15] Jacob Bruggemann, Gabriel C Lander, and Andrew I Su. Exploring applications of crowd-

sourcing to cryo-em. Journal of structural biology, 203(1):37–45, 2018.

[16] Jinseop S. Kim, Matthew J. Greene, Aleksandar Zlateski, Kisuk Lee, Mark Richardson,

Srinivas C. Turaga, Michael Purcaro, Matthew Balkam, Amy Robinson, Bardia F. Behabadi,

Michael Campos, Winfried Denk, H. Sebastian Seung, and The EyeWirers. Space–time

wiring specificity supports direction selectivity in the retina. Nature, 509(7500):331–336,

May 2014.

[17] Jonathan JM Landry, Paul Theodor Pyl, Tobias Rausch, Thomas Zichner, Manu M Tekkedil,
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5 Tables

Table 1: CNN performance metrics. Model performance was assessed by comparing the pre-
dicted NE segmentation to ground truth for two ROIs (ROI 1656-6756-329 (Cell ID = C001)
and ROI 3624-2712-201 (Cell ID = C006)). We report multiple metrics of model performance
(Methods) against two complementary modes of ‘ground truth’ data available (aggregated vol-
unteer data and expert-produced segmentations).
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6 Figures
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Figure 1: Workflow for the acquisition and segmentation of serial EM images from benchmark
samples. In this study we imaged resin-embedded HeLa cells at 10nm pixel resolution (A) using
SBF SEM (B). This produced an image stack (C) of 518 sections (50nm thickness, 8192 x 8192
pixels, Supplementary Movie. 1) which were used to construct a 3D volume (D). ROIs from
within this volume were segmented by both experts (E) and volunteers (F). Supplementary
Table. 1 provides further information about the individual ROIs within the volume.
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Figure 2: Multiple segmentations were contributed by volunteers for each image in the EAC
project. Each cell slice (e.g. A) was segmented by multiple volunteers (contributions from
different volunteers shown in different colours (B) and zoomed in panel (C)). The volunteer
annotations vary in quality, with identifiable classes of error including; graffiti (D), ‘false positive
segmentation’ where non-NE is segmented, e.g. a region within the NE, indicated with a red
arrow (E) and ‘false negative segmentation’ where NE pixels have been missed, indicated with a
red arrow (F) (Supplementary Movie. 2). For downstream analyses it is necessary to aggregate
the multiple volunteer segmentations to establish a final ‘consensus’ NE segmentation for each
slice. Panels are produced from slice number 70 from C001 (ROI 1656-6756-329) and 5 micron
scale bar is shown on panel A.
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Figure 3: The Contour Regression by Interior Averages (CRIA) algorithm was developed for the
aggregation of multiple volunteer segmentations. In this algorithm, each individual volunteer
segmentation (A) was converted into a closed loop (B). This procedure was performed for all the
segmentations associated with each slice of the ROI, as can be seen stacked in (C). The closed
loops were converted to interior areas and stacked (D). A final, consensus segmentation was
determined as the outline of all interior areas where half or more of the volunteer segmentations
were in agreement (E). This generated a high-quality, volunteer-produced segmentation (5 micron
scale bar) (F). We show here the annotations and aggregation for slice number 150 from C001
(ROI 1656-6756-329). This process was applied to each slice of all n = 18 volunteer-segmented
ROIs, allowing generation of a 3D reconstruction of each ROI (G) (Supplementary Movie. 3).
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Figure 4: Consensus volunteer and machine-predicted NE segmentations are high quality. Visual
inspection reveals a high similarity between expert (A), aggregated volunteer (B), and machine
predicted (C) segmentations (shown for slice number 150 from C001 (ROI 1656-6756-329)), and
a high degree of overlap of these segmentations with the NE. Segmentations from slices found at
the top and bottom of the volume (D, E, F) showed greater segmentation variability due to the
presence of NE islands and membrane parallel to the cutting plane, which make these regions
more challenging to segment (shown for slice number 40 from C001 (ROI 1656-6756-329)). 5
micron scale bar is shown on panel A. Despite this, 3D reconstruction of nuclei revealed a high
similarity between expert (G) volunteer (H) and machine (I) segmented nuclei (shown for C001
(ROI 1656-6756-329)) (Supplementary Movie. 4 and Supplementary Movie. 5). Automatic NE
segmentation using our trained model applied to our full data volume captured many nuclei
which had not previously been segmented through expert or volunteer effort (J) (Supplementary
Movie. 9), and the n = 18 nuclei previously segmented by volunteers (K) (Supplementary Movie.
10). Machine-predicted segmentations were produced with TAP.
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Figure 5: Model shows high NE segmentation performance in novel contexts. Applying TAP to
the full data volume allowed us to observe that the model performed well when segmenting the
partially broken down NE of a mitotic cell (A) (Supplementary Movie. 11). TAP also showed
good performance when applied to the same resin-embedded sample (which also contained both
mitotic and interphase cells) imaged at higher resolution (5nm) on the same microscope (B)
(Supplementary Movie. 12) and when applied to a HeLa cell from the same sample imaged by
an alternative volume EM methodology, FIB SEM (C) (Supplementary Movie. 13). All scale
bars are 5 micron.
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7 Supplementary Tables
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Supplementary Figure 1: Data pre-processing and presentation to volunteers. Schematic of the
process for subdividing the full raw data volume into cropped regions of interest (A); the raw
data volume (8192 x 8192 x 518 voxels) is manually separated into regions of 2000 x 2000 pixels
(dashed boxes). Each subvolume (B) is treated as a separate ROI (note, different ROIs can
intersect in 3D). (C) Each ROI is a stack of up to 300 slices. (D) To provide 3D context to help
resolve segmentation ambiguities, images are presented to volunteers as a flipbook containing
5 images; the central image (red) to be annotated along with slices 250nm and 500nm above
and below (blue). The project classification interface (E) presents the volunteer with an image
to be segmented at random from the selection of unretired images available. The image to be
segmented (as indicated here with a red arrow) is shown as the central panel in a ‘flipbook’ of
five images. (F) Schematic representation of the construction of the line vector objects; the green
points illustrate the recorded (x,y) positions for a pair of separate path objects. A single user
annotation may contain several separate lines which may or may not form a complete closed
loop. The co-ordinate data are stored as separate x and y arrays for each separate path in a json
formatted string within the values field of the CSV file.
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Supplementary Figure 2: EAC project tutorial. Upon entering the classification interface of EAC
for the first time, a volunteer is automatically presented with the project tutorial. Due to the
complicated nature of NE segmentation task, the tutorial included ten comprehensive steps.
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Supplementary Figure 3: Volunteer interaction with EAC (A) Plotting classification count per
day reveals a characteristic classification curve, with the majority of volunteer effort occurring
shortly after project launch (indicated here with a green vertical line, 6th April 2017). The red
vertical line indicates the day when most classifications were received, n = 1661, 9th May 2017).
(B) A total of n = 4749 signed-in volunteers together contributed classifications to EAC. A large
degree of variation was observed in the number of classifications submitted by each volunteer, as
illustrated with this Treemap where the area of each cell corresponds to the total classifications
submitted by a signed-in volunteer. (C) A Lorenz curve was plotted to describe the inequality
in number of classifications per registered volunteer. This plot shows the cumulative number
of classifications versus the cumulative number of volunteers, with the increased curvature of
the Lorenz curve indicating stronger inequality in volunteer contribution. The black 45◦ line
corresponds to total equality, which in this case would represent all users contributing equal
numbers of classifications. The large distance here between the line of equality and the Lorenz
curve illustrates the large amount of inequality between volunteers in the number of classifications
made on EAC.
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Supplementary Figure 4: Tri-Axis Prediction for improved NE segmentation. Visualization of
the predicted NE segmentation (A) revealed some regions of under-segmentation. These were
not distributed randomly through the volume but instead related to predictable features of the
changing NE structure, with central slices (B) proving easier to automatically segment compared
to slices at the tops and bottom of the volume where the NE becomes more visually ambiguous,
with the presence of islands and membrane parallel to the cutting plane (C). Because the data
has been resampled to be isotropic, it was possible to transpose the EM stack to allow the model
to be applied to the data in different orientations. Presenting the model with data in different
orientations, e.g. along the y-axis (D), resulted in segmentation of NE pixels missed by the
model when run other orientations (A). To enable visual comparison of model predictions, the
y-axis segmentation prediction was transposed to the z-axis orientation (D-F). It can be be seen
that the y-axis prediction (E) fails to capture some of the pixels correctly designated in the
z-axis prediction (B) – these gaps correspond to the ‘ends’ when the structure is viewed from
the y orientation. Conversely, the y-axis prediction (F) performs better for the z-axis ‘end slice’
(C). Predicting the NE along all three axes (x, y, z) and accepting all segmented pixels as NE
results in a high-quality segmentation (G), however, a large number of erroneous, over-segmented
pixels are also present that can be removed by connected components analysis (H). Connected
components can also be utilized to select the central NE within an ROI through selecting the
largest connected region (I). (5 micron scale bar is shown on panels B and C).
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9 Supplementary Movies

Supplementary Movie 1: Full raw data volume. HeLa cells were imaged at 10nm pixel resolution
with SBF SEM. The image stack consisted of 518 slices (with 50nm section thickness) collected
at 8192 x 8192 pixels (Methods and Fig. 1). This volume was cropped in to ROIs for downstream
analysis (Supplementary Fig. 1A-D and Supplementary Table. 1). The raw data associated with
this volume have been made available via the EMPIAR repository (deposition ID: 137, accession
code: EMPIAR-10094).

Supplementary Movie 2: All volunteer segmentations associated with one slice from one ROI.
Each slice within each ROI was segmented by multiple volunteers (Fig. 2A-C). Although some
variation in quality can be observed, with a three identifiable classes of error; ‘graffiti’, ‘false
positive segmentation’ and ‘false negative segmentation’ (Fig. 2D-F), the majority of volunteer
segmentations are distributed on and around the NE. Movie is produced from slice number 70
from C001 (ROI 1656-6756-329).

Supplementary Movie 3: 3D reconstruction of aggregated volunteer segmentations for each ROI.
Individual volunteer segmentations for each slice within each ROI were aggregated with Contour
Regression by Interior Averages (CRIA) (Methods and Fig. 3). This resulted in a high-quality
segmentation produced by the collective effort of volunteers. Corresponding cell IDs can be seen
in Fig. 3G.

Supplementary Movie 4: 3D reconstruction of expert, volunteer and machine predicted NE
segmentations. Visual comparison of the 3D reconstruction of the NE for C001 (ROI 1656-
6756-329) for expert, aggregated volunteer and machine predicted segmentations reveals a high
similarity in NE segmentation (Fig. 4G-I).

Supplementary Movie 5: Expert, volunteer and machine predicted NE segmentations shown by
slice for a single ROI. Visual inspection of expert, volunteer and machine-predicted NE segmen-
tation per slice within C001 (ROI 1656-6756-329) reveals a high degree of overlap with the NE.
Variation in segmentation quality can be observed in relation to the position of the slice within
the stack, with slices found at the top and bottom of the volume displacing greater variation in
segmentation quality (Fig. 4A-F). This is likely due to the presence of NE islands and mem-
brane parallel to the cutting plane in these regions, which make these regions more challenging
to segment.

39

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted July 29, 2020. ; https://doi.org/10.1101/2020.07.28.223024doi: bioRxiv preprint 

https://doi.org/10.1101/2020.07.28.223024
http://creativecommons.org/licenses/by/4.0/


Supplementary Movie 6: 3D reconstruction of TAP prediction for a single ROI. The data ex-
amined here were downscaled in the xy plane to 50nm to be isotropic, this enabled the stack
to be transposed and the model to be run on each axis. The resulting three orthogonal NE
predictions were recombined to generate a final segmentation. All pixels assigned to NE in all
three predictions were accepted (Supplementary Fig. 4). This movie shows the recombined
orthogonal predictions for a single ROI (C001). The NE pixels segmented by each of the three
predictions are coloured coded as follows; x-axis = red, y-axis = green, and the z-axis = blue.
Yellow regions are generated by a combination of red and green, and therefore indicate regions
where the z-axis failed to segment NE pixels. Magenta regions are produced by red and blue, and
therefore indicate where the y-axis has failed to segment NE pixels. Finally, cyan is generated
from green and blue, therefore these regions indicate where the x-axis has failed to segment NE
pixels (Supplementary Movie. 7).

Supplementary Movie 7: TAP prediction for a single ROI shown by slice. X, y and z-axis
predictions for C001 are shown separately and in combination. The NE pixels segmented by
each of the three predictions are coloured coded as follows; x-axis = red, y-axis = green, and the
z-axis = blue. Therefore, in the combined panel, yellow regions are generated by a combination
of red and green, and therefore indicate regions where the z-axis failed to segment NE pixels.
Magenta regions are produced by red and blue, and therefore indicate where the y-axis has failed
to segment NE pixels. Finally, cyan is generated from green and blue, therefore these regions
indicate where the x-axis has failed to segment NE pixels (Supplementary Movie. 6).

Supplementary Movie 8: 3D reconstruction of the predicted NE segmentation for the full data
volume. Automatic NE segmentation with TAP (Methods) identified many nuclei which had not
previously been segmented through expert or volunteer effort (Fig. 4J), including a mitotic cell
Fig. 5A).

Supplementary Movie 9: Predicted NE segmentation for the full data volume shown by slice.
The application of TAP to the full data volume identified many nuclei which had not previously
been segmented through expert or volunteer effort (Fig. 4J).

Supplementary Movie 10: 3D reconstruction of the predicted NE segmentations for each ROI.
The NE of each ROI was automatically segmented using TAP (Methods). Corresponding cell
IDs can be seen in Fig. 4K.

Supplementary Movie 11: Predicted NE segmentation for a mitotic cell within the full data
volume shown by slice. Applying TAP to the full data volume allowed us to observed that the
model performed well when segmenting the partially broken down NE of a mitotic cell (Fig.
5A).

Supplementary Movie 12: Predicted NE segmentation for 5nm SBF SEM data shown by slice.
TAP was applied to an alternative region from the same resin-embedded sample imaged at
higher resolution (5nm) on the same microscope (Fig. 5B). Visual inspection showed good
model performance, indicating the model is generalisable to novel contexts. However, some
erroneous over-segmented pixels can be observed in this data, indicating there is room for future
improvement.
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Supplementary Movie 13: Predicted NE segmentation for HeLa cells imaged with FIB SEM
data, shown by slice. TAP was applied to a HeLa cell from the same sample imaged by an
alternative volume EM methodology (FIB SEM) (Fig. 5C). Visual inspection showed good
model performance.
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