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Abstract

Organisms provide some of the most sensitive indicators of climate change and evolutionary responses are becoming
apparent in species with short generation times. Large datasets on genetic polymorphism that can provide an historical
benchmark against which to test for recent evolutionary responses are very rare, but an exception is found in the
brown-lipped banded snail (Cepaea nemoralis). This species is sensitive to its thermal environment and exhibits several
polymorphisms of shell colour and banding pattern affecting shell albedo in the majority of populations within its
native range in Europe. We tested for evolutionary changes in shell albedo that might have been driven by the warming
of the climate in Europe over the last half century by compiling an historical dataset for 6,515 native populations of C.
nemoralis and comparing this with new data on nearly 3,000 populations. The new data were sampled mainly in 2009
through the Evolution MegaLab, a citizen science project that engaged thousands of volunteers in 15 countries
throughout Europe in the biggest such exercise ever undertaken. A known geographic cline in the frequency of the
colour phenotype with the highest albedo (yellow) was shown to have persisted and a difference in colour frequency
between woodland and more open habitats was confirmed, but there was no general increase in the frequency of
yellow shells. This may have been because snails adapted to a warming climate through behavioural thermoregulation.
By contrast, we detected an unexpected decrease in the frequency of Unbanded shells and an increase in the Mid-
banded morph. Neither of these evolutionary changes appears to be a direct response to climate change, indicating
that the influence of other selective agents, possibly related to changing predation pressure and habitat change with
effects on micro-climate.
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Introduction

Organisms provide some of the most sensitive indicators of

climate change [1] and evolutionary responses are becoming

apparent in species with short generation times [2,3]. Pre-existing

genetic polymorphism in populations provides the raw material

for evolutionary adaptation to climate change [4,5,6,7] and

historical gene frequencies are also a benchmark against which

evolutionary response can be measured [8,9]. However, genetic

data that cover the full geographic range of a species before
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warming and other global changes such as biodiversity loss

occurred are scarce. An exception is the banded snail Cepaea

nemoralis that exhibits several polymorphisms affecting shell colour

and banding pattern in the majority of populations within its

native range in Europe [10] (Fig. 1). Decades of research

concentrated between 1930–1980 recorded local and continental-

scale associations between particular phenotypes, habitat and

climate.

When exposed to sunlight, the colour of a snail’s shell influences

the temperature experienced by the animal within [11]. Hence in

Cepaea nemoralis and other polymorphic snails, shell colour and the

presence or absence of dark bands that absorb solar radiation

influence behavioural thermoregulation [12,13,14] and the

biochemistry of response to environmental temperature differs

between morphs [15,16]. Within populations, behavioural ther-

moregulation produces correlations between morph and micro-

habitat [17,18] and thermal gradients within a habitat can

therefore contribute to the maintenance of shell polymorphism

in snails [19,20,21,22]. Cepaea species are subject to predation,

especially by birds, so that in any given habitat inconspicuous

morphs may have an advantage over conspicuous ones [23].

Visual selection and selection based on thermal effects of colour

may be confounded [24]. At the larger, geographic scale, morph

frequencies in Cepaea nemoralis exhibit a cline, with the frequency of

Yellow (the shell colour with the highest albedo) declining

northwards in Europe [10].

The average land temperature in Europe increased by 1.3uC

during the twentieth century, with a particularly steep rise

between 1990–2009 [25]. We proposed that this increase in

environmental temperature might have produced selection in

favour of shell morphs with a higher albedo (Yellow, Unbanded

or 1-banded) at the expense of morphs with a lower one (dark

pink or Brown, Many-banded shells). We tested this hypothesis

using a new compilation of the historical data on morph

frequencies in C. nemoralis and a large, new continent-wide

dataset on Cepaea polymorphism that we collected in 2009. The

new data were collected through a citizen science project, the

Evolution MegaLab [26], that engaged thousands of volunteers in

15 countries throughout Europe in the biggest such exercise ever

undertaken.

Methods

Cepaea nemoralis
C. nemoralis is among the largest and because of its

polymorphism and bright colours one of the most easily identified

snails in Western Europe. It is a very common and widespread

species, occupying a very wide range of habitats from dunes along

the coast to woodlands with full canopy cover. No doubt aided by

human transport, it is a good colonizer, and is often found in

gardens, parks and abandoned land in cities. It is comparatively

slow-growing, usually taking three years to develop from egg to

breeding adult. It feeds mainly on dead or senescent plants. Like

most Pulmonate land snails, it is hermaphrodite and must mate to

produce fertile eggs. Mating tends to be concentrated in late

spring and early summer, though it can continue through the

autumn. The snails often store the sperm they receive from their

partner for some time, and individual broods can have mixed

paternity. In winter, the snails may hibernate, but can be active in

warm spells.

Data
A scoring scheme was devised for snail morphs and for the

different kinds of habitats in which they are found that would

enable us to compare data collected by professional biologists

during the twentieth century with data that could be reliably

collected by volunteers. The ground colour of the shell is

controlled at a single locus (‘C’) and displays three main

phenotypes: Brown, Pink or Yellow, in order of decreasing

dominance [27]. Pink and Brown tend to be difficult for amateurs

to tell apart, but Yellow is easily distinguished. We asked

participants to record all three colours, but here have analyzed

only the frequency of the homozygous recessive Yellow morph

relative to other shell colours. Presence of banding is controlled

by a locus (‘B’) at which a dominant allele suppresses banding.

This locus is linked to the ground colour locus C and produces

phenotypes that are either Unbanded or banded (homozygous

recessive). The maximum number of bands is five. A number of

loci control the number and appearance of bands by modifying

the expression of B. We scored the effect of the locus (‘U’),

unlinked to C and B. The dominant allele at this locus suppresses

bands 1,2, 4 and 5, producing a single, Mid-banded phenotype,

the homozygous recessive showing all five bands. Accurate

scoring of other banding variants is hard for amateurs; hence, we

scored banding phenotypes as Unbanded, Mid-banded or Many-

banded, and further variation in this character is excluded from

our analyses.

We scored the habitats in which all C. nemoralis populations were

sampled in the four categories: woodland, hedgerow (lines of

shrubs & trees at field & other boundaries), grassland or sand

dune. These habitats are generally distinct enough not to be

confused with each other by amateurs and can also be

distinguished in aerial photographs, so that quality control checks

could be performed at sample locations using Google Earth.

Locations of published samples were usually given in the source

as map references or place names which we translated into latitude

and longitude. In the Evolution MegaLab (http://www.evolu-

tionmegalab.org) the latitude and longitude of every sample was

recorded by asking users to pinpoint its location using an

embedded Google map.

Data on the frequencies of shell morphs, habitats and locations

recorded in the twentieth century, and in just a few cases earlier,

were captured from the published literature, from theses and from

public and personal archives (R.A.D. Cameron, J.S. Jones and

J.J.D. Greenwood). We refer to this dataset as the historical record

Figure 1. A collection of snails from a polymorphic population
of Cepaea nemoralis in Poland. This illustrates the variety of shell
colours (Yellow, Pink, Brown) and banding (0, 1, 5) typically found.
Photograph by Robert Cameron.
doi:10.1371/journal.pone.0018927.g001
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and it contained data on 6,515 populations of C. nemoralis sampled

throughout Europe. The bulk (89%) of the samples in the

historical dataset were collected between 1950 and 1990. A

modern dataset was compiled from professional and amateur

samples made between 2000 and 2009, the majority being

collected in 2009 by volunteers participating in the Evolution

MegaLab. The modern dataset comprised samples from 2,990

populations of C. nemoralis containing at least 10 individuals. Over

half a million snails were sampled in the entire dataset.

The Evolution MegaLab operated through a website specially

designed for this study. The website displayed a map of all the

historical data so that users could re-sample the locations of past

records, although most new records were not made at the locations

of previous ones. The entire website and supporting training

materials were produced in 14 language versions and were used by

collaborators in 15 European countries (see author list) to solicit

data from the general public. Colour identification guides and

videos instructed participants on how to sample, how to identify

Cepaea, how to distinguish C. nemoralis from C. hortensis (also

recorded, but data not reported here), how to distinguish morphs

from each other and how to record the data. A quiz was used to

train participants in recognizing the correct snail species and their

different morphs and to simultaneously test and record their ability

to make the correct choices.

We instructed participants to record only mature snails with a

lip to the shell because its colour distinguishes C. nemoralis (dark

brown lip) from C. hortensis (white lip). The quiz results indicated

that users were readily able to distinguish mature C. nemoralis from

C. hortensis, but that juvenile C. nemoralis could be mistaken for

mature C. hortensis. For this reason, we have confined the current

analysis to C. nemoralis. We removed obviously duplicate samples

and samples where an excess of morphs known to be rare or

absent in the species (Brown Mid-banded and Brown Many-

banded) suggested that some other species such as Cornu aspersum or

Arianta arbustorum had been recorded in error. Only 29 samples, or

1% of the original dataset, needed to be removed for this reason.

Further details of how the Evolution MegaLab was planned and

operated are given elsewhere [28].

Mean surface climate data per cell on a 0.25 degree grid, as

described by Haylock et al [29], were obtained from the E-OBS

dataset from the EU-FP6 project ENSEMBLES (http://ensembles-

eu.metoffice.com) via the Climate Explorer website (http://

climexp.knmi.nl). The altitude of each sample location was derived

from a 30 arc second digital elevation model (GTOPO30 http://

eros.usgs.gov/#/Find_Data/Products_and_Data_Available/gto

po30_info) i.e. at much higher resolution than the climate data.

This altitude information was used to adjust the temperature

value at each sample location relative to the average altitude of

the climate data grid at that point, based on a lapse rate of 6

degrees K per 1000 m altitude. This adjustment had little effect

on the temperature values in the lowlands but changed some of

the values by several degrees in mountainous regions.

Statistical analysis
The data were analysed by generalized additive models [30]

using the gam function from the mgcv package (version 1.6–2) [31]

running in the R statistical environment (http://cran.r-project.

org). Separate models were run for the frequency of each of three

phenotypes, but each model had the same structure and was run

on the historical and modern datasets combined. The three

dependent variables were: frequency of Yellow, frequency of Mid-

banded as a percentage of banded shells, and frequency of

Unbanded. The distributional model used was ‘‘quasibinomial’’

with a logistic link function; that is (for Yellow), the number of

Yellow shells was assumed to have a binomial distribution with

sample size n, the total number of snails observed in the

population, and with probability p such that log(p/1-p) is given

by a smooth additive function of the independent variables. To

allow for overdispersion, the dispersion parameter was estimated

from the data rather than using the fixed value of 1 that arise from

the binomial distribution, and approximate t and F tests were used

to compare models.

A list of independent variables used is given in Table 1. The

Temp term modeled the effect of temperature as a joint smooth

function of both the January minimum and July maximum

temperatures, while the Location term modeled the effect of

geographic location as a joint smooth function of latitude and

longitude, independently within the modern and the historical

samples. This allowed not only for geographic variation in

phenotype frequencies that was unrelated to temperature, altitude

or habitat, but also for the different geographic distributions of

sampling points in the historical and modern datasets. The two-

category factor ModHist was also included as a separate term to

account for extraneous differences between the historical and

modern data sets.

For each phenotype, the model fitted to the probability (p) of the

phenotype was: log(p/(12p)) =ModHist+Year+Habitat+s(Altitu-

de)+s(JanPrecip)+s(JulyPrecip)+s(Temp)+s(Location). Terms with

an ‘s’ prefix were smoothed functions rather than linear, to

improve fit. In a model with a spatial aspect like this, there is a risk

Table 1. Definitions of independent variables used in the statistical analysis.

ModHist A 2-category factor that distinguishes samples collected post-2000 (mainly in the EML in 2009) from those collected in the 20th Cent and earlier.

Year Range 1909–2009. Fitting Year as well as ModHist enables us to distinguish time effects from other cause of differences between the modern and
historical samples.

Habitat 4-category factor representing the habitats (woodland, hedgerow, grassland, sand dune) recognized in the EML. Note that the results shown in
Table 2 represent the value of 3 of the habitats with respect to Woods.

Alt Altitude of the sample location in m above sea level, derived from a digital elevation model, (GTOPO30) with a horizontal grid spacing of 30 arc
seconds (approximately 1 kilometre)

JanPrecip Average January precipitation mm/day

JulyPrecip Average July precipitation mm/day

Temp Temp modeled the effect of temperature as an interaction between January minimum and July maximum temperatures.

Location A term including an interaction between latitude and longitude, fitted independently within the modern and the historical samples. This was used
to remove the deviance due to samples being made in different places in the historic and modern periods.

doi:10.1371/journal.pone.0018927.t001
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that standard fitting processes will be compromised by spatial

autocorrelation. Preliminary analyses of spatial correlograms and

variograms indicated that in fact the degree of spatial autocorre-

lation in the phenotype frequencies was relatively low (and

practically nonexistent at scales above 20 km), and similar analysis

of the residuals from the fitted model showed negligible levels of

spatial correlation in the residuals. Some additional models with

fewer terms or with data restricted to the historical period were

also run to test for the dependence of overall model results on the

presence of particular variables such as temperature and to check

for artifacts related to ModHist.

A smaller-scale, more direct analysis was performed on 554

pairs of samples where records were made in the same habitat type

within 20 km of each other in both the historical and modern

sampling periods. We broke the pairs down into the four habitat

types and compared historical and modern samples using paired-

sample t-tests on arcsine transformed frequencies.

We investigated the potential relationship between the increase

in the frequency of Mid-banded and temperature by testing the

hypothesis that Mid-banded would have increased most in places

that had warmed the most between the historical and modern

periods. There were insufficient samples made at the same

locations in the two periods for this test to be performed by direct

comparison of the historical and modern data. We therefore used

the model to predict how much change in the frequency of Mid-

banded had taken place over the 50 years from 1950–2000 at

each of 2,827 locations sampled in the Evolution MegaLab.

(Temperature change could not be computed for 163 of the 2,990

locations sampled.) These model predictions were used as

surrogates for actual frequency change and correlated with the

actual recorded changes in temperature at each location. Note

that the predictions were compared with temperature change,

and not temperature, which was a term in the model. This

analysis is therefore going beyond the original modelling, to

investigate a possible reason for the model looking as it did, and is

not validating the model itself.

Results

Evolutionary change in phenotype frequencies
Evolutionary change in phenotype frequencies detected in the

gam analysis is indicated by significant Year terms in Table 2.

Yellow decreased over time, but the magnitude of the effect was

very small (a=20.002) and its significance was marginal

(P = 0.036) considering the size of the dataset (n = 9,505).

Removing temperature from the model made the change even

smaller and non-significant (a=20.001, P = 0.272). In contrast,

banding patterns did change significantly with time. The

frequency of Unbanded decreased over time and the frequency

of Mid-banded as a proportion of the banded fraction increased

(Table 2). Neither of the changes in banding was much affected by

the removal of temperature from the full model (Unbanded

a=20.010, P,0.001; Mid-banded a=0.008, P,0.001). The

increase in Mid-banded was also found in analyses confined to the

historical dataset (a=0.0166, t = 12.891, P,0.001) and of the

combined dataset without the sand dune samples (where Mid-

banded was significantly rarer, Table 2) (a=0.0119, t = 9.185,

P,0.001).

The results of the paired-sample analysis are given in Table 3. A

significant increase in the frequency of Yellow occurred only in

dunes where there was also a marginally significant increase in

Mid-banded. An increase in Unbanded was detected in hedges,

where Mid-banded also increased very significantly.

Effects of altitude, climate and location on phenotype
frequencies
The modern dataset displayed the expected cline in the

frequency of the Yellow morph (Fig. 2b) also found in the

historical dataset (Fig. 2c). Location was highly significant in all

models and differences between the location terms in the historic

and modern datasets were also significant (Table 2). Mid-banded

and Unbanded both increased with altitude, but Yellow was

unaffected by altitude. All phenotype frequencies measured

Table 2. Summary of the results of General Additive Modeling of shell polymorphism in Cepaea nemoralis in the combined dataset
of historical and 2009 samples collected throughout Europe.

Phenotype n Dev% ModHist Year Habitat Alt JanPrecip JulyPrecip Temp Location

Hedge Grass Dune Overall Hist Mod

Yellow 9505 32.8%

a 0.379 20.002 0.509 0.649 1.350

t/F 2.560 22.097 14.041 15.428 20.415 { 0.139 10.200 14.697 12.367 32.939 9.142

P 0.011 0.036 ,0.001 ,0.001 ,0.001 { 0.71 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001

Mid-banded 9325 37.2%

a 20.096 0.009 20.075 20.039 20.798 5.356

t/F 20.632 7.114 21.781 20.820 29.776 46.426 4.056 26.507 6.639 15.190 36.853 17.182

P 0.527 ,0.001 0.075 0.413 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001

Unbanded 9505 28.9%

a 0.146 20.009 20.119 20.010 21.159 7.442

t/F 0.972 27.938 22.886 20.214 211.836 50.956 9.769 16.023 11.536 8.347 24.313 5.436

P 0.331 ,0.001 0.004 0.830 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001 ,0.001

Statistics shown are coefficients (a) and t-values for unsmoothed terms and F-values for smoothed terms. P-values are approximate. n = sample size (number of
populations), Dev% is the percent deviance accounted for by the model. Mid-banded frequency is calculated as a percentage of banded. Coefficient values are not
given for the terms entered as smooth functions, because such function cannot be described by a single coefficient.
{In this case the model omitting Habitat as an independent variable fits slightly better in terms of deviance than the model including Habitat, so no test statistic or p
value can be calculated.
doi:10.1371/journal.pone.0018927.t002
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increased with increases in precipitation and temperature

(Table 2). The correlation between predicted changes in the

frequency of Mid-banded and geographic variation in temperature

change between 1950–2000 was negative and highly significant

(r =20.108, d.f. = 2825, P,0.001).

Effects of habitat on phenotype frequencies
The frequency of Yellow was affected by habitat (Table 2),

increasing from woodland (the most shaded habitat) to sand dunes

(the most exposed). Mid-banded and Unbanded were less frequent

in sand dunes than in the other habitats (Fig. 3).

Discussion

Our dataset on shell polymorphism in Cepaea nemoralis is unique

among genetic studies of non-human organisms for its combina-

tion of wide geographic scale, deep historical scope and the large

number of individuals scored. By combining habitat, climate, and

geographic variables in spatially-informed models, we have

obtained a comprehensive picture of evolutionary change over

the recent period of anthropogenic global change. The time

elapsed between the heavy sampling of C. nemoralis in the 1960s

and ’70s and our major sampling effort in the Evolution MegaLab

is 40–50 years, or about 15–20 Cepaea generations. We

hypothesized that the increase in environmental temperature that

occurred towards the end of the twentieth century would have

favoured shell morphs with a higher albedo. Although we did

detect evolutionary changes, those found in our most comprehen-

sive analyses were either not in the direction predicted or they

were uncorrelated with local temperature change and so did not

support our hypothesis.

The cline in the frequency of the Yellow morph known from the

historical period [10] persisted into the 21st Century (Fig. 2). In the

full statistical model, the Yellow morph decreased slightly in

frequency over time, but only at a marginal level of significance

(P= 0.036, Table 2). If a warming climate had driven an increase

in the frequency of Yellow, a correlation between the two variables

in the full model could hide an increase in Yellow. If this was the

case, then removing temperature from the model ought to reveal

any increase in Yellow that had actually occurred. However, when

we dropped temperature from the model, Yellow was found not to

have changed at all. The paired sample analysis, which utilized a

small subset of our data comprising only about 10% of all samples,

found an increase in the frequency of Yellow in dunes, but not in

the other three habitat types (Table 3).

This difference between sand dunes and the other habitats

which provide more vegetation cover may provide a clue as to why

the expected increase in Yellow was not general. Behavioural and

physiological adaptation to temperature can buffer evolutionary

responses to a warming climate [32]. Behavioural thermoregula-

tion occurs in Cepaea and varies between morphs [12], but snails

require shaded refuges into which they can move if this behaviour

is to be effective. Such refuges are more available in woods, hedges

and grassland than in sand dunes, and this may explain why only

in sand dunes was there an increase in the frequency of Yellow

morphs. It would also explain the increases in frequency of Yellow

with decreasing shadedness of habitat in the order wood,h-

edge,grass,sand dune (Fig. 3 & Table 2).

Two evolutionary changes in banding, controlled by two

different, unlinked loci, were detected. The frequency of

Unbanded decreased over time in the complete dataset (Table 2),

though this change was absent or reversed in the paired sample

analysis (Table 3). The frequency of Mid-banded (among banded)

increased in the dataset as a whole (Table 2) and among the 245

paired samples taken from hedges (Table 3). The magnitude of

these frequency changes is better estimated from the models than

from changes in raw average frequencies since the models allow

for different geographic distributions of sampling points in the

historical and modern data sets that could bias raw averages. The

models estimated a 10% decrease in Unbanded and a 5% increase

in Mid-banded had taken place. The 10% decrease in Unbanded

is a surprisingly large change to observe in only 15–20 generations

and may be an over-estimate. The 5% increase in Mid-banded is a

more robust estimate as change of the same order was also found

in the paired-sample analysis of hedge populations (Table 3).

Bands are darker than the ground colour of all shell phenotypes

and therefore a general decrease in Unbanded (and a correspond-

ing increase in banding) does not support the climate warming

hypothesis because this predicts that phenotypes with lower albedo

ought to decrease. The increase of Mid-banded, which took place

at the expense of morphs with more bands, was in the direction

expected from the climate hypothesis and so we applied an

additional test. If the climate hypothesis is correct, then the

increase in Mid-banded should have been greatest where the

temperature increased the most. Our test for this was based upon

model predictions and showed that the change in Mid-banded

frequency did correlate with local changes in temperature, but that

the correlation was negative rather than positive and therefore in

the wrong direction to support the hypothesis. The climate

hypothesis is therefore not supported and we must look to another

explanation for why the frequency of Mid-banded has increased.

Turning to the association between morph and habitat, a strong

inference from earlier work was that open habitats have higher

frequencies of Yellow and banding than woodland. This

observation was made in a mature agricultural region of England

[23], where Mid-banded also declined from woods to open areas.

A review of results from several studies [33] confirmed the colour

and banding associations, though the Mid-banded effect was not

consistent. In the present analysis (Table 2) the frequency of

Table 3. Paired sample analysis for sites sampled within
20 km of each other in the historical and modern datasets.

Habitat/morph n Frequency t P

Historic Modern Change

Woods 90

Yellow 0.376 0.437 +0.061 1.830 0.071

Unbanded 0.228 0.279 +0.051 1.991 0.050

Mid-banded 0.347 0.368 +0.021 0.269 0.789

Hedge 245

Yellow 0.583 0.561 20.023 21.118 0.265

Unbanded 0.240 0.279 +0.038 2.403 0.017

Mid-banded 0.267 0.348 +0.081 3.708 .0.001

Grass 65

Yellow 0.619 0.614 20.005 0.006 0.995

Unbanded 0.263 0.298 +0.034 0.896 0.374

Mid-banded 0.401 0.480 +0.079 1.622 0.110

Dunes 52

Yellow 0.534 0.672 +0.138 2.875 0.006

Unbanded 0.117 0.133 +0.016 0.745 0.460

Mid-banded 0.182 0.263 +0.081 2.177 0.034

n= number of pairs.
doi:10.1371/journal.pone.0018927.t003
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Yellow is undoubtedly associated with habitat, increasing from

woodland (the most shaded) to sand dunes (the most exposed)

(Fig. 3), but with respect to the banding patterns the result with the

full data set differs from that recorded earlier for particular

locations. Unbanded is lower on sand dunes than in woods and

marginally so in hedgerow habitats (Fig. 3). No difference in

Unbanded was detected between woodland and grass. Mid-

banded was less frequent in dunes than in the other habitats

(Fig. 3).

When Cain and Sheppard [23] made their original observations

they emphasized that woodland samples were darker and more

uniform in phenotype than those from open habitats and

concluded that this association was due to visual predation

tending to increase the match of the samples to their backgrounds.

The main predator is the song thrush Turdus philomelos. However,

such an association could also be consistent with a response to

microclimate [24,34]. In the modern data the association depends

almost entirely on Yellow frequency. The habitat effect may

therefore be related to the albedo effect of Yellow that has been

revealed on the larger scale, rather than to predation. It should be

noted, however, that many ecological changes have occurred

between the times of the two surveys, making it difficult to draw

general conclusions. Fluctuations in abundance of thrushes must

have affected their capacity to exert selection on the snails. Some

long-term studies of Cepaea have recorded vegetational changes

coinciding with massive declines in rabbit densities due to

myxomatosis [35,36] which must have modified microclimates.

Increases in the area of woodland and changes in woodland

management have also occurred in Europe over the period of

study and these may have been a cause of the increase in Mid-

banded due to its lower albedo [24].

By analyzing data on Cepaea nemoralis polymorphism and its

evolution on a continent-wide scale we have traded the precision

of the numerous previous, mainly local studies of this model

organism for generality (Fig. 2). In the past, such generalities have

been hard to come by in the ecological genetics of Cepaea [10], with

much evidence that the forces shaping the evolution of Cepaea

polymorphism can be intensely local and vary from place-to-place.

We attempted to deal with some of this spatial variation by

including a Location term in our models. This term also allowed

for differences in the geographical distribution of samples between

the historical and modern datasets and was significant in the

models for all three traits (Table 2). This result indicates that we

successfully captured geographic variation in phenotype frequen-

cies not accounted for by the other variables (altitude, habitat,

climate, year). Some of this variation must have included effects

such as drift, and the well-known ‘area effects’ found in Cepaea [37]

that are probably a consequence of founder effects [38].

The comprehensive data collected by volunteers in the

Evolution MegaLab allowed us to apply a powerful test of an

evolutionary hypothesis linking climate change with polymor-

phism in the banded snail. That hypothesis was clearly rejected,

but to our surprise, the study also produced another unequivocal

result, showing that banded morphs in general and Mid-banded

morphs in particular increased. These evolutionary trends do not

appear to be related to climate warming and may be related to

changing predation pressure by birds. Thanks to the enthusiasm of

the general public for bird watching, this hypothesis provides

another opportunity for investigation using the power of citizen

science.
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