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Chapter 1 

1 Introduction 
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1.1 Background 

Citizens in Amsterdam want to know the air quality related to their everyday living 

environment. For instance, citizens may want to know the healthiest route to their 

work or to school. Subsequently, they check if there is any information available to 

provide the answer. However, in the current situation they will find out there are 

only 12 official air quality measurement stations in Amsterdam city. For some 

citizens, this means, that the closest station from their home is still several 

kilometres away. Therefore, they cannot get accurate air quality information of 

their neighbourhood from such measurement stations. These official measurement 

stations produce high quality data at the measured locations. However, finding the 

appropriate answers for cleaner routes, is difficult from such a limited number of 

stations. Of course, air quality of unmeasured locations can be predicted by 

modelling, but how accurate are these predictions? What if citizens can measure 

their environment by themselves with low-cost sensors? Then it would be possible 

to measure air quality at citizen’s home, on their way to school or at work more 

precisely. This offers them the possibility to find healthy routes. What if they share 

and open their measured data? If so, these data can be used to derive information 

for better understanding of our environment. Citizens but also policy makers could 

make better informed decisions.   

The case described above is not a specific case for Amsterdam. It is a global issue 

even though circumstances may differ from city to city. What do we get from this 

story? First, we see that to make proper decisions for a healthier living 

environment, data or information produced by environmental monitoring are 

crucial. This will be further elaborated in the next section. Second, the story tells us 

that except official measurements (formal data), citizens can also measure the 

environment to collect data (informal data) for their decisions. These activities are 

called citizen science, and the development and the relevance for this research will 

be elaborated in section 1.3. The low-cost sensors which can be used for citizen 

environmental monitoring will be elaborated in section 1.4. Finally, the story raises 

questions about how these data produced by citizens should be used. The potential 

combined use of formal and informal environmental sensing data will be elaborated 

in section 1.5.   

1.2 Environmental monitoring 

Environmental monitoring is essential for information provision to understand our 

living environment. Only when this information is provided, policy makers, the 

public and individuals are able to make proper decisions relevant to environmental 

issues. Environmental monitoring organizations get an increasing number of 

requests from the public and policy makers for more detailed environmental 

information (Minkman et al., 2017). However, traditional environmental 

monitoring networks use certified sophisticated equipment which normally are 

expensive, static and need specialists to maintain. Therefore, it is difficult and costly 

to have a denser network of these environmental monitoring stations. On the other 

hand, citizens are increasingly interested to measure their environment using low-
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cost sensing devices. These low-cost devices are mainly used by citizens and not 

often by official monitoring organizations. Mainly because official monitoring 

organizations are based on legal requirements and specifications from for example 

the national government, the European Commission or United Nations. Low-cost 

sensors are often not used by official organizations due to unknown data accuracy 

(Lewis and Edwards, 2016). Consequently, community or citizen level 

environmental data collection using emerging low-cost sensors is rising (Snyder et 

al., 2013).    

1.3 Citizen science 

Citizens have been involved in environmental monitoring for a long time. In the geo-

information science domain, data collected by citizens are called voluntary 

geography information (Goodchild, 2007). In the environmental domain, it is also 

called participatory monitoring. Crowdsourcing is another term used in other 

disciplines. These are just a few terms used to describe citizens’ involvement in 

science. Eitzel et al. (2017) discussed those terms in more detail. In our research, 

we use the term ‘citizen science’. We consider citizen science as individuals and/or 

communities performing scientific activities from raising questions, collecting data 

to findings answers with or without the involvement of scientists (Bonney et al., 

2016; Haklay, 2013; Lewenstein, 2016; See et al., 2016).  

Citizens have been involved in environmental monitoring for data collection in 

various domains. For example, weather monitoring by amateurs (Bell et al., 2013), 

invasive species monitoring (Delaney et al., 2007) and water quality monitoring 

(Jollymore et al., 2017). Actually, citizens have been contributing to science earlier 

than scientist became a profession in late 19th century (Silvertown, 2009). For 

instance, Antonie van Leeuwenhoek, who did pioneering work in microscopy and 

contributed to the establishment of microbiology, was a Dutch businessman 

(Ruestow, 1996). Nowadays, due to the development of information and 

communication technology, citizens can participate and initiate citizen science 

projects easier than ever (Sullivan et al., 2009). First, citizens can access 

information and contribute data through Internet by computers, laptops, 

smartphones and other digital devices. Second, citizens can communicate with each 

other, with scientists and policy makers using social media applications and tools 

like Facebook, Twitter, Meetup and many more. Third, they can also use digital 

applications and tools for online and offline citizen science activities, such as 

organization, collection, processing, sharing, analysing and utilization of data. In 

short, the technology development has profound impact on citizen science. 

Specially, the development of sensor technology not only gives way to new forms of 

environmental data collection but could potentially change environmental 

monitoring profoundly.        
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1.4 Sensors for environmental monitoring  

Sensors can detect our environment in different ways. A sensor is defined as: ‘a 

device that converts a physical measure into a signal that is read by an observer or 

by an instrument’ (Chen et al., 2012). For instance, gas sensors can use an 

electrochemical mechanism to measure concentrations of certain gasses, but can 

also detect gasses based on a metal oxide semiconductor mechanism (Mead et al., 

2013; Pang et al., 2017; Thompson, 2016). Thanks to technological developments, 

the sensors are becoming smaller, cheaper, portable and more functional. Some 

sensors can measure and communicate environmental parameters in near real 

time. These sensors potentially can help us to collect environmental information 

cheap, timely, and frequently. Therefore, dense networks of sensors would be 

possible. This will help us to understand more about our dynamic environment.   

Kumar et al. (2015) discussed how the use of low-cost sensing for urban air 

pollution monitoring is emerging and indicated as main challenge data reliability. 

Low-cost sensors have also been used in weather monitoring (Bell et al., 2013) and 

noise mapping (Aumond et al., 2017). Besides an increasing interest in using 

sensors for environmental monitoring, there are also many challenges related to 

data quality regarding instrument biases (Bell et al., 2015; Borrego et al., 2016), 

robustness and measurement repeatability (Castell et al., 2017a), accuracy 

(D’Hondt et al., 2013; Duvall et al., 2016), interferences (Lewis et al., 2016) 

calibration (Hasenfratz et al., 2012; Lin et al., 2015; Spinelle et al., 2015b), energy 

consumption, and networking. Lewis and Edwards (2016) raised the concern of 

validation for air quality sensors regarding the rising interest of using low-cost 

sensors to measure air quality. How to use these sensors properly and how the 

produced data should be used are still questions which should be comprehensively 

studied.   

Another question, raised by (Kumar et al., 2015), is how these informal sensor data 

from citizen science can be used. Can these data be used to complement formal 

environmental sensing data? And on the other hand, how to use formal 

environmental sensing data to enhance informal sensing data?  

1.5 Formal and informal environmental sensing data  

Formal environmental sensing data is defined in this research as data produced by 

official environmental institutes using standardised equipment and data collection 

procedures. On the other hand, we define informal sensing data as data produced 

by citizens using low cost sensors. Formal environmental sensing data are generally 

considered accurate, consistent and complete since they are based on legal 

requirements and specifications (Snyder et al., 2013). However, they are often 

collected at limited locations at a sparse number of stations. Informal 

environmental sensing data, on the other hand, produce increasing amounts of 

environmental data with denser networks and increasing interest from citizens and 

experts in citizen science. But informal environmental sensing data is currently 

considered as low-quality data. Nevertheless, informal environmental sensing data 
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are increasingly studied and tested in environmental monitoring to study the 

reliability, challenges and opportunities (Bell et al., 2013; Conrad and Hilchey, 

2011; Kumar et al., 2015).   

Formal environmental sensing is essential for qualified information provision. 

However, informal environmental sensing can also be important to provide 

complementary information. For example, after the Fukushima Daiichi nuclear 

disaster in Japan in 2011 citizens were eager for radiation information. Their 

demands were not satisfied by formal radiation information sources. A community 

of interested citizens then create their own tools to monitor radiation and share 

this information with others (Hemmi and Graham, 2014). These data collected by 

citizens provided information not only for themselves but also for scientists and 

policy makers. In another example, scientists deployed a low-cost ozone sensor 

network in Auckland, New Zealand, where limited formal ozone monitoring 

stations were existing. The deployed low-cost sensor network produced 

complementary information to let scientists better understand the dynamics of 

ozone in that area (Weissert et al., 2017).  

More importantly, if formal and informal environmental sensing data can be 

integrated, we might gain more information than using either one separately. 

Mazzoleni et al. (2017) assimilated data derived from crowdsourced observations 

of water levels in hydrological modelling and concluded that citizen collected data 

can complement formal data to improve flood forecasts. However, formal and 

informal sensing data collection are organized and collected in different ways with 

different tools, standards, metadata, data quality control and so on. As a result, it is 

still challenging to integrate formal and informal sensing data.  

Since informal environmental sensing is an emerging phenomenon, the perception 

on the usefulness of it by both experts and citizens is an important issue. Perception, 

defined as “something is regarded, understood, or interpreted” (Oxford 

Dictionaries, 2017), from citizens and experts on formal and informal 

environmental sensing data and the potential for integration influences the use of 

these data. For formal and informal environmental sensing data, citizens and 

experts may not have the same perception on, for instance, data accuracy. Even 

though these perceptions do not always reflect reality, they play a key role in the 

willingness to use these data.   

1.6 Research objectives  

The overall objective of this thesis is to assess opportunities for informal sensor 

data and their integration with formal sensor data to improve environmental 

information provision by investigating challenges and obstacles regarding 

technical and societal aspects.   

The thesis was guided by the following main research questions: 

1. How does a bottom-up citizen science project develop, and can it 

contribute to environmental monitoring? 
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2. How to calibrate low cost air quality sensor data, and how valuable are 

these data? 

3. What are the perceptions of citizens and experts on formal and 

informal environmental sensing data and their integration potential? 

4. How can informal and formal sensing data be integrated to provide 

enhanced environmental information? 

1.7 Thesis outline  

This thesis consists of six chapters including this introduction chapter. Chapter 2 

provides an overview of citizen environmental sensing focusing on an urban air 

quality monitoring case study in Amsterdam. It examined how a citizen 

environmental sensing campaign was developed and it discusses the value of 

citizen environmental sensing. Next, in Chapter 3, I focus on sensor calibration in a 

citizen science case to examine the value of informal sensing data: lessons learnt 

and recommendations are presented. In Chapter 4, an analysis is presented on the 

perceptions from experts and citizens on formal and informal environmental 

sensing data based on a questionnaire survey. In Chapter 5, a framework for formal 

and informal sensing data integration is presented. A literature study and an expert 

validation method are used to evaluate the proposed framework and integration 

approaches. Chapter 6 provides a synthesis and conclusion on the research results 

of this thesis regarding the proposed research questions. Recommendations for 

future research are also presented. 



Chapter 2 

2 Citizen sensing for improved urban environmental 

monitoring 

This chapter is based on: 

Jiang, Q., Kresin, F., Bregt, A.K., Kooistra, L., Pareschi, E., van Putten, E., Volten, H., 

Wesseling, J., 2016. Citizen Sensing for Improved Urban Environmental Monitoring. 

Journal of Sensors 2016, 9. 
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Abstract  

Citizen science is increasingly being used in diverse research domains. With the 

emergence and rapid development of sensor technologies, citizens potentially have 

more powerful tools to collect data and generate information to understand their 

living environment. Although sensor technologies are developing fast, citizen 

sensing has not been widely implemented yet and published studies are only a few. 

In this paper, we analyse the practical experiences from an implementation of 

citizen sensing for urban environment monitoring. A bottom up model in which 

citizens develop and use sensors for environmental monitoring is described and 

assessed. The paper focuses on a case study of Amsterdam Smart Citizens Lab using 

NO2 sensors for air quality monitoring. We found that the bottom up citizen sensing 

is still challenging but can be successful with open cooperation and effective use of 

online and offline facilities. Based on the assessment, suggestions are proposed for 

further implementations and research.  
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2.1 Introduction 

Highly dynamic environmental phenomena call for detailed and timely 

environmental information to support decision making. For instance, in the case of 

air pollution, it is essential to understand where this pollution comes from and how 

to reduce it (Kolb et al., 2004). For environmental disasters such as floods 

(Schnebele et al., 2014a), severe weather (Zhang et al., 2011) and volcanic 

eruptions (Werner-Allen et al., 2005), sufficient and timely environmental 

information is essential for risk forecasting and early warning. To derive this 

information, environmental data needs to be collected. 

Traditionally, environmental monitoring is conducted by official authorities which 

usually spend large amounts of money for high quality but expensive monitoring 

equipment followed by continuous labour and money investments on maintenance 

and calibration (Mead et al., 2013) which leads to often low spatial and temporal 

resolution (Hasenfratz et al., 2012). Therefore, these data sources are often too 

sparse to meet the information demands from the public and organizations. For 

example, there are twelve air quality monitoring stations in Amsterdam operated 

by the Public Health Service of Amsterdam (GGD Amsterdam) and the National 

Institute for Public Health and the Environment (RIVM) at selected locations and 

most of these stations measure a limited number of air quality parameters; 

compared to Amsterdam, other cities in the Netherlands even have less official air 

quality stations (https://www.luchtmeetnet.nl). In addition, in some developing 

countries, official environmental monitoring systems are completely absent (Mead 

et al., 2013). For instance, during the 26 December 2004 tsunamis around the 

Indian Ocean, affected countries could have had enough time to avoid the disaster 

if they had employed a functional alarm system earlier (Kelman, 2006; Samarajiva, 

2005). 

There is a general need for flexible and affordable alternatives to complement the 

official or formal environmental monitoring stations. Recent developments of 

sensor technologies allow citizens to buy affordable sensors and electronic 

components like Arduino (https://www.arduino.cc) and Raspberry Pi 

(https://www.raspberrypi.org) to create sensor systems by themselves or with 

help from communities which provide alternative approaches to collecting 

environmental data (Akyildiz et al., 2002; Zerger et al., 2010). So-called informal 

sensors operated by citizens are not only raising public awareness of 

environmental problems from social aspects but also are potentially capable to 

complement the quantity and spatial-temporal resolution of the formal 

environmental data sources (Corke et al., 2010). For example, after the Fukushima 

Daiichi accident on March 11, 2011, local citizens started using sensors, developed 

by a project called Safecast, to personally detect the radiation levels and shared the 

data to a website which gathered all these data coming from citizens. Now this has 

become an international community for radiation monitoring all over the world 

(Hemmi and Graham, 2014) Citizens contribute to the data source and benefit not 

only themselves but also the larger public and policy makers with an independent 

source of environmental data. Similarly, weather stations operated by amateurs in 
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the UK are rapidly growing and have become crucial data sources supplying timely 

and high density monitoring data for local weather information (Bell et al., 2013). 

Citizen science has existed for a long time. It has been used for bird observations 

(Sullivan et al., 2009),  invasive species monitoring (Delaney et al., 2007) and other 

domains. Most of them use top down approaches in which scientists design the 

research project and subsequently citizens are asked to join, mainly collecting data. 

Due to development of sensor technology, citizens can now use affordable sensors 

to monitor their living environment by themselves. They can even create their own 

sensor systems for their interest. However, it is still not clear how this bottom up 

approach should be organized; how to tackle the calibration and implementation 

problems; what is the data quality of informal sensor networks compared to formal 

sources; how is the knowledge dissemination on sensor development, and how to 

make sense of these data. According to previous studies, citizen science can be 

classified as: community consulting model that citizens only define the problems, 

community workers model that citizens are mainly involved in collecting data, and 

community-based, participatory research model that citizens are involved in all 

research activities (Wilderman, 2007).      

In this chapter, by taking a case study focusing on air quality monitoring in the city 

of Amsterdam, a bottom-up citizen science approach for informal sensor 

environment monitoring is developed and evaluated. 

2.2 A bottom up approach for informal sensing 

The project named Amsterdam Smart Citizens Lab 

(http://waag.org/en/project/smart-citizens-lab) uses a bottom up approach to 

organize citizen sensing for urban environmental monitoring. This approach can be 

classified as co-created class and is recognized as a community-based, participatory 

research model that citizens involved in all steps of the project (Cooper et al., 2007; 

Morzy, 2015; Wilderman, 2007). Within this approach, citizens are involved in each 

step (as shown in Figure 2.1) of sensing strategy together with project partners. 

The project was initiated by Waag Society, Institute for Art, Science and Technology, 

a pioneer in the field of digital media at Amsterdam. The approach is completely 

bottom-up. Waag Society is responsible for community coordination and provides 

a place for meetings and for sensor making in their Fablab Amsterdam, a place for 

makers. As organizer, Waag Society invited other partners who have expertise in 

different aspects to help citizens, such as Netherlands Organisation for Applied 

Scientific Research (TNO), Amsterdam Smart City (ASC), RIVM, and SenseMakers. 

Firstly, Waag Society organized a meetup called Topical BarCamp in which citizens 

raise their urban environment concern (issue mapping in Figure 2.1). According to 

the issue mapping from citizens and their interests, the community was divided into 

small groups to develop and test sensor systems for specific urban environment 

problems. During this period, the Fablab Amsterdam was open every Tuesday for 

teams to use their facilities for making prototypes. This step is called sensors 

making and done by an Open Hardware Bootcamp. After the prototypes were 
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developed and tested, citizens used the sensors they developed themselves to 

monitor the city environment and collect data (sensing). These data were then 

interpreted and visualized with the help of experts. For each step, Waag Society 

invited experts to inspire and share their experience. In the next section, the 

adopted methods and results for every step of the proposed bottom-up approach 

are presented in more detail. 

 

Figure 2.1. The project steps of Amsterdam Smart Citizens Lab for bottom up citizen 

sensing. 

After Issue mapping, four sensing topics (air quality, noise pollution, wind and road 

bumpiness) were raised by citizens. For this paper the air quality topic was selected 

as a case study to describe and evaluate the bottom up citizen sensing approach. 

This case was inspired by previous experience within the Smart Citizen Kit 

(https://smartcitizen.me) pilot in 2014. During this pilot, Amsterdam citizens 

measured temperature, humidity, light intensity, sound levels, carbon monoxide 

and nitrogen dioxide in the city using Smart Citizen Kit 1.1 version. One outcome of 

the Smart Citizen Kit pilot was that the semiconductor air quality sensors (CO and 

NO2) used in Smart Citizen Kit 1.1 version were not suitable for urban air quality 

monitoring (Horn and Boonstra, 2014). A community was established including 

citizens and experts during this pilot. Some of them decide to join the Amsterdam 

Smart Citizens Lab to explore new sensors which can be used for urban air quality 

monitoring. Compared to other groups, this air quality group is relatively diverse 

including citizens, hardware developers, air quality experts and university 

researcher. 

2.3 Results 

In this section, we present the results from each step of the bottom up approach as 

indicated in Figure 2.1. 
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2.3.1 Issue mapping: Topical BarCamp 

At the issue mapping meeting (Figure 2.2), people discussed what kind of 

environmental problems they were concerned about and would like to solve. The 

meeting was organized as a Topical BarCamp which means that the content is 

provided by the participants. Air quality, noise pollution, wind and road bumpiness 

were raised as main issues of concern. The Meetup environment 

(http://waag.org/en/project/smart-citizens-lab) is used as a community platform 

that has functions like member registration, events organization, sharing of 

information, communication and so on. Citizens were informed to join this platform 

during this meeting. 

   

Figure 2.2. Citizens discuss environmental problems and sensing strategies during 

the issue mapping phase. 

2.3.2 Sensors making: Open Hardware Bootcamp 

One aim of the air quality group is to find an air quality sensor with the proper 

requirements for urban air monitoring. The main three requirements are that the 

sensor should 1) be able to measure a pollutant relevant for urban environments, 

2) be sensitive enough to measure typical ambient concentrations, and 3) be 

affordable. Over recent years, most of the concentration levels in the Netherlands 

have decreased substantially. Presently, the nitrogen dioxide levels are the most 

likely ones to lead to exceedances of legal threshold values. As a result, there is 

much emphasis on nitrogen dioxide, both from official authorities as well as from 

concerned citizens. Several measuring campaigns using passive NO2 samples were 

undertaken during the last five years, both by municipalities and concerned 

citizens. Combined with the available state of the art in sensors for gasses at 

ambient concentration levels this has led us to focus on nitrogen dioxide 

concentrations. Based on these requirements and the experience of the Smart 

Citizen Kit pilot (http://waag.org/en/project/smart-citizen-kit), different sensor 

options were proposed by group members. With scientific proof (Hasenfratz et al., 

2015; Mead et al., 2013), after group discussion and comparison, the 

electrochemical Alphasense NO2 sensor (NO2-B42F) (http://www.alphasense.com) 

was chosen for this experiment, according to the specification, the measurement 

range is 20 ppm NO2 limit of performance warranty. The Arduino Uno or Arduino 

compatible microcontrollers were chosen to connect the sensor and other 

components such as the power supply, a real time clock (RTC) and a storage module 
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(Figure 2.3). The RTC is used for the timestamp, the temporal resolution can be 

programmed accordingly. For the measurement campaign, we measured every 

minute. To read the analogue signal from sensors, a high resolution analogue to 

digital converter (ADC) above 16-bit is required. The Arduino board only has a 10-

bit ADC on board, which is not enough to accurately determine the output of the 

sensor that varied only a few millivolts (mV). Therefore, an external ADC was used. 

To reduce the noise of the data, a stable power supply is also recommended, which 

was not implemented. During the Open Hardware Bootcamp, the sensors were 

made by the citizens with assistance of experts of Fablab Amsterdam, RIVM and 

Wageningen University. In total, five NO2 sensor boxes were prepared in this phase 

of the project. 

 

Figure 2.3. Main hardware, sensor and different prototypes: (a) function test, (b) 

sensors with waterproof enclosure for outdoor test and (c) sensor box for monitoring 

campaign. 

To test the performance of the Alphasense NO2 sensor, we first located four 

Alphasense NO2 sensors together indoors at Waag Society as these sensors had no 

enclosures designed yet. Besides these Alphasense sensors, there is also a Smart 

Citizen Kit measuring outdoor of Waag Society. As can be seen in Figure 2.4, all 

Alphasense NO2 sensors show good sensitivity compared to the Smart Citizen Kit, 

which did not show any variation of the 24 hours measurement period. However, 

although Alphasense NO2 sensors indicated quite similar trends, the four sensors 

did not show the same concentration. Clearly, a calibration procedure is needed. 

Arduino/Genuino UNO  ADS1115 16-BIT ADC NO
2 

 sensor 

(a) (c) (b) 
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Figure 2.4. The calculated NO2 concentrations measured by four sensors at the same 

test location (indoor in the building of Waag Society) and the measurement of a Smart 

Citizen Kit (outdoor of Waag Society) every minute on September 20th, 2015, for 

around 24 hours.   

Next, four sensors were mounted in a common box and placed outside a window of 

the Waag Society building. Measurements were taken during five days and 

afterwards the raw outputs voltages of the sensors were converted to estimated 

NO2 concentrations. For the calibration, readings from a nearby located official 

measuring station (Oude Schans, roughly 300 meters from the Waag Society) and 

one other station southwest of the centre of Amsterdam (Vondelpark, roughly 2700 

meters from the Waag Society) were used. This latter station provides an indication 

of the city background concentration for NO2 during the prevalent western winds. 

According to “Alphasense 4-Electrode Individual Sensor Board (ISB); User Manual 

085-2217” the sensors output two voltages, the “Working Electrode” (WE) and the 

“Auxiliary Electrode” (AE). Both have to be corrected for a zero-offset of typically 

225-245 mV. The value of the corrected AE is subtracted from the value of the 

corrected WE and the remaining voltage is divided by sensitivity in mV/ppm of 

typically 0.175-0.185. In order to get a similar set of hourly concentrations for all 

sensors offsets for WE of 234 mV were combined with AE offsets between 220 and 

245 mV, combined with sensitivities between 0.5 and 0.8 mV/ppm. Finally, a 

conversion from ppb to micrograms per cubic meter of air (µg/m3) was performed 

as all Dutch concentrations are reported in µg/m3. 

In the beginning of the comparison the Alphasense sensors took several hours to 

become stable. With the adjustments, the concentrations show a roughly similar 
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pattern in time as the official measuring stations (Figure 2.5). The concentrations 

show a daily pattern. The reason for the high concentrations at station “Oude 

Schans” between the hours 30 and 45 is not clear. The concentration values are 

averaged and presented in hourly values as shown in Figure 2.5. 

 

Figure 2.5 Measured NO2 concentrations outside Waag Society during five days. Oude 

Schans and Vondelpark are official stations operated by GGD Amsterdam. 

In order to obtain a similar behaviour for all sensors, the parameters used to 

convert output voltages into concentrations varied substantially between sensors. 

The concentrations show a roughly similar pattern in time as the official measuring 

stations do. 

2.3.3 Sensing: Citizen Data Collection 

After system testing and improving, an air quality campaign test was conducted by 

the air quality monitoring group on December 2, 2015. After discussion on a paper 

map for measurement campaign location planning, the digital map was developed 

for online access (Figure 2.6). The developed sensor prototypes do not have Global 

Positioning System (GPS) module, to get the measurement location’s latitude and 

longitude coordinates, a measurement location retrieval tool was developed which 

can use GPS and Wi-Fi signals on the smartphone to retrieve location coordinates 

(Figure 2.7). A website was developed to host these prototype tools and 

visualization map. Twenty-Seven locations were selected including city 

background, traffic streets and parks. Figure 2.8 shows a monitoring example that 

is close to an official monitor station (Amsterdam-Stadhouderskade) for 
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comparison. For each location, the air quality sensor was operated for a minimum 

of 15 minutes, which enabled the sensors to stabilize. 

 

Figure 2.6. Plan for locations in Amsterdam to perform air quality monitoring. 

   

Figure 2.7. Tool to retrieve latitude and longitude of measurement locations. 
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Figure 2.8. An informal measurement point is close to an official station (Amsterdam-

Stadhouderskade) for data comparison. 

2.3.4 Understanding: Visualization & Interpretation 

A typical concentration pattern is shown in Figure 2.9. First a measurement was 

done outside (traffic), next the sensor was transported to a new location and was 

put in a bag for some time before taking out and moving to next location, and 

subsequently a follow-up measurement was done at the new location (park). As can 

be seen in Figure 2.9, the NO2 sensor shows considerable different results between 

in the bag and out of the bag. No large differences between results in traffic and 

park locations are observed. In order to evaluate the performance of Alphasense 

NO2 sensors, we installed sensors close to the GGD Amsterdam official air quality 

monitoring stations (see Figure 2.8 as an example). The official station data can be 

downloaded from the web portal Luchtmeetnet (http://www.luchtmeetnet.nl) and 

are on hourly basis (Figure 2.10). Compared to the official measurements, the 

informal Alphasense NO2 sensor measured concentrations in minutes and shows a 

similar trend (Figure 2.10). 
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Figure 2.9. Roughly comparison of measurements from one sensor. 

 

Figure 2.10. Roughly the same period of the informal sensor measurement (without 

calibration, 1 ppb = 1.91 µg/m3 is used for the conversion) every minute (11: 37 - 13: 

36) and the hourly official measurement in dashed line (11: 00 - 14: 00) at 

Amsterdam-Stadhouderskade.  
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To visualize NO2 concentration data, an online map service (Figure 2.11) was 

developed using open source Mapbox and GitHub Pages. The concentration is 

colour coded according to the Dutch national standard. 

 

Figure 2.11. The data visualization map prototype for NO2 measurement campaign 

on December 2, 2015. 

2.3.5 Community analysis 

As shown in Figure 2.12, the number of members of the Amsterdam Smart Citizens 

Lab has been increasing continually which means that this community received 

continuous attention from the public. However, according to the Figure 2.13, the 

number of active participants for each community event did not increase 

substantially. 
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Figure 2.12. The growing number of total signed members (data collected from 

Meetup) compared to event participants indicated in purple bars.   

 

Figure 2.13. The variation of community participation: data collected from 

Amsterdam Smart Citizens Lab Meetup, the actual participants may be different, 

especially the first meeting in which most citizens have not registered for the Meetup 

(see Figure 2.2). 
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2.4 Discussion 

In this part, we first take air quality monitoring as an example to discuss the 

technical and operational challenges. Next, we analyse and discuss the bottom up 

approach for citizen sensing. 

2.4.1 Citizen sensing is still challenging 

The Arduino board is a relatively simple and powerful tool for experimentation. 

However, to retrieve reliable data, professional knowledge and support are still 

needed. An important issue for air quality measurement is sensor data calibration 

and analysis. With different tests, several problems were identified but we did not 

have sufficient time within this project to find solutions or to test potential 

solutions. The NO2-B42F sensor is cross-sensitive to ozone, temperature and 

humidity, as described in the specifications. Our tests suggest that other 

environmental factors may also influence the results of measurements. The indoor 

test as shown in Figure 2.4 shows that even each sensor package was calibrated 

individually by the sensor company; the four sensors indicated quite different 

concentrations. This is an obstacle for citizens, because if further calibration is 

needed, citizens normally do not have the facilities to do so. 

This project was based on the experience of the Smart Citizen Kit pilot (Horn and 

Boonstra, 2014). The general aim was to encourage citizens to measure their 

environment by developing sensor platforms together in a community. According 

to the outcomes and observations of Amsterdam Smart Citizens Lab, this complete 

bottom up approach is challenging but can be successful. Still an important 

precondition for success is that expert communities are involved. They provide the 

required support to build a fully functional sensor system which can collect reliable 

data. Independent development would still be challenging for citizens. There are 

quite a lot of sensors and sensor-related electronic products, which are assumed to 

be “plug and play” products. To create a functional environmental sensing system 

is an interdisciplinary task which requires knowledge from different domains like 

electronics, environmental sciences, communication, information technology, 

design and so on. 

2.4.2 Bottom up approach calls for broad open cooperation 

The continually reduced costs and increased functions of sensors and 

microcomputers offer citizens possibilities to measure the environment by 

themselves, which has already made an impact for environment awareness and 

decision making. There are a lot of open hardware and software resources that can 

be used by citizens. Furthermore, the fab labs and the maker movement also play 

an important role in citizen science. The fab labs provide facilities for citizens to get 

together to communicate, use facilities and get help to make their sensor platforms. 

From this, we see organizations that support citizens sensing as an important 

resource. Research conducted by Balestrini et al. (2015) concluded that the 

supporting organization is important in terms of connecting people, supplying 
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guidelines and helping each other. From our observation, this is confirmed in this 

case study. In particular, we observe that the support or involvement from 

professionals in pushing the community by supplying information, suggestions and 

technical assistance is very valuable. Since environmental sensing by citizens is an 

interdisciplinary field, the experts from different domains foster the community 

and keep the project running. 

2.4.3 Stimulate citizens for a sustainable and growing community- 

online plus offline 

In the Amsterdam Smart Citizens Lab, Fablab Amsterdam plays an important role 

for offline meetups for citizens to learn skills, work with like-minded people, and 

create and test prototypes. In addition, the online meetup platform is not only used 

to organize offline meetups but also functioned as a broader virtual community 

platform for information sharing and attracting more people to join the community. 

Even though from Figure 2.12, the active participants did not increase substantially 

compared to the continuous growing online community, it shows that citizens are 

interested in the project and potentially could become active participants. From the 

Meetup platform, citizens know what has been achieved by the Amsterdam Smart 

Citizens Lab community, they can join the community and keep it updated for 

further activities. This “online plus offline” model is a good approach to organizing 

citizen sensing. There are 602 fab labs in the world and the number is still growing 

(https://www.fablabs.io/labs). In addition, there are diverse open living labs 

(http://www.openlivinglabs.eu) and hacker spaces. For online tools, besides 

Meetup (http://www.meetup.com), social media like Facebook, Twitter, YouTube 

and blogs can also be used for community building. Trello and Slack can be used for 

teamwork. If these tools and open offline physical places can be used together 

effectively and efficiently, this may help to stimulate citizens to create a sustainable 

and growing global and local community. 

2.5 Conclusions 

In the present paper, we present a bottom up approach for citizen science to collect 

informal urban environmental sensor data. We found that highly sensitive 

electrochemical sensors potentially have better performance than semiconductor 

sensors for urban air quality monitoring but need appropriate hardware and 

software design, careful calibration and post-processing to deliver correct and 

usable data. This leads to challenges for citizens to build sensor systems from 

scratch. Therefore, wide cooperation from different aspects such as community 

building, maker spaces, fab labs and different types of professional support for 

domain knowledge is essential for citizen sensing. This wide cooperation, together 

with effective use of online and offline facilities can keep the citizen sensing 

community sustainable and growing. 
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2.6 Future work 

For future work, the focus will be on how citizens and experts can work together to 

optimize the citizen environmental sensing model for reliable data provision to 

benefit citizens, official organizations, and more importantly the whole society. For 

example, the data quality is a big concern for both official organizations and citizens. 

Official organizations can, for instance, guide and help citizens to calibrate sensors 

in order to improve data quality. How local governments react on citizen sensing 

can be another interesting research topic. In terms of the environmental 

monitoring, other air pollutants like particulate matter, CO and O3 need also to be 

considered. 
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Abstract 

In many urban areas the population is exposed to elevated levels of air pollution. 

However, real-time air quality is usually only measured at few locations. These 

measurements provide a general picture of the state of the air, but they are unable 

to monitor local differences. New low-cost sensor technology is available for several 

years now and has the potential to extend the official monitoring network 

significantly even though the current generation of sensors suffer from various 

technical issues.  

Citizen science experiments based on these sensors must be designed carefully to 

avoid generation of data which is of poor or even useless quality. This study 

explores the added value of the 2016 Urban AirQ campaign, which focused on 

measuring nitrogen dioxide (NO2) in Amsterdam, the Netherlands. 16 low-cost air 

quality sensor devices were built and distributed among volunteers living close to 

roads with high traffic volume for a two-month measurement period. 

Each electrochemical sensor was calibrated in-field next to an air monitoring 

station during an 8-day period, resulting in R2 ranging from 0.3 to 0.7. When 

temperature and relative humidity are included in a multilinear regression 

approach, the NO2 accuracy is improved significantly, with R2 ranging from 0.6 to 

0.9. Recalibration after the campaign is crucial, as all sensors show a significant 

signal drift in the two-month measurement period. The measurement series 

between the calibration periods can be corrected in hindsight by taking a weighted 

average of the calibration coefficients. 

Validation against an independent air monitoring station shows good agreement. 

Using our approach, the standard deviation of a typical sensor device for NO2 measurements was found to be 7 μg m-3, provided that temperatures are below 

30°C. Stronger ozone titration at street sides causes an underestimation of NO2 concentrations, which 75% of the time is less than 2.3 μg m-3. 

Our findings show that citizen science campaigns using low-cost sensors based on 

the current generations of electrochemical NO2 sensors may provide useful 

complementary data on local air quality in an urban setting, provided that 

experiments are properly set up and the data are carefully analysed. 
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3.1 Introduction 

Because air pollution is difficult to measure, instrumental and operational costs of 

official measurement stations are usually high. Air quality networks in cities, if 

present at all, are therefore usually sparse. Diffusive sampling is a common addition 

to these real-time measurements and are successfully used to monitor local 

differences (see e.g. (Cape, 2009)). However, these differences are poorly attributed 

to an emission source due to the long averaging time of these measurements 

(usually 4-weekly). Emerging low-cost sensor technology has the potential to 

extend the official monitoring network significantly, and improve our 

understanding of local urban air pollution. Miniaturized and affordable sensors 

potentially enable citizens to measure their environment in more detail in space 

and time (Kumar et al., 2015). Most commercially available sensors, however, suffer 

from various technical issues which limit their applicability. Despite their 

limitations many experiments are done with air quality devices containing these 

sensors, often by motivated but not necessarily scientifically trained people. 

Comprehensive calibration and validation of these devices is crucial (see e.g. (Lewis 

and Edwards, 2016; Lewis et al., 2016)), but often overlooked. The resulting poor 

data quality is of concern to health authorities, scientists and citizens themselves.  

Several studies have been done to explore the performance of low-cost air quality 

sensors, e.g. Jiao et al. (2016), Duvall et al. (2016); Mead et al. (2013); Moltchanov 

et al. (2015). For NO2 monitoring, mostly metal oxide and electrochemical sensors 

are used (Borrego et al., 2016; Spinelle et al., 2015b; Thompson, 2016). Typical 

ambient concentrations of NO2 are at part-per-billion (ppb) level. The main 

problems encountered in NO2 sensor evaluations in these real-world environments 

are low sensitivity, poor selectivity, low precision and accuracy, and drift. Especially 

metal oxide sensors are not very stable (Spinelle et al., 2015b; Thompson, 2016) 

and suffer from lower selectivity. Therefore, in this study, we opted for 

electrochemical sensors to measure NO2. 

Mead et al. (2013) already noted the strong interference of ozone and other 

ambient factors in electrochemical NO2 sensors. The performance can be increased 

significantly when adding additional measurements of e.g. temperature and 

humidity in a regression model or neural network, as shown by e.g. Piedrahita et al. 

(2014), Spinelle et al. (2015b), Masson et al. (2015). Coping with sensor 

degradation remains a serious issue. Some studies, such as Jiao et al. (2016), include 

an additional temporal term in their linear regression which improves the 

predicted NO2 slightly. 

In the following sections we assess the data quality of the 2016 Urban AirQ 

campaign. As many similar initiatives depending on participating citizens, this 

campaign was not set up as a strictly controllable scientific experiment such as in 

the previously mentioned studies. However, we will demonstrate that citizen air 

quality monitoring using the current generation of electrochemical NO2 sensors 

may provide useful data of urban air quality, by using a practical method for field 

calibration and correcting for sensor degradation in hindsight. 
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3.2 The Urban AirQ project 

The Urban AirQ project explores the added value of alternative air quality 

measurements in the city, by addressing citizens’ questions about their local air 

quality. It focusses on a 2×1 km2 area around Valkenburgerstraat, a primary road 

in the East-central part of Amsterdam, see Figure 3.1. Its dense traffic causes regular exceedances of the European annual limit value for nitrogen dioxide (40 μg 
m-3). 

 

Figure 3.1 Locations of the sensor devices during the citizen measurement campaign. 

The green marker indicates the calibration location at GGD Vondelpark. In the circle 

the location of SD04 and the GGD station at Oude Schans (in red).  The location of 

Valkenburgerstraat is highlighted in yellow. 

Two town hall meetings were organized in which residents of this area were invited 

to raise their concerns about air pollution in their neighborhood and to formulate 

related research questions. Topics included the relation between traffic density and 

air pollution, the difference between main roads and side streets, the front side of 

an apartment compared to its backside, the influence of apartment height, and the 

influence of cut-through traffic at nighttime. The residents were invited to 

participate in finding answers to their questions by measuring their outdoor air 

quality with 16 experimental low-cost sensor devices (labeled SD01 to SD16), built 

for this purpose by Waag Society.  

Measurements were done from June to August 2016. Beforehand, the sensor 

devices were calibrated using side-by-side measurements next to an official air 

quality measurement station. With a second calibration period after the campaign, 

individual sensor drift was assessed and compensated in hindsight. 
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The Urban AirQ experiment is unique in the sense of the used number of devices, 

the duration of the experiment, the direct involvement of citizens, and the use of 

open hardware and generation of open data. 

3.3 Urban AirQ sensor devices 

The concept of the Urban AirQ sensor is building a device with low-cost electronic 

components which is easy to operate, so citizens can do their own air quality 

measurements. It builds on the basic design described by Jiang et al. (2016), having 

an improved power supply, weather resistant housing, WiFi connectivity, and 

additional sensors for temperature, relative humidity, and particulate matter. The 

sensor development is part of an open hardware project; detailed technical 

information can be found at https://github.com/waagsociety/making-sensor.  

Central is the microcontroller board (Arduino UNO) which handles the reading of 

the sensors and sends the data to the WiFi module (ESP8266), see Figure 3.2.  

   

Figure 3.2 Hardware modules of a sensor device (left), and the integration in the 

casing: open (middle) and closed (right). 

For NO2 measurements, an electrochemical cell is used from Alphasense Ltd (Essex, 

United Kingdom). The cell contains four electrodes. The target gas, NO2, diffuses 

through a membrane where it is chemically reduced at the Working Electrode, 

generating a current signal. This electric current is balanced by an opposite current 

from the Counter Electrode. The Reference Electrode sets the operating potential 

of the Working electrode. The sensor also includes an Auxiliary Electrode, which is 

used to compensate for baseline changes in the sensor. To get full sensor 

performance, low noise interface electronics is necessary. An individual sensor 

board with amperometric circuitry, also provided by Alphasense, is used to 

guarantee a low noise environment and to optimize the sensor resolution at low 

ppb levels. The sensor signal is read by a 16-bit analog to digital (A/D) converter 

(ADS1115). Two sensor devices (SD01 and SD02) contain model NO2-B42F for NO2 

measurements, the other 14 contain the newer NO2-B43F sensor.  
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12 of the 16 sensor devices are also equipped with a Shinyei PPD42NS sensor in 

order to measure particulate matter optically. The present paper, however, will 

focus only on the assessment of the NO2 measurements. All devices measure 

internal temperature and relative humidity (RH) with a DHT22 sensor from Aosong 

Electronics. 

The system is supplied with a 7.5V voltage output adapter and a regulator board 

which generates 5V for the Arduino and the sensors. The microcontroller consumes 

a 10 mA current (measured). The PM sensor needs up to 80 mA (measured), the 

NO2 sensor about 10 mA (measured), and the DHT22 less than 1 mA. The WiFi 

module peaks periodically to 350 mA when establishing an internet connection. 

3.3.1 Averaging and filtering 

Raw sensor measurements are stored in a central database on a one minute base. 

However, the calibration analysis is based on hourly averages to enable direct 

comparison between the ground truth (also provided as hourly values), and to 

improve the signal to noise ratio. 

The NO2 sensor measurements are done at the Working Electrode (SWE) and the 

Auxiliary Electrode (SAE). They are provided as counts from the A/D converter. 

Sensor readings of temperature and RH are converted according to the indication 

of the manufacturer to degrees Celsius and percentages respectively. 

Raw, hourly averaged, sensor data are shown in Figure 3.3. The spread in 

temperature and RH displayed in the raw data is partly explained by the sensor-to-

sensor variability. By looking at night-time temperatures (to eliminate the effect of 

local heating by exposure to direct sunlight) we see that the internal sensor 

temperatures are 2-5°C higher than ambient temperature. The devices are not 

actively ventilated, which means that the energy dissipation of the electronics 

influences their internal temperature. The variable position of the temperature 

sensors with respect to these heat sources further explain the variance in 

temperature and relative humidity. 

Careful filtering is needed before the data can be further processed. We have 

applied the following rules: 

• Raw, minute-based, SWE and SAE measurements outside a ±10% range of 

their mean value during the entire measuring period are considered 

outliers. This filters out 0.33% of all measurements. This criterion was 

used for its simplicity and effectiveness. Note that, due to the large offset in 

the raw SWE and SAE signal, realistic NO2 peak values are still detectable as 

the corresponding sensor response is still within a 10% bandwidth. 



   37 

 

Figure 3.3 Raw sensor data, unfiltered but hourly averaged, from the 16 sensors 

during the first calibration period, 2-10 June 2016. The data gap around 5 June is due 

to a connectivity problem to the central database. 

• All readings at sensor temperatures above 30°C are discarded to avoid 

non-linear temperature dependence of the electrochemical NO2 sensor 

(see Sect. 4.4). This filters out 4.53% of the measurements during the entire 

period. 

• At least 20 valid minute-based measurements are required to calculate a 

representative hourly mean. This criterion was found to be a good trade-

off between noise reduction by averaging and not losing too many hourly 

measurements. 

During the first calibration period, the sensors were measuring 79% of the time on 

average. After applying the criteria above, this resulted in 70% valid hourly 

measurements. During the measurement campaign, the sensors produced 79% 

valid hourly measurements on average, with the uptime dropping to 50% in places 

were sensors experienced connectivity problems due to limited range of the 

participant’s WiFi network. 

3.3.2 Calibration periods 

Calibration of the sensors devices have been done by placing the 16 sensors side by 

side on the rooftop of the air quality station at Vondelpark, operated by the Public 

Health Service of Amsterdam (GGD). This station is classified as a city background 

station. It measures nitrogen dioxide, nitrogen monoxide (NO), ozone (O3), 

particulate matter (PM10, PM2.5, particle number and size distribution), black 

carbon, and carbon monoxide (CO). For NO and NO2 measurements, GGD alternates 

a Teledyne API 200E and a Thermo Electron 42I NO/NOx analyser, both based on 

chemiluminescence. The validated measurements used in this study are considered 

to be the ground truth. The calibration period spanned several days to be able to 

test the sensors under a wide range of ambient conditions. To assess the stability of 

the calibration, the sensors were brought back after the two-month measurement 
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campaign to the calibration facility for a second calibration period. The Urban AirQ 

campaign consisted therefore of three phases.   

The first field calibration period at GGD Vondelpark station started at 2 June 2016, 

00h LT (local time), and ended at 10 June 2016, 10h (8.5 days; 204 hours). Due to 

connectivity problems sensor data were missing between 4 June 19h and 6 June 9h. 

During the following citizen campaign, 15 sensors were distributed among the 

participants. One sensor (SD03) was kept at the Vondelpark station as a reference. 

The first sensor was installed and connected at 13 June 2016, 18h, and the last 

sensor connected at 17 June 2016, 17h. At 15 August 2016, 9h, the first sensor was 

disconnected, and at 16 August 2016, 18h, the last sensor was disconnected. In this 

1537-hour period the devices produced 1204 valid hourly measurements on 

average. 

The second field calibration period at GGD Vondelpark station started at 18 August 

2016, 15h, and ended at 29 August 2016, 00h (10.4 days; 249 hours). Due to 

connectivity problems sensor data were missing between 26 August 12h and 27 

August 11h. 

Figure 3.4 shows the distribution of temperature, relative humidity, NO2, and O3 

during the different periods. Looking at the 75th percentile of the distributions, the 

calibration periods are characterized by higher temperatures and ozone levels than 

the campaign period. The range of NO2 concentrations at the Vondelpark station in 

the calibration periods is larger than in the campaign, reaching more frequently 

higher NO2 values. During the campaign the sensors are closer to the GGD station at 

Oude Schans, where measured NO2 values are generally a few μg m-3 higher than at 

Vondelpark. The Oude Schans site does not measure ozone. 

 

Figure 3.4 Box whisker diagrams of hourly ambient parameters during the two 

calibration periods and the measurement campaign. The box edges indicate the 25th 

– 75th percentile; the whiskers the minimum and maximum values. The median is 

indicated in red. Temperature and RH are based on the average values of all sensors 

devices, NO2 and ozone are taken from the reference station at Vondelpark. For 

comparison, NO2 from the reference station at Oude Schans (OS) is also shown. 
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3.4 NO2 calibration 

Electrochemical sensors such as the Alphasense NO2-B series are known to be 

sensitive to interfering species and ambient factors. Especially ozone, temperature, 

and relative humidity influence the sensor reading (see e.g. Spinelle et al. (2015a)). 

3.4.1 Explaining the NO2 sensor signal 

To understand better the behaviour of the NO2 sensor, we study its sensitivity to 

different ambient factors. We use the first calibration period to test the correlation 

of the measured SWE and SAE signal with NO2, ozone, temperature and humidity by 

making a best fit though the hourly time series, e.g. 𝑆𝑆WE(𝑡𝑡) =  𝑐𝑐0 + 𝑐𝑐1NO2(𝑡𝑡)                                                                                                         (1) 

Temperature and RH were not readily available from the GGD Vondelpark station 

data. We take temperature and RH from the average readings from the DHT22 

sensors instead, which better reflect the internal sensor conditions than ambient 

air measurements. 

Figure 3.5 shows scatter plots for an average performing sensor and the R2, the 

coefficient of determination. The measured SWE signal can be explained by ambient 

NO2 (R2=0.20), but better by its anti-correlation with ozone (R2=0.49). Temperature 

alone is an even better predictor for the sensor signal (R2=0.73), because of the 

sensors’s direct dependence on temperature, and indirect dependence on 

temperature (being a reasonable proxy for both NO2 and O3 concentrations). Also 

the correlation with relative humidity is very strong (R2=0.73). The measured SWE 

signal can best be explained as a linear combination of NO2, O3, T, and RH together, 

resulting in a correlation of 0.98 (R2=0.96). 

The SAE signal is practically insensitive to NO2. This suggests that a combination of 

SWE and SAE is more sensitive to NO2 and less to the other interfering factors, as 

intended by the manufacturer. 

3.4.2 NO2 calibration models 

For NO2 measurements, the sensor manufacturer suggests to correct both Working 

Electrode and Auxiliary Electrode for a zero-offset with SWE,0 and SAE,0 respectively. 

Then a sensitivity constant s is applied to convert from mV to ppb NO2: 

NO2[ppb] =  
�𝑆𝑆WE−𝑆𝑆WE,0�−�𝑆𝑆AE−𝑆𝑆AE,0�𝑠𝑠                                                                                     (2) 

In practice, the factory-supplied constants SWE,0, SAE,0, and s do not result in realistic 

values of NO2, see e.g. Cross et al. (2017). As an alternative, we propose a linear 

combination of the signals SWE and SAE (calibration model A): 

NO2[µg m−3] =  𝑐𝑐0 + 𝑐𝑐1𝑆𝑆WE + 𝑐𝑐2𝑆𝑆AE                                                                                   (3) 
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Figure 3.5 The reading of a typical performing NO2-B43F sensor (SD10) explained as 

a linear regression of respectively NO2, O3, T, RH, and all variables. The top two rows 

show the results for the Working Electrode; the bottom two rows for the Auxiliary 

Electrode. The axes represent the A/D converter counts, which are proportional to 

the currents generated by the sensor at the corresponding electrode. 



   41 

The coefficients c1 and c2 are determined with data from the calibration period 

using ordinary least squares (OLS). As can be seen from the fit results in Table 3.1, 

within the batch of sensors there is a large variability of direct sensitivity to ambient 

NO2. 

Table 3.1 Fit results for regression model A. 

Sensor ID c0 c1 (SWE) c2 (SAE) R2 

SD011 455.4 0.6977 -1.0835 0.47 

SD021 355.9 0.8862 -1.2633 0.62 

SD03 -228.6 1.0877 -0.8029 0.72 

SD04 -968.2 0.9138 -0.1237 0.69 

SD05 -155.1 0.8368 -0.6841 0.48 

SD06 -141.9 0.6136 -0.5241 0.44 

SD07 -576.4 0.9615 -0.4811 0.57 

SD08 231.4 1.0802 -1.2514 0.68 

SD09 100.5 0.8669 -0.8952 0.56 

SD10 342.0 0.8221 -1.1629 0.50 

SD11 338.4 0.9823 -1.2246 0.61 

SD12 -375.2 0.7775 -0.4837 0.54 

SD13 -1703.4 0.8218 0.5544 0.60 

SD14 162.6 0.8156 -0.9075 0.46 

SD15 1211.2 0.9008 -1.8984 0.30 

SD16 -594.3 0.8007 -0.3192 0.49 

1: indicates older NO2-B42F sensor type 

During the calibration period, hourly ozone values (also taken from the Vondelpark 

station) happened to be a good proxy for the ambient NO2 concentration:  

NO2(t) = 44.6 – 0.40·O3(t)  in [μg m-3], with R2 of 0.49. 

When compared with Table 3.1, it can be seen that direct sensor readings from a 

fair part of the sensors cannot outperform this result. To improve the results we 

use additional measurements and their statistical relation to NO2. We fit different 

calibration models with multiple linear regression (using OLS). The calibration 

models which were tested are listed in Table 3.2. 

Table 3.2 Regression models for NO2 sensor calibration 

Model A NO2 = c0 + c1·SWE + c2·SAE 
Linear combination of Working Electrode 

and Auxiliary Electrode 

Model B NO2 = c0 + c1·SWE + c2·SAE + c4·RH Relative humidity correction 

Model C NO2 = c0 + c1·SWE + c2·SAE + c3·T Temperature correction 

Model D NO2 = c0 + c1·SWE + c2·SAE + c3·T + c4·RH Temperature and RH correction 

Model E NO2 = c0 + c1·SWE + c2·SAE + c3·T + c4·RH + c5·O3 
Correction for temperature, RH, and 

ozone cross-sensitivity 

Temperature and RH are taken from the DHT22 sensor. Note that there is no need 

to calibrate the individual T and RH sensor signals beforehand; the calibration 

coefficients for NO2 are determined for the specific set of all sensors in the box. 

However, this means that if an individual sensor is replaced, new calibration 

parameters for the sensor box have to be derived. 
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3.4.3 Calibration results 

A complete overview of the regression coefficients and their error estimates for all 

models can be found in the Appendix A. The sign of the calibration parameters can 

be easily understood. As the electrochemical NO2 sensor loses sensitivity at higher 

temperatures (see the negative slope in Figure 3.7(b) for temperatures below 

30°C), coefficients c3 are positive to compensate for this effect. The additional 

sensor response due to cross-sensitivity with ozone is compensated by negative 

values for c5. 

 

Figure 3.6(a) Calibration model results for an average performing sensor (SD15). 

Bottom row shows the recommended calibration by Model D (left), and the results 

when ozone would be included (right). 
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Figure 3.6(b) Time series compared to ground truth with calibration parameters of 

Model A and D. 

From the fit results we see that Model B (including RH) performs better than Model 

A, but Model C (including T) outperforms Model B. When both RH and T are 

included (Model D) the results of Model C are marginally improved. This can be 

understood in terms of a strong sensor dependence on temperature, a weak 

dependence on RH, and the collinearity between temperature and RH. Note that 

measuring RH is essential for guarding the data quality of electrochemical sensors, 

as these sensors are very sensitive to sudden changes in RH, see e.g. AAN 110 (2013) 

and Pang et al. (2017). 

The best calibration results (i.e. R2 values closer to 1) are obtained by including 

ozone (Model E). The ozone values were obtained from the GGD Vondelpark station, 

as the sensor devices do not measure ozone themselves.  

As local ozone measurements were only available during the calibration periods, 

we used Model D for the Urban AirQ campaign, i.e. generating an NO2 value based 

on a linear combination of SWE, SAE, T, and RH. The regression analysis of Model D 

and correlation with the NO2 ground truth can be found in Table 3.3. 

The two worst performing sensor devices (SD02 and SD01) contain the older NO2-

B42F sensor. The newer NO2-B43F model is designed to have higher sensitivity to 

NO2 and less interference of ozone. The old sensor model has indeed smaller 

coefficients for SWE and larger correction terms for ozone (see the c1 and c5 

coefficients of model E in the Supplement). This, however, can also be related to 

their longer operating time, as both sensors have been used in previous 

experiments for more than a year.  Again, it can be seen that even within the same 

batch of sensors there is a significant spread in performance, around a median value 

for R2 of 0.83. Figure 3.6 shows the results for the different calibration models for 

the average performing sensor SD15. The time series in Figure 3.6(b) shows clearly 

how the performance of a typical sensor device improves when temperature and 

humidity are included in the calibration analysis. The adjusted R2, which corrects 

R2 for the number of explanatory variables, increases from 0.29 to 0.82. Note that 
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 𝑅𝑅adj2  is only slightly smaller than R2, as the number of observations (n≈150) is 
relatively high compared to the number of regression variables (k=2…5). 

Table 3.3 Fit results for regression model D. 

Sensor ID c0 c1 (SWE) c2 (SAE) c3 (T) c4 (RH) R2 

SD011 790.9 0.8707 -1.5645 -0.5051 0.4513 0.62 

SD021 589.2 0.8618 -1.4742 0.2142 0.4204 0.67 

SD03 -1272.1 1.2045 -0.1492 1.2690 -0.2944 0.87 

SD04 -1613.3 1.1499 0.1818 0.3200 -0.4442 0.85 

SD05 -1623.1 1.1235 0.2088 1.7161 -0.4430 0.75 

SD06 -824.8 1.1850 -0.5839 1.6737 -0.3069 0.81 

SD07 -1217.6 1.1305 -0.1642 1.9435 0.0000 0.79 

SD08 -1129.7 1.1835 -0.2705 2.2559 -0.2704 0.86 

SD09 -586.3 1.1794 -0.6738 2.0415 -0.2192 0.90 

SD10 -1152.7 1.1668 -0.3120 2.9112 -0.2147 0.72 

SD11 -1109.8 1.1055 -0.2339 3.3191 -0.1693 0.81 

SD12 -1074.9 1.0961 -0.2346 1.4954 -0.2799 0.84 

SD13 -1074.6 1.1294 -0.3058 1.8671 -0.1561 0.83 

SD14 8.1 1.1860 -1.1889 2.5401 0.0268 0.84 

SD15 -104.5 1.8111 -1.7939 4.8373 0.0596 0.83 

SD16 -1215.5 1.2551 -0.3038 2.1742 -0.1333 0.84 

1: indicates older NO2-B42F sensor type 

3.4.4 Dependency on temperature 

Calibrated data without temperature filter show occasionally strong negative 

values, see Figure 3.7. These negative peaks coincide with internal sensor 

temperatures exceeding 30 °C. This behavior can be explained from the dependency 

of the electrochemical sensor on temperature becoming non-linear, see Figure 

3.7(b): the sensitivity of the NO2 sensor decreases linearly with temperature up to 

around 30 degrees, while above 40 degrees the sensor gains sensitivity with rising 

temperatures. In these regimes, the response of the sensor cannot be described well 

with our multilinear regression approach. As temperatures during the 

measurement period only rose occasionally above 30 °C, we decided to filter these 

measurements out. 

3.4.5 Startup time 

When a sensor device is switched on for service, the electrochemical cell must be 

stabilized by the potentiostatic circuit which can take a few hours due to the high 

capacitance of the working electrode (AAN 105-03, 2009). Furthermore, when the 

sensor is transported to another environment the sudden change in RH causes an 

equilibrium distortion with a relaxation time of about 2h (Mueller et al., 2017).  The 

startup-effect is translated by the calibration model as a strong positive NO2 peak, 
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which should be filtered out. From our sensor data we estimate a stabilization time 

of 4 hours. Note that this startup effect should not be confused with the response 

time, which is determined to be less than 2 minutes in (Mead et al., 2013) and 

(Spinelle et al., 2015a). 

 

Figure 3.7(a) Examples of negative spikes in the calibrated NO2 measurements (solid 

line) due to internal sensor temperatures (dotted line) exceeding 30 °C. 

 

Figure 3.7(b) Variation of zero output of the working electrode caused by changes in 

temperature for a typical batch of electrochemical sensors. Image taken from 

Alphasense Data Sheet for NO2-B43F (ADS, 2017). 

3.4.6 Predictivity, sensor drift, and uncertainty estimation 

Almost all electrochemical sensors have some degree of drift because of aging and 

poisoning (Di Carlo et al., 2011; Hierlemann and Gutierrez-Osuna, 2008). This 

becomes a serious complication when the drift is in the order of the strength of the 

signal of interest. The idea of keeping sensor SD03 next to the reference station 
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during the whole campaign was to study sensor degradation in more detail. 

Unfortunately, the sensor was removed temporarily from 10 to 14 July for service, 

when it was decided to add a PM module to the device. The increased energy 

dissipation after the modification (the Shinyei PPD42NS module uses a heater 

resistor to force a convective flow of sampling air) caused an increase of the internal 

device temperature by 2.5°C on average. This sudden jump in temperature 

disrupted the reference time series. 

Instead, to assess the short-term stability of the calibration model, we use the first 

60% of the measurements from the calibration period (2-7 June) to derive the 

regression coefficients, and predict the NO2 values for the remaining 40% (8-10 

June), see Table 3.4. The average RMSE increases from 6.5 to 7.0 μg m-3 when the 

regression is used for prediction. 

Table 3.4 Descriptive and short-term predictive error of model D in μg m-3 

 2-7 June (descriptive) 8-10 June(predictive) 

Sensor ID Uptime RMSE Uptime RMSE 

SD011 92h 9.25 54h 9.31 

SD021 89h 7.95 53h 13.74 

SD03 88h 5.58 53h 4.37 

SD04 90h 6.00 54h 4.94 

SD05 90h 7.62 53h 8.75 

SD06 97h 6.36 57h 5.57 

SD07 85h 7.09 52h 6.26 

SD08 88h 5.95 52h 6.59 

SD09 88h 4.94 52h 3.69 

SD10 99h 7.44 59h 8.09 

SD11 91h 6.78 53h 5.42 

SD12 93h 6.08 52h 5.07 

SD13 89h 6.25 54h 5.31 

SD14 83h 3.96 48h 14.61 

SD15 89h 6.75 52h 4.52 

SD16 93h 6.06 55h 5.61 

         1: indicates older NO2-B42F sensor type 

We assess the long-term stability of the sensors with a second calibration period 

after measurement campaign, again at the Vondelpark calibration site. As can be 

seen from the distribution of the residuals in Figure 3.8, most sensors drift 

significantly in the intermediate two-month period. We describe this degradation 

effect as a bias b between the mean of the hourly estimated NO2 values 𝑥𝑥�𝑖𝑖   and the 

mean of the hourly true NO2 𝑥𝑥𝑖𝑖  during the calibration period: 𝑏𝑏 =
1𝑁𝑁∑ 𝑥𝑥�𝑖𝑖𝑁𝑁𝑖𝑖=1 − 1𝑁𝑁∑ 𝑥𝑥𝑖𝑖𝑁𝑁𝑖𝑖=1                                                                                                          (4) 

and the root-mean-square error (RMSE) of the difference between the bias 

corrected calibrated measurement and the ground truth. The latter is the same as 

the standard deviation of the residuals (SDR) 𝑥𝑥�𝑖𝑖 − 𝑥𝑥𝑖𝑖: 
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SDR =  �1𝑁𝑁∑ �(𝑥𝑥�𝑖𝑖 − 𝑏𝑏) − 𝑥𝑥𝑖𝑖�2𝑖𝑖                     (5) 

 

Figure 3.8 Sensor drift during two months of operation, shown as the distribution of residuals (in 2 μg m-3 bins) with the reference measurements during the first 

calibration period (black bars) and during the second period (red bars). 

As can be seen in Table 3.5, the bias is mostly positive. Note that sensor SD16 and 

SD01 had a limited uptime in the second period, which makes their bias and RMS 

calculation not very representative. 

The strongest bias after two months is found for SD02 and SD01. Both are of model 

NO2-B42F and have been used in others experiments for more than one year. These 

sensors have also the largest RMSE in the first calibration period (see also Table 

3.3), which is another indication of their poor performance. The range in RMSE of 

the remaining sensors is 4.5 – 7.2 μg m-3 for the first period. The bias corrected 
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RMSE increases to 5.3 – 9.3 μg m-3 for the second period. The latter is a more 

conservative yet more realistic estimation of the precision of the NO2 estimates, as 

they are based on measurements which were not used for calibration. Based on our 

results listed in the last columns of Table 3.4 and 3.5, we take 7 μg m-3 as a typical 

uncertainty for the estimated NO2 values. 

Table 3.5 Bias and random error in μg m-3 when calibrated in the first period with 

model D. 

 1st calibration period 2nd calibration period 

Sensor ID Uptime Bias SDR Uptime Bias SDR 

SD011 146h -0.1 8.8 106h 40.1 18.2 

SD021 142h 0.0 8.2 199h 21.4 12.8 

SD03 141h 0.0 5.1 205h 5.6 9.3 

SD04 144h 0.0 5.5 202h -9.2 5.8 

SD05 143h 0.0 7.0 192h 3.0 6.3 

SD06 154h 0.0 6.0 197h -2.1 6.8 

SD07 137h 0.0 6.6 196h 6.6 6.8 

SD08 140h 0.0 5.4 199h 3.1 9.1 

SD09 140h 0.0 4.5 196h 0.7 5.3 

SD10 158h 0.0 7.2 206h 0.2 7.9 

SD11 144h 0.0 6.3 205h 0.5 8.5 

SD12 145h 0.0 5.7 194h 10.1 6.0 

SD13 143h 0.0 5.8 206h 9.8 7.7 

SD14 131h 0.0 5.9 211h 16.6 6.9 

SD15 141h 0.0 6.0 198h 21.3 6.8 

SD16 148h 0.0 5.7 47h 15.6 8.7 

1: indicates older NO2-B42F sensor type 

The increase of SDR is also due to a loss of sensitivity over time. The aging of the 

sensors can be further investigated by recalibrating the devices, i.e. determining the 

coefficients of regression model D, using the data of the second calibration period 

(see the Appendix A). All calibration coefficients of SWE (the only component which 

has direct sensitivity to NO2) decrease in value, showing that all sensors suffer from 

sensitivity loss to NO2. This results in lower R2 values, although the performance 

loss is partly compensated by the other components in the regression. The older 

Alphasense models NO2-B42F suffer the largest sensitivity loss, which (although 

the regression tries to compensate with an increased temperature dependence) 

result in the worst performance loss in terms of R2. 

3.4.7 Weighted calibration Taking 18 μg m-3 as a typical NO2 concentration in an urban environment (Figure 

3.4), the sensor drift as listed in Table 3.5 is a significant error component, even 

after a two-month period. It is impossible to predict the progressing bias for an 

individual sensor. However, using the second calibration period we can 

compensate for signal drift in hindsight. If 𝑥𝑥�1(𝑡𝑡) represents the estimated NO2 value 

at time t based on the first calibration period (starting at t1), and 𝑥𝑥�2(𝑡𝑡)  the 
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estimated NO2 value based on the second calibration period (ending at t2), the we 

take for intermediate times 𝑡𝑡1 ≤ 𝑡𝑡 ≤ 𝑡𝑡2 a weighted average of both calibrations: 𝑥𝑥�(𝑡𝑡) = �1 − 𝑓𝑓(𝑡𝑡)�𝑥𝑥�1(𝑡𝑡) + 𝑓𝑓(𝑡𝑡)𝑥𝑥�2(𝑡𝑡)              (6) 

Assuming that the sensor degradation is linear in time we select 𝑓𝑓(𝑡𝑡) = (𝑡𝑡 − 𝑡𝑡1) (𝑡𝑡2 − 𝑡𝑡1)⁄              (7) 

such that f(t1)=0 and f(t2)=1. 

3.4.8 Validation against an independent reference station 

Citizen science can be unpredictable, and we were fortunate that sensor SD04 was 

handed over to an Urban AirQ participant living at Korte Koningsstraat (ground 

floor), which happens to be 120m from another GGD station at Oude Schans (see 

Figure 3.1). The Korte Koningsstraat is a side street away from traffic arteries, 

whereas Oude Schans also classifies as an urban background location. The 

proximity to a reference station enabled us to perform an independent validation 

of the sensor measurements, as the calibration of the sensor is based on side-by-

side measurements with Vondelpark station, at 3 km distance. As can be seen from 

Figure 3.9, the sensor readings agree very well with the official measurements. 

Using the weighted calibration explained in the previous section, the measurement 

bias largely disappears (Table 3.6). The RMSE (5.3 μg m-3) is comparable to the 

RMSE found during the calibration period. The results give confidence that our 

calibration method remains valid for similar urban locations, and that our 

assumption of sensor degradation being linear in time is acceptable. 

Table 3.6 Comparison of sensor SD04 with Oude Schans station during the campaign 

period, according to different calibrations. 

 1st calibration 2nd calibration Weighted calibration 

Mean NO2, GGD Oude Schans 19.96 μg m-3 19.96 μg m-3 19.96 μg m-3 

Mean NO2, sensor SD04 17.02 μg m-3 22.21 μg m-3 19.87 μg m-3 

Bias -2.94 μg m-3 2.25 μg m-3 -0.09 μg m-3 

RMSE 6.10 μg m-3 5.25 μg m-3 5.20 μg m-3 

Correlation 0.89 0.89 0.88 



50   

 

 

Figure 3.9(a) Comparison of sensor SD04 NO2 time series with the nearby Oude 

Schans station (8-day snap shot), and the effect of bias correction. For comparison, 

measurements of Vondelpark station are also shown. 

 

Figure 3.9(b) Distribution of residuals of NO2 measurements between sensor SD04 

and Oude Schans station during the campaign period, with and without bias 

correction. 

3.5 Discussion  

The Alphasense NO2-B4 sensor is used in many low-cost air quality applications for 

measuring ambient NO2. As all electrochemical NO2 sensors, it is not very selective 

to the target gas. The sensor response can be explained well by a linear combination 

of NO2, O3, temperature and relative humidity signals (R2≈ 0.9). 
As a consequence, a linear combination of the Working Electrode and the Auxiliary 

Electrode alone give poor indication of ambient NO2 concentrations. The accuracy 

varies greatly between different sensors (R2 between 0.3 and 0.7). For the Urban 
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AirQ campaign, temperature and relative humidity were included in a multilinear 

regression approach. The results improve significantly with R2 values typically 

around 0.8. This corresponds well with the findings of Jiao et al. (2016), who find 

an adjusted R2=0.82 for the best performing electrochemical NO2 sensor in their 

evaluation, when including T and RH. 

Best results are obtained by also including ozone measurements in the calibration 

model: R2 increases to 0.9. Spinelle et al. (2015b) used a similar regression and 

found R2 ranging from 0.35 to 0.77 for 4 electrochemical NO2 sensors during a two-

week calibration period, but dropping to 0.03—0.08 when applied to a successive 

5-month validation period. Low NO2 values at their semi-rural site partly explains 

this poor performance, but most likely also unaccounted effects such as changing 

sensor sensitivity and signal drift. 

The sensor devices were tested in an Amsterdam urban background in 

summertime, with NO2 values ranging from 3 μg m-3 to 78 μg m-3, and median values around 15 μg m-3. During the 3-month period most sensors show loss of 

sensitivity and significant drift, ranging from -9 to 21 μg m-3. After bias correction 

we found a typical value for the accuracy of the NO2 measurements of 7 μg m-3. 

This error consists of several components. The reference measurements by the 

NO/NOx analysers have an estimated hourly error of 3.65% (certified validation at a 200 μg m-3 NO2 concentration), which would contribute to 0.5 μg m-3 under typical 

conditions. The low-cost DHT22 sensor has a reported error of 0.5 °C for 

temperature and 2–5% for RH. For a single measurement, this would contribute to a propagated regression error of approximately 1 μg m-3 and 0.5 μg m-3, 

respectively. It should be noted, however, that binning minute-based 

measurements to hourly averages removes large part of the variability, while 

determining the best fitting regression model for each sensor device removes large 

part of the remaining systematical biases. The largest part of the error term is 

therefore introduced by the linear regression model itself, which does not include 

all interfering species or meteorological quantities and is not able to describe non-

linear dependencies of its variables. One should therefore be careful to extrapolate 

the calibration model for conditions different than the calibration period. 

The validation results from Section 4.8 show that the calibration holds well for 

urban locations with similar NO2/O3 ratios. Neglecting O3 as regression parameter, 

however, will introduce a bias at locations with different NO2/O3 ratios found e.g. 

closer to emission sources. To get a better understanding of the possible impact, we 

compared hourly ozone measurements from the GGD authorities at Van 

Diemenstraat (VDS, classified as street station) against Nieuwendammerdijk (NDD, 

classified as urban background station) during June-August 2016. The relation can 

best be described by [O3]VDS = 0.87 [O3]NDD + 0.85 (with 0.93 correlation), which 

means that ozone levels at the street station are typically 13% lower, due to 

titration of O3 with NO. Due to the sensor’s cross-sensitivity for ozone, larger values 

must be subtracted from its signal when the ozone concentration increases. This 

explains the negative sign of the ozone coefficient c5 of model E (see Supplement). 

Calibration with model D will overcorrect (i.e. subtract too much) for locations 

which have lower ozone concentrations than at the calibration site, resulting in an 
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underestimation of NO2 concentrations. Using typical values c5=-0.3 and [O3]=60 μg/m3 (75th percentile of the distribution during the measurement camping, 

according to Figure 3.4) we estimate the underestimation of NO2 at street side as 0.3 × 13% × 60 = 2.3 μg/m3. 

The found sensor accuracy after weighted calibration is good enough to provide 

some complementary spatial information on local air quality between reference 

stations. When looking at the difference between Vondelpark station and Oude 

Schans station (both classified as city background stations) in the period June-August 2016, 22% of the hourly measurements differ more than 7 μg m-3, and 6% of the hourly measurements differ more than 14 μg m-3. These differences increase 

further when considering road side stations. From this perspective, even sensor devices with an accuracy around 7 μg m-3 can contribute to an improved 

understanding of spatial patterns. However, it must be further investigated if the 

calibration method used here would provide realistic estimates for peak values 

(such as the EU hourly limit value, 200 μg m-3). 

3.6 Conclusions and outlook 

In this study, we examined low-cost electrochemical air quality sensors for citizen 

urban air quality monitoring. In other words, we evaluated an imperfect air quality 

sensor in an imperfect scientific experiment. In general, we found that low-cost 

electrochemical sensors have the potential to complement official environmental 

monitoring data to help answer questions from the public, which usually cannot be 

fully answered from official data alone. To reach the potential, however, proper 

measurement set-up, calibration and recalibration, and data analysis should be 

guaranteed. 

The current generation of low-cost NO2 sensors has some serious issues which 

trouble straightforward application. To make electrochemical NO2 sensor 

measurements accurate, careful filtering of the raw data is necessary. There is a 

strong spread in sensor performance, even if the sensors come from the same batch, 

which make individual calibration essential. A practical calibration method is 

measuring side-by-side to an air monitoring station. The accuracy of the 

measurements can be improved by including temperature and humidity 

measurements from other low-cost sensors in a multilinear regression approach. It 

is worth noting that more advanced calibration algorithms such as by Cross et al. 

(2017) and Mueller et al. (2017) could give better results, but this is not the focus 

of this paper. It is hard to quantify an optimal length of a calibration period without 

having a proper understanding of the sensor degradation rate beforehand. The 

measurement period should be at least a few days to capture the sensors behaviour 

under a wide range of pollution levels and meteorological conditions. Very long 

calibration periods (in the order of months) will cause sensor degradation issues to 

interfere with the calibration results. 

Startup time of sensors is estimated 4 hours. To avoid nonlinear response of the 

electrochemical sensor at elevated temperatures, we filter out measurements 
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above 30 °C. This is not a serious restriction for applicability in moderate climates 

such as in the Netherlands, provided that the sensor is protected from direct 

sunlight. However, for warmer regions or during heat waves this may reduce the 

data stream considerably, unless the temperature dependencies are better 

captured by more advanced regression models. 

The calibration seems to be location independent, as long as the NO2/O3 ratio is 

comparable. Application at a street side is likely to introduce a small positive bias. 

Calibration coefficients are not constant in time. During the 3-month period most 

sensors suffer from significant sensitivity loss and drift. The strongest drift and 

largest uncertainty are found for the older NO2-B42F sensors. It remains unclear if 

the worse performance is related to the sensor model or the longer usage in field 

experiments.  

The sensor degradation troubles practical applications in operational urban 

networks. Smart re-calibration programs are essential: bringing back sensors to a 

calibration facility on a regular basis, or recalibrating on the spot by a travelling 

reference instrument. New data driven techniques, such as Bayesian networks (e.g. 

Xiang et al. (2016)), might offer a solution for this problem.  

On the hardware side we recommend to include active ventilation to guarantee a 

constant air flow over the gas sensor and suppresses unwanted internal 

temperature changes due to heating of electronic components. To improve the NO2 

measurements further we recommend to include an additional low-cost ozone 

sensor, e.g. Ox-B431 by Alphasense. It is likely that the linear regression approach 

is able to resolve a significant part of the cross-sensitivity to ozone and NO2. The RH 

sensor signal should be used more cleverly to detect and filter sudden changes in 

relative humidity. Adding a local data logger is also recommended, to be able to 

recover data for periods when the WiFi connection to the central database is lost. 

Data availability 

A complete overview of fit results for all models can be found in the supplement A. 

The hourly Urban AirQ sensor data, calibrated in hindsight by interpolating the 

calibration in time between two calibration periods, can be downloaded at 
https://github.com/waagsociety/making-sensor. 
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Abstract 

Environmental sensing data provide crucial information for environment-related 

decision-making. Formal data are provided by official environmental institutes. 

Beyond those, however, there is a growing body of so-called informal sensing data, 

which are contributed by citizens using low-cost sensors. How good are these 

informal data, and how might they be applied, next to formal environmental sensing 

data? Could both types of sensing data be gainfully integrated? This paper presents 

the results of an online survey investigating perceptions within citizen science 

communities, environmental institutes and their networks of formal and informal 

environmental sensing data. The results show that citizens and experts had 

different views of formal and informal environmental sensing data, particularly on 

measurement frequency and the data information provision power. However, there 

was agreement, too, for example, on the accuracy of formal environmental sensing 

data. Furthermore, both agreed that the integration of formal and informal 

environmental sensing data offered potential for improvements on several aspects, 

particularly spatial coverage, data quantity and measurement frequency. 

Interestingly, the accuracy of informal environmental sensing data was largely 

unknown to both experts and citizens. This suggests the need for further 

investigation of informal environmental sensing data and the potential for its 

effective integration with formal environmental sensing data, if hurdles like 

standardisation can be overcome.  
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4.1 Introduction 

Environmental issues cannot be tackled without environmental data. These data 

are often produced by official institutions, which provide formal sensing data from 

which valuable information can be derived about the state of the environment 

(Artiola et al., 2004; Schnebele et al., 2014b). Nowadays, however, more and more 

environmental data are being produced by so-called “citizen science”, using low-

cost sensors as monitoring instruments. These data are known as informal 

environmental sensing data (Kamel Boulos et al., 2011; Kooistra et al., 2009). 

Though citizens have long been involved in science, the term citizen science is still 

new and evolving. There is as yet no wide consensus about the definition, as 

underlined in a paper by members of the European Citizen Science Association 

(ECSA), the Citizen Science Association (CSA) and the Australian Citizen Science 

Association (ACSA) (Eitzel et al., 2017). The current paper defines citizen science as 

including not only communities but also individuals performing scientific activities 

ranging from posing research questions to finding answers with or without the 

involvement of professional scientists (Bonney et al., 2016; Haklay, 2013; 

Lewenstein, 2016; See et al., 2016). 

Traditionally, most data collection has been done by professional scientists within 

projects, based on the questions that these projects posed. To implement projects, 

scientists usually rely on funding and cooperation, which however, typically stop 

after funding ends (Jalbert and Kinchy, 2016).  Citizen environmental sensing is 

generally more loosely organised. It involves citizens’ monitoring of the 

environment using sensors enabled by advancements in information and 

communication technologies (ICTs) (Kamel Boulos et al., 2011). Examples are 

smart phones and the “internet of things”. Open source movements are another key 

aspect in citizen environmental sensing campaigns. These allow citizens to 

establish networks, or communities, from the local to the global level, and collect 

data as never done before. Using open hardware and software, citizens can even 

make their own tools (Carton and Ache, 2017; Hemmi and Graham, 2014; Jiang et 

al., 2016). These new technologies and movements are being observed by 

policymakers and scientists as well, spurring them to think differently about how 

citizen data can be utilised for improved policymaking – for more effective and 

efficient social impact. 

Hemmi and Graham (2014) compared a bottom-up open citizen science with a 

closed expert-oriented approach in tackling the radiation monitoring problem after 

the Fukushima Daiichi accident. Their findings emphasise the merit of open citizen 

science, which was found to be more successful than closed expert-oriented 

approaches (Hemmi and Graham, 2014). The main reason for this success was the 

use of open data, as opposed to closed data. Data openness enabled faster evolution 

of the data creation and use cycle. In this case, open source and open community 

platforms attracted a diversity of experts and numerous citizens to contribute 

trustworthy open data at low cost (Hemmi and Graham, 2014). D’Hondt et al. 

(2013) did a citizen science experiment about noise monitoring and claimed that 

citizen noise monitoring (informal) can achieve the same accuracy as standard 
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noise monitoring (formal) if implemented properly. A one-year experiment 

conducted in Paris by Aumond et al. (2017) concluded also the usefulness of 

(informal) urban noise measuring using mobile phone. The air pollution monitoring 

case study conducted in Antwerp, however, considered (informal) mobile 

monitoring as useful in respect of spatial trend identification but also indicate the 

challenges of collecting sufficient data and proper data analysis (Van den Bossche 

et al., 2016). 

Bell et al. (2015) conducted research on data quality from citizen weather stations. 

They observed, however, that significant instrument biases may appear in the data. 

Analogous research on informal citizen environmental data has been conducted in 

other fields as well: climate and atmospheric sciences (Muller et al., 2015), air 

quality (Borrego et al., 2016; Mead et al., 2013; Weissert et al., 2017), water (Little 

et al., 2016) and noise pollution (Maisonneuve et al., 2010). These studies have 

discussed or compared various aspects of formal and informal sensing data, for 

instance, accuracy and accessibility. 

Research on experts’ and citizens’ perceptions of formal and informal sensing data, 

and possibilities for integrating the two, has been limited up to now. Perceptions, 

however, here defined as the way “something is regarded, understood, or 

interpreted” (Oxford Dictionaries, 2017), influence not only the development of 

environmental sensing technology but also the applications of the data produced. 

To understand the perceptions from experts and citizens is crucial for citizen 

environmental science. The experts may not have the same perceptions as 

described by Minkman et al. (2017) about experts’ perceptions on citizen science 

in water resource management. Furthermore, there might be contrasting 

perceptions between experts and citizens which lead to conflicts, distrust and 

tensions rather than collaboration as Weng (2015) concluded in an ecological 

restoration case study. 

For implementation of citizen science projects, especially co-created citizen 

science, it is important to understand the different perceptions of citizens and 

experts regarding formal and informal data sources and the potential for 

integrating the two, as this can raise awareness of obstacles, influence how 

produced data are used, help to find solutions for problems and mark how changes 

and shifts happens. The current research investigated perceptions of citizen 

scientists and experts on formal and informal environmental sensing data and the 

potential for their integration. To our knowledge, no such study has been done 

before in terms of the citizen environmental sensing topic and the method. 

This chapter is organised in five sections. After this introduction, section 4.2 

elaborates on the survey method used. Section 4.3 describes and analyses survey 

results. Section 4.4 discusses these results, together with other associated research 

findings and limitations. Finally, section 4.5 presents the conclusions. 
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4.2 Method 

4.2.1 Online survey questionnaire 

A survey questionnaire was designed for the purpose of collecting experts’ and 

citizen scientists’ perceptions of formal and informal sensing data. The survey was 

administered online and targeted experts and citizens from selected environmental 

organisations and citizen communities. Figure 4.1 presents the conceptual design 

underlying the survey. Thus, citizen and expert respondents answered questions 

about both formal and informal environmental sensing data. Each also gave their 

opinions about the potential for integrating the two data types to address 

environmental concerns. 

The perception aspects investigated were derived in part from (Hemmi and 

Graham, 2014; Lewis and Edwards, 2016; Mead et al., 2013; Muller et al., 2015; 

Veregin, 1999) (Figure 4.2), and formulated in part by the authors. For instance, 

according to Veregin (1999), data quality components include accuracy, precision 

or resolution, consistency and completeness. Accuracy, consistency and 

completeness were directly selected. However, instead of using precision or 

resolution, calibration and coverage were used. Due to the particularities of citizen 

sensing, other aspects selected were calibration, maintenance and training and 

support (Mead et al., 2013). Social aspects, like trust, privacy and public awareness, 

were also considered important. For instance, after the Fukushima Daiichi accident, 

distrust was a main reason why citizens began a citizen environmental sensing 

community (Hemmi and Graham, 2014). 

Of course, there are other important aspects as well, especially in relation to specific 

disciplines. We did not include more however, to prevent the questionnaire from 

becoming too complex, particularly for citizen respondents. For instance, the geo-

information science and remote sensing community divide data accuracy further 

into spatial, temporal and thematic categories. Perception aspects range from 

quality of the data to continuity of data collection. 

The perception aspects selected for use in our questionnaire were subsequently 

developed into questions to create the online survey (Figure 4.2 and Appendix B). 
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Figure 4.1. Overview of the conceptual design for the perception questionnaire. 

4.2.2 Questionnaire design 

The perception questionnaire consisted of 21 groups of questions including 

multiple-choice questions, Likert scale questions and semi-open questions. These 

were grouped into five sections: (1) introduction, (2) formal environmental sensing 

data, (3) citizen environmental sensing data (informal); (4) integration of formal 

and informal environmental sensing data; and (5) additional comments, contact 

information and acknowledgment. An extra item “I don’t know” was added to Likert 

scale questions. This accounted for the fact that some respondents might not have 

answers to all questions, as a “neutral” option, representing neither agreement (full 

agreement) nor disagreement (full disagreement), was not always sufficient. 

4.2.3 Population and sample 

The target population in this research consisted of two groups: experts and citizens. 

We asked respondents to indicate the group they belonged in and their role and to 

answer the questions accordingly. 

The experts approached were from the Dutch National Institute for Public Health 

and Environment (RIVM), the Royal Netherlands Meteorological Institute (KNMI) 

and their networks and the Public Health Service of Amsterdam (GGD). 
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Figure 4.2. Aspects divided by sections included in questionnaire design. 

The citizens approached to participate in the survey were involved in one or more 

of three communities. The first was the Internet-of-Things Sensemakers. This is an 

open online and offline community, self-described as “dedicated to creative, 

advanced and human-centred Internet-of-Things, sensor (networks), 

electronics/hardware, open hardware/source and hardware startups” (see 

www.meetup.com/sensemakersams). As of 18 October 2017, it had 5003 

members. The second community was the Amsterdam Smart Citizens Lab. This is 

an open online and offline urban environmental monitoring community. It brings 

together Amsterdam-based scientists, hackers, designers and citizens with interest 

in environmental issues (Jiang et al., 2016). There were 939 members registered on 

Meetup as of 18 October 2017. The third community was the Smart Emission 

Community. This was similar to the Amsterdam Smart Citizens Lab, but located in 

the city of Nijmegen in the Netherlands (Grothe et al., 2016). This, more dedicated 

community had 37 members. 
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It is worth noting that there were citizens from the institutes’ networks and on the 

other hand there were experts from citizen science communities as well. 

4.2.4 Data collection 

As noted, the survey was conducted through an online questionnaire. Invitation e-

mails were sent to experts at the selected organisations and to community 

members in the three specified citizen science communities. Respondents were 

given one month to complete the questionnaires, and reminders were sent during 

the period. Offline communication was used to stimulate responses, that is, 

researcher joined in community event. 

4.2.5 Data analysis 

Data visualisation tools and descriptive statistics were used for preliminary 

analysis. The data were stored in Microsoft Excel for further analysis and 

visualisation to derive more detail. For ease of comparison and interpretation, some 

questions were regrouped or divided up for the analysis. There were no completely 

open questions except those at the end asking for further comments and 

respondent contact details. But some of the questions did leave blanks to be filled 

in. These responses were examined, and important information noted in the results. 

4.3 Survey results 

4.3.1 Participants 

In total, we received 107 responses. Of these, 26 were incomplete, and thus omitted 

from the analysis. Of the 81 completed questionnaires, 37 were from experts and 

44 were from citizens. 

All of the expert respondents had experience in environmental sensing 

applications. Respondents indicated experience in sensing applications including 

monitoring of air, noise, soil, vegetation, waste, water and weather (Figure 4.3). 

Others noted were light monitoring and gasses monitoring. Some 41% of the citizen 

respondents had no experience with any environmental sensing application. 

Respondents’ involvement in environmental sensing varied from environmental 

policymaking to a passing interest (Figure 4.4). Comparing experts’ and citizens’ 

involvement, we observe that most experts were policymakers, researchers or 

scientists. Logically, most citizen respondents categorised themselves as citizen 

scientists, citizens or just interested. The hardware and software developer and 

data user categories were almost equally divided between experts and citizens. 

Journalist and social researcher were among the other attributions mentioned. 
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Figure 4.3. Respondents’ experience with environmental sensing applications. 

 

Figure 4.4. Respondents’ involvement in environmental sensing. 
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4.3.2 Questionnaire analysis 

4.3.2.1 Perceptions of formal and informal data 

Figure 4.5 presents the complete overview of citizens’ and experts’ perceptions of 

formal and informal environmental sensing data. Below the different items are 

examined in detail. 

Accuracy. In terms of accuracy, most experts indicated that formal data had 

sufficient accuracy. Herein, the experts indicated greater confidence in formal data 

than the citizens. However, negative perceptions of formal sensing data were also 

more common among experts than citizens. Some 51% of the experts considered 

informal data as having insufficient accuracy, compared to 25% for citizens. It is 

worth noting that around one third of both experts and citizens chose a neutral 

response regarding their perception of the accuracy of informal data. Thus, both 

experts and citizens seem to consider the accuracy for informal environmental data 

as largely an unknown. 

Accessibility. Regarding the item accessibility, only 35% of experts and 18% of 

citizens indicated that formal data were easily accessible. Both experts and citizens 

said the accessibility of formal data needed to be improved. In contrast, both were 

slightly more positive regarding the accessibility of informal data, with experts 

being relatively more positive. Some 41% of the experts considered informal data 

easily accessible (Figure 4.5). 

Understanding. For the formal data, a larger percentage of the experts (41%) 

compared to the citizens (25%) perceived formal data as easy to understand. 

Similarly, as indicated in Figure 4.5, 38% of experts considered informal data easy 

to understand (though 30% of the experts did not agree). Citizens had a relatively 

negative view on informal data. Some 25% considered it easy to understand, while 

25% also did not agree. Some 27% of citizens chose a neutral answer on this 

question, and 23% chose “I don’t know”. 

Coverage. Opinions were similar regarding formal data coverage. As shown in 

Figure 4.5, 51% experts and 50% citizens indicated that they thought the coverage 

of formal environmental data to be insufficient. Perceptions of informal data 

coverage were slightly more positive, especially among experts. Thus, a majority of 

the experts and citizens agreed that formal environmental sensing data had 

insufficient coverage, but they were not satisfied with the coverage of informal 

environmental sensing data either. 

Real time. Interestingly, as indicated in Figure 4.5, a large proportion of citizens 

(34%) and experts (27%) indicated that formal data were not timely, though a 

substantial group of experts disagreed.  Informal data, on the other hand, was 

considered timelier by both experts (59%) and citizens (43%). Thus, experts and 

citizens seemed to consider informal environmental sensing data more real time 

than formal environmental sensing data. 
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Information provision. A large proportion of both experts and citizens said that 

neither formal sensing data nor informal sensing data were sufficient for 

environmental information provision (Figure 4.5). However, it is worth noting that 

the experts were more positive about the information provision power of formal 

sensing data. Citizens, on the other hand, were more positive about informal 

sensing data. Many of the experts surveyed chose a neutral response on the 

information provision aspect of formal (43%) sensing data. This suggests that 

almost half of the experts were unsure whether the formal environmental sensing 

data provided sufficient information for users. 

Consistency. In terms of consistency, perceptions were generally more positive 

among both experts and citizens about formal sensing data. Specifically, experts 

were quite confident about the consistency of formal environmental sensing data, 

as 70% agreed that the data were consistent. In contrast, they were critical of the 

consistency of informal environmental sensing data, with 81% disagreeing that the 

data were consistent. 

Completeness. In general, formal environmental sensing data were considered to 

be more complete than informal environmental sensing data. Experts were most 

positive about the completeness of formal sensing data. Although some 43% of the 

experts considered formal data to be complete, another 32% of the experts and 

39% of the citizens considered it incomplete. Regarding informal data, 

disagreement on completeness was substantial, with 78% of the experts and 50% 

of citizens considering it incomplete. 

Frequency. Both experts and citizens perceived measurement frequency as being 

sufficient for both formal as well as informal environmental sensing data (Figure 

4.5). However, experts and citizens did differ slightly in their overall views. The 

experts held more positive opinions of the frequency of the formal sensing data, 

while citizens were more positive about informal sensing data. 
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Figure 4.6. Experts’ and citizens’ perceptions of the value of informal environmental 

sensing data. 

Value of informal environmental sensing data. A majority of the citizens and 

experts surveyed considered it important for citizens to be able to collect 

environmental data. Only a few experts disagreed with this proposition or chose 

the neutral response (doi:10.7910/DVN/TP0DYS). The most-acknowledged value 

of informal environmental sensing data was to raise public awareness of 

environmental issues (Figure 4.6). In addition, experts indicated its value in 

complementing formal data, in providing (near) real-time measurements and in 

improving the spatial resolution of environmental data. Citizens, however, expected 

these data to have relatively more impact on policymaking. Other values mentioned 

were citizen empowerment, lower cost, greater coverage and enhanced social 

bonding. Nevertheless, when it comes to trust in the data, both experts (81%) and 

citizens (77%) indicated having greater trust in formal environmental sensing data 

(Figure 4.7). However, compared to experts, citizens trusted informal 

environmental sensing data relatively more and formal environmental sensing data 

less. The majority of both experts and citizens indicated that citizen sensing data 

were underestimated, because it was deemed to be less trustworthy than official 

data (doi:10.7910/DVN/TP0DYS). Regarding the coordination of citizen sensor 

networks, despite 35% of experts and 27% of citizens opting for a neutral response 

on this question, both experts and citizens supported more coordination by official 

organisations (doi:10.7910/DVN/TP0DYS). 



68  

 

Figure 4.7. Responses to the question: “Which data do you trust?”. 

Challenges and support. Both experts and citizens indicated that it was difficult 

for citizens to calibrate (doi:10.7910/DVN/TP0DYS) low-cost sensors. Support 

from experts was indicated as needed for sensor calibration, proper sensor use and 

data analysis (doi:10.7910/DVN/TP0DYS). 

4.3.2.2 Formal and informal data integration 

As shown in Figure 4.8, spatial coverage and data quantity were the top two aspects 

in which experts and citizens agreed that informal sensing data could complement 

formal data. About half of the surveyed experts and citizens also indicated 

measurement frequency and accessibility as aspects in which the two types of data 

could complement one another. Completeness, data accuracy and consistency were 

considered the least promising aspects for informal sensing data to complement 

formal data. In addition, except for the data amount, citizens were overall more 

positive than experts regarding complementarity in other areas. Some respondents 

wrote in other aspects in which informal sensing data could complement formal 

data, for instance, citizen involvement itself and micro-measurements. 
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Figure 4.8. Aspects where informal sensing data can complement formal sensing 

data, according to surveyed experts and citizens. 

In terms of integration, large percentages of both experts and citizens indicated that 

there was room for improvement on all of the items included: spatial coverage, data 

quantity, measurement frequency and data accuracy (Figure 4.9). Other aspects 

mentioned as having scope for improvement were completeness, verification and 

validation of formal data. Standardisation, was the top aspect considered as 

hindering the integration of informal and formal sensing data. Except that, 

comparatively, experts were more concerned about accuracy and metadata, while 

citizens were more concerned with privacy (Figure 4.10). Other aspects mentioned 

were sensor selection, calibration and validation. 
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Figure 4.9. Aspects which could be improved by integration of informal and formal 

sensing data, according to surveyed experts and citizens. 

 

Figure 4.10. Aspects hindering the integration of informal and formal environmental 

sensing data, according to surveyed experts and citizens. 
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4.4 Discussion 

Informal environmental sensing is emerging. However, attitudes towards this new 

socio-technical movement have been shown to be complex. Among researchers, 

some agree that citizen involvement is important for social aspects like 

engagement, education and to raise public awareness of environmental issues 

(Bonney et al., 2009; Jalbert and Kinchy, 2016; Jollymore et al., 2017). Others are 

concerned more with the technology aspect, that is, the usefulness of the data 

produced (Bell et al., 2013; Lewis and Edwards, 2016). 

Citizens and environmental institutes are both important players in the collection 

of environmental sensing data. Official institutes produce formal environmental 

sensing data, while citizens use low-cost sensors to collect informal data. It is 

therefore crucial to understand the perceptions of experts and citizens regarding 

both types of data and the potential for integrating the two. We collected these 

perceptions using an online questionnaire and then analysed the results. The 

communities we selected were quite diverse but all related to one or more aspects 

of general sensor technology, citizens environmental sensing or environmental 

monitoring. For instance, Internet-of-Things Sensemakers community is mainly a 

broad sensor technology community including professionals but also interested 

citizens. The Amsterdam Smart Citizens Lab is mainly a community with members 

who want to measure the air quality, noise, water quality and so on by themselves. 

This is also indicated in their background as shown in Figure 4.6: expert 

respondents were mainly environmental policy makers, environmental or sensor 

researchers and data scientists; citizen respondents were mainly citizen scientists, 

citizens or just interested; hardware and software developers have large portion in 

both citizens and experts. The findings and the limitations of the current research 

are discussed below.  

4.4.1 Formal and informal environmental sensing data 

Formal environmental sensing data have generally been considered expensive and 

inadequate for capturing the spatial and temporal dynamics required in 

environmental monitoring. This is due to static and sparse coverage of stations 

(Kumar et al., 2015; Little et al., 2016). This perception was confirmed in our 

research. Most experts and citizens considered formal environmental sensing data 

do not have sufficient coverage. 

In terms of citizen science in general, some authors have suggested that citizens are 

capable of producing data of similar quality to that of experts (Cohn, 2008; Haklay, 

2013; Holt et al., 2013). Looking specifically at citizen environmental sensing, 

emerging technologies give particular power to citizens to conduct scientific 

measurements that otherwise would not have been possible. However, new 

technologies bring new challenges as well, like sensor calibration. According to our 

survey, citizens have high expectations of the training and support they need for 

sensor calibration, proper sensor use and data analysis. Interestingly, a substantial 

proportion of respondents in both groups were neutral on the question of informal 

sensing data accuracy. This indicates that experts shared citizens’ uncertainties 
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regarding the quality of informal environmental sensing data. It suggests that 

experts and citizens could learn together by helping each other. This is in line with 

previous findings on public perceptions of citizen science (Lewandowski et al. 

(2017). 

Regarding other aspects, the majority of the surveyed experts and a big portion of 

citizens considered informal sensing data to be incomplete and inconsistent. More 

interestingly, both experts and citizens considered formal sensing data insufficient 

on coverage and information provision, but they were not satisfied on informal 

sensing data in these aspects neither. They also considered informal sensing data 

to have insufficient information provision power. Thus, even though both experts 

and citizens acknowledged the potential of informal environmental sensing data to 

complement formal environmental sensing data, for instance, to improve on the 

currently sparse coverage, the informal environmental sensing data themselves are 

still viewed as unable to live up to that potential. 

Above all, both experts and citizens clearly perceived a shortage of formal 

environmental sensing data. The gap between the data available, and that which is 

needed, cannot, yet be filled by informal sensing data, according to both groups 

surveyed. Experts and citizens furthermore considered the quality of informal 

sensing data to be largely an unknown. This hinders applications of informal 

sensing data. According to Little et al. (2016), informal sensing data have the 

greatest potential to complement formal sensing data in regard to coverage. Our 

survey, however, indicated that experts and citizens do not consider such better 

coverage by low-cost sensors to have been achieved as yet. This is understandable, 

because the utilisation of low-cost sensors for citizen environmental monitoring is 

still quite new. How informal environmental sensing data provision should be 

organised, and how it should be maintained to produce complete and consistent 

data are still open questions. Nevertheless, the history of equipment development 

suggests that the equipment will become more powerful and easier to operate by 

citizens over time (Haklay, 2013). We therefore believe that informal 

environmental sensing will increasingly contribute to environmental monitoring. 

The importance and value of informal environmental sensing data was recognised 

by our respondents, though citizens and experts were not in full agreement 

regarding issues of trust and how sensor networks should be coordinated. One way 

to resolve the issue of distrust might be by full documentation of the entire data 

collection process, including the hardware, software, data, analysis and so on 

(Hemmi and Graham, 2014). Our survey, furthermore, pointed out the difficulties 

experienced by citizens in data collection, suggesting that training and support 

from experts is crucial. 

4.4.2 Integration of formal and informal environmental sensing data 

Despite their differing perceptions of formal and informal environmental sensing 

data, both experts and citizens agreed that informal and formal sensing data could 

complement each other regarding spatial coverage, data quantity, measurement 

frequency, accessibility, completeness, accuracy and consistency (Figure 4.8 and 
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4.9). This is in line with Kumar et al. (2015) who thought informal sensing could 

identify air pollution hotspots in real time. However, according to our survey, 

difficulties do remain. Standardisation, accuracy, metadata, privacy, consistency 

and accessibility are among the primary obstacles hindering the integration of 

formal and informal environmental sensing data (Figure 4.10). Furthermore, there 

are more technical challenges during practical combining of diverse data sources 

including formal and informal ones because of problems such as imperfection, 

correlation, inconsistency and disparateness of data as described by Khaleghi et al. 

(2013). 

To capitalise on the potential of informal environmental sensing data, the need for 

standardisation is urgent. Broadly, this would help resolve metadata issues, 

guarantee accuracy and promote accessibility. For instance, the Open Geospatial 

Consortium (OGC) standards could be used (Kamel Boulos et al., 2011). 

4.4.3 Limitations 

This study administered an online survey to examine citizens’ and experts’ 

perceptions of formal and informal environmental sensing data and the potential 

for integrating the two. Members of citizen science communities, experts at official 

institutes for environmental monitoring and networks of official institutes 

including experts and citizens were selected as survey respondents. However, 

unlike the experts, all of whom were familiar with either citizen science or 

environmental monitoring, the citizen communities were more diverse. Among 

those surveyed were members of the Amsterdam Smart Citizens Lab and the 

Internet-of-Things Sensemakers communities because they are open communities. 

The survey focused on the Netherlands. Most responses were from Dutch citizens, 

although some respondents had an international background. It would be relevant 

to scale up this survey to the European level or among an even broader 

international group of countries, covering a greater diversity of communities and 

experts from different disciplines. 

4.5 Conclusions 

This chapter examined the perceptions of experts and citizens regarding formal and 

informal environmental sensing data. These perceptions were collected via a 

survey questionnaire administered within citizen science communities, official 

environmental institutes and their networks. The aim was to gain insights on both 

citizens’ and experts’ perceptions of informal and formal environmental sensing 

data and integration potential. The survey indicated areas of agreement but also 

disagreement between citizens and experts on formal and informal environmental 

sensing data. Both experts and citizens surveyed were generally in agreement 

regarding the accuracy and consistency of formal environmental sensing data. 

Importantly, the accuracy of informal environmental sensing data was largely 

considered unknown by both experts and citizens. Despite both experts and 

citizens considered formal and informal sensing data were not sufficient for 

information provision, citizens, however, were inclined to think that informal 
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sensing data were more sufficient, while experts considered formal sensing data to 

be more sufficient. This could explain why citizens initiate various informal 

environmental sensing data-gathering campaigns and why experts may be 

concerned or critical of the data produced. More important, however, the survey 

showed that citizens expected to need training and support in order to produce 

valuable data.  

The experts recognised the value of citizen sensing campaigns and the data 

produced. They also acknowledged the potential complementarity of formal and 

informal environmental sensing data. Respondents agreed that by integrating these 

two data sources, gains could be made mainly in data quantity, spatial coverage, 

measurement frequency and data accuracy. They also commented on the obstacles 

for using and integrating informal environmental sensing data. Standardisation was 

at the top of the list of obstacles, among others. 

The respondents’ perceptions underscored disagreements, challenges and also 

expectations, especially on the status of formal and informal environmental sensing 

data and complementary integration. The insights produced could be valuable for 

guiding further formal and informal environmental sensing practice and research. 

Furthermore, our online survey was administered in the Netherlands to selected 

citizen communities and official environmental institutes including their networks. 

It would be relevant to adapt the questionnaire to the European or a broader 

international level and to include more diverse communities and institutes to gain 

a more complete picture. For instance, the European Citizen Science Association 

(ECSA), the Citizen Science Association (CSA) and Australian Citizen Science 

Association (ACSA) could connect citizen science communities globally for a more 

comprehensive survey. 
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Abstract 

Citizen environmental sensing data are increasingly produced. These so-called 

informal data have the potential to provide valuable information. However, how 

should these data interact with formal data sources? What if we integrate these data 

with formal sensing data? How can they be integrated? In this paper, we present a 

conceptual framework for formal and informal environmental sensing data 

integration. Five approaches are proposed for the integration. To evaluate these 

approaches, five success indicators were selected: information complement, 

increased spatial coverage, increased frequency, more timely and increased 

accuracy. The identified approaches are evaluated by literature study and expert 

validation. According to the evaluation, formal and informal environmental sensing 

data integration using the proposed approaches can create additional value for 

environmental decision making. The proposed framework and integration 

approaches are applicable. Calibration is currently often used to improve the data 

accuracy of informal environmental sensing data. Few studies explore the data 

merge approach but it is considered overall valuable by all experts. To reach the 

potential of informal environmental sensing data, further study on quality 

standards by purposes and data merging methods are needed. 
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5.1 Introduction 

Environmental problems are global issues. These problems affect human health 

and could even cause mortality. It was estimated by the World Health Organization 

that 12.6 million deaths globally were related to environmental issues in 2012 

(Prüss-Ustün et al., 2016). To know the status of the environment, finding solutions 

and making decisions for environmental problems, environmental monitoring is 

crucial. Due to legal and quality requirements, environmental monitoring networks 

are usually operated by official organizations with a legislative mandate. The 

individual monitoring stations are often expensive and labour intensive to operate. 

As a result, the official monitoring networks, producing formal environmental 

sensing data, are usually sparse in the number of individual stations. Taking air 

quality monitoring as an example, there are 12 stations in the city of Amsterdam, 

the Netherlands, measuring particulate matter (PM10, PM2.5), NO2, CO, SO2, O3 and 

some of them only measure a few air pollutants (https://www.luchtmeetnet.nl). 

Increasingly citizens are highly interested in monitoring their living environment. 

Recently, due to the development of sensor technology, more and more low cost, 

miniaturised and portable sensors are becoming available. These give citizens the 

opportunities to measure themselves the environment which they are concerned 

about (Huck et al., 2017; Jovašević-Stojanović et al., 2015; McKercher et al., 2017; 
Meier et al., 2017), resulting in informal environmental sensing data. 

Official monitoring stations are expensive, huge and often sparsely distributed. Low 

cost, miniaturized sensors operated by citizens are emerging, but their usefulness 

needs to be investigated. For instance, low-cost air quality sensors have the 

potential to complement formal data sources (Borrego et al., 2016; Duvall et al., 

2016; Kumar et al., 2015). So, can we use those data for decision making? What if 

we integrate formal and informal sensing data? Can we get more or better 

information about our environment by integrating those data? A survey about 

perspectives from experts and citizens on formal and informal environmental 

sensor data and their integration potential, showed that  people have different 

opinions on formal and informal sensor data, but all  think that integration of both 

can improve environmental information provision in different aspects (Jiang et al., 

2018).     

Formal and informal sensor data are used with a certain purpose in mind. For 

instance, if the data are used for a legislation purpose, the data must be collected 

according to certain standards. For air quality, the Air Quality Directive 

2008/50/EC (EU, 2008) is the standard. Informal sensor data may not be suitable, 

because usually they are not collected according to the official standard (Castell et 

al., 2017a). On the other hand, in the case that the dynamics of air pollution in cities 

for personal use is the objective, data accuracy is still important but can be 

compromised with low budget, mobile and small size devices (Huck et al., 2017; 

Miskell et al., 2017). For instance, in an indicative use case, cheap, small and 

portable sensors can be used for personal air pollution exposure monitoring. Even 

though the data accuracy may be relatively poor, the purpose to capture the 

dynamics of personal exposure to air pollution might be achieved. 
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Although several studies present cases, currently to our knowledge, a framework 

on how to use formal and informal environmental sensing data especially the 

possibility to integrate the two for environmental information provision is not 

available. 

Therefore the overall objective of this paper is to propose a conceptual framework 

for formal and informal sensing data integration to support decision making on 

environmental issues. The application of the integration framework is 

demonstrated by a case study on air quality monitoring in the city of Amsterdam, 

the Netherlands. 

The proposed framework is presented in section 5.2. A literature review and an 

expert validation based on air quality sensor data integration are used to evaluate 

this framework in section 5.3. Section 5.4 discusses the results, while in section 5.5 

conclusions are presented. 

5.2 Proposed integration framework 

The proposed integration framework for formal and informal data is presented in 

Figure 5.1. The integration framework guides from defining the purpose to the 

evaluation of the results. The purpose decides which data source is needed: formal, 

informal or the integration of both. When integration is selected, certain 

approaches can be applied. The selection of using formal, informal or the 

integration of both should then be evaluated accordingly. To have a comprehensive 

view, the framework includes using informal data source or formal data source 

only. However, this paper will only focus on the integration of formal and informal 

environmental sensing data. 

5.2.1 Define purposes 

Before considering integration of formal and informal data sources, the purpose for 

the environmental issue under consideration should be defined (Figure 5.1). For 

different purposes, there are different requirements. For example, for regulation 

and legal issues, often accurate, reliable and complete data are needed. In such a 

case, the aspect of data quality is most important. On the other hand, for citizens 

who are interested in their surrounding environment or their personal daily air 

pollution exposure which they otherwise cannot be obtained from formal data, the 

aspect of sufficient information is most important. Even though, it is still worth 

noting that the data should still be at certain data quality level since it influences 

personal decision making. If integration is needed for a certain purpose, the proper 

integration approaches can be selected as presented in Figure 5.2. A detailed 

description per approach is provided in section 5.2.2. The integration result can be 

validated by success indicators as elaborated in section 5.2.3. 
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Figure 5.1 General integration framework for formal and informal data sources to 

support the monitoring of environmental issues 
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5.2.2 Integration approaches 

The identified integration approaches (Figure 5.2) are based on the relationship 

between formal and informal environmental sensing data and the different 

integration levels (Abdelgawad and Bayoumi, 2012). The complement of formal 

and informal sources (approach 2 and 3) can be considered as integration at the 

information level. This means that the data are not merged directly. Only 

information derived from formal and informal environmental sensing data are of 

interest. For instance, formal data may give accurate measurements at certain 

locations of a city but does not provide the street level dynamics due to limited 

measurement locations. Informal data on the other hand may not give data as 

accurate as formal measurements, but if there is a large number and wide coverage 

of informal measurements informal data may give insight into street level 

environmental dynamics. By integrating the information derived from the two, 

more comprehensive information can be gained. Merging of formal and informal 

data (approach 4) is integration at the data level. In addition, since field calibration 

of informal sensing data needs formal data (approach 1), this is considered as 

integration too. Using informal data as formal data (approach 5) is practically how 

informal data are used when formal data are limited or do not even exist. Below, 

the five identified approaches (Figure 5.2) are described in more detail. 

Approach 1：Use formal data to calibrate informal data 

In this approach, formal data are used for informal data calibration. Co-locating 

informal sensors to official environmental monitoring stations for field calibration 

is crucial to ensure informal sensor data quality (Duvall et al., 2016; Spinelle et al., 

2015b).    

Approach 2：Use formal data sources to complement informal data  

In this approach, formal data will be used to complement informal data at the 

information level. Formal data normally have higher quality, therefore formal data 

are considered to be used first to avoid unnecessary repeated measurements when 

planning informal data collection. 

Approach 3：Use informal data to complement formal data  

In this approach, informal data will be used to complement formal data at 

information level. This is mainly the purpose of informal data when formal data is 

not sufficient to cover the demand for environmental information due to sparse 

measurements location or low measurement frequency. Informal data can then be 

used to derive local environmental information timely when this is not possible by 

formal data source (de Albuquerque et al., 2015; Schnebele et al., 2015). 

Approach 4：Merge formal and informal data 

In this approach, formal and informal data will be merged to a unified format as a 

new data source. This is different compared to the approaches 2 and 3. In these 

approaches, the information from informal and formal data are integrated to derive 
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more comprehensive understanding of the environment which neither can achieve. 

But the data are not merged, informal and formal data still have different data 

accuracy, measurement frequency, format, standards and so on. Integrating by data 

merge as meant in this approach creates one unified data set. This integration may 

have lower absolute accuracy but a better prediction of interpolated locations 

compared to using only a limited number of formal data observations (Mazzoleni 

et al., 2017).  

Approach 5：Use informal data as formal data   

In this approach, informal data is the only (or main) data source when there is no 

(or few) formal data existing locally. The informal data are used as formal data to 

provide environmental information (Weissert et al., 2017). On a larger scale, these 

informal data can be integrated with other informal and formal data for national 

environmental information provision. 

 

Figure 5.2 Overview of integration approaches for formal and informal sensing data 

evaluated in this research 
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5.2.3 Validation approaches 

In this study, two validation approaches are used to evaluate the proposed 

integration approaches. The first one is a literature study. In this approach, a 

selection of formal and informal data integration studies from different 

environmental domains were reviewed.  

Specific keywords were evaluated to search relevant references. However, due to 

the very diverse terminology for citizen science, as discussed by Eitzel et al. (2017), 

data integration, formal and informal, it resulted a long and non-exhaustive list of 

keywords combinations. Therefore, a selected keywords combination was first 

used to select relevant papers. Then the citation tracking (backward and forward) 

of the selected relevant papers was used to further search relevant papers. 

Scopus® was used as the literature database to search references. The keywords 

"sensor" AND "calibration" AND "citizen", "sensor" AND "citizen" AND 

"complement", and "sensor" AND "citizen" AND ("data assimilation" OR "data 

integration" OR "data fusion" OR "data merge"), in article title, abstract, keywords 

were used to search relevant papers. This resulted in a selection of 75 papers in 

total. Within these lists of papers, 8 papers were considered relevant and selected 

for further citation tracking. In total, 7 papers were identified and evaluated by 

success indicators.  

For the second approach, an expert validation is used (Ligtenberg, 2006) which can 

be considered as a subjective validation. Six experts were selected by the following 

criteria: 1) the expert works in an official environmental monitoring institute; and 

2) the expert is familiar or involved in citizen environmental sensing projects. They 

were invited to validate each of the proposed approaches for the case study by 

rating the defined success indicators in five levels from “Strongly disagree” to 

“Strongly agree”. Comments were asked for each indicator of every integration 

approach. In this validation, an air quality case study (section 5.2.3.1) is used as a 

concrete example to validate the identified integration approaches. The integration 

success indicators are presented in more detail in section 5.2.3.2. 

5.2.3.1 Case study for expert validation 

In the city of Amsterdam in the Netherlands, there are 12 formal air quality 

monitoring stations operated by the Public Health Service of Amsterdam (GGD 

Amsterdam) or Dutch National Institute for Public Health and Environment (RIVM). 

Among them, there are 10 stations measuring NO2. The project Urban AirQ was 

conducted in 2016 with a group of citizens, experts and researchers using 16 low-

cost sensor devices. The data produced from these sensors are called informal data 

source as they were obtained at locations operated by citizens. The sensors were 

operational from June to August 2016 around two selected streets with relatively 

high pollution levels. The informal sensors were calibrated by collocating sensor 

devices to one formal station at Vondelpark before and after the measurement 

campaign and validated by comparing data from one informal sensor device to a 

nearby formal station at Oude Schans. More details on the followed calibration and 

validation procedures can be found in (Mijling et al., 2017). The case study is used 

as a specific example for expert validation. 
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5.2.3.2 Integration success indicators 

In a previous study, the perceptions of experts and citizens on integrating formal 

and informal sensor sources was evaluated (Jiang et al., 2018). The selected 

indicators cover different aspects which were indicated as being relevant for 

evaluating the added value of integration. The following indicators were taken into 

account in this study: 

• Information complement: by integration, complementary information 

can be derived by increased data volume.  

• Increased spatial coverage: by integration, derived information covers 

more locations.  

• Increased frequency: by integration, increased measurements derives 

information which otherwise not be possible. For instance, only hourly 

information is available without integration, after integration, information 

by minute become possible.     

• More timely: by integration, information is available in a more timely way. 

For instance, information may only be available days after measuring for 

one data source, when integrating this data source with more timely data 

source, information may become available in seconds.  

• Increased accuracy: by integration, derived information has better 

accuracy than without integration.  

5.3 Evaluation of integration approaches 

5.3.1 Literature study on formal and informal data integration 

A total of 7 papers were selected as basis for the literature assessment. The 

environmental domains are air quality, flood, noise and radiation monitoring. 

These domains are of high concern to citizens and formal data information is often 

limited. We studied these applications and evaluated if the five success indicators 

were applicable and what result could be derived from the cases. The results are 

presented in Table 1 by grouping the studies according to the five approaches. 

As indicated in Table 5.1, we do see formal and informal environmental integration 

applications fitting the proposed approaches. However, these studies are mainly 

focusing on validation of usefulness and potential of informal data sources. Less 

research is conducted on how to reach that potential and how the increasing 

amount of informal data sources can be used properly for policy making and 

personal decision making. These studies will be further discussed together with 

expert validation for each approach in section 5.3.3 
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Table 5.1 Overview of studies on formal and informal sensing data integration 

classified according to integration approach.  

Integration 

approach  
Domain Application 

Informal data 

source  

Formal data 

source  
Indicators  Reference  

Calibration Air quality Calibration 
Air quality 

sensors  

Official air 

quality 

monitoring 

station  

Increased 

accuracy  

(Castell et 

al., 2017a) 

Calibration Air quality Calibration 
Air quality 

sensors  

Official air 

quality 

monitoring 

station 

Increased 

accuracy 

(Hagan et 

al., 2018) 

Calibration Air quality Calibration 
Air quality 

sensors  

Official air 

quality 

monitoring 

station 

Increased 

accuracy 

(Lin et al., 

2017) 

Informal 

complements 

formal  

Radiation 
Radiation  

Monitoring  
Citizen sensing 

Official 

radiation 

measurements  

Information 

complement  

(Hemmi and 

Graham, 

2014) 

Informal 

complements 

formal 

Flood 
Disaster 

management 

Photos  

 

Authoritative 

data 

Information 

complement  

Increased 

coverage  

Increased 

frequency  

(Schnebele 

et al., 

2014c) 

Merge Flood  
Flood 

information 

Crowdsourced 

data  

Official data 

sources  

Increased 

accuracy  

(Mazzoleni 

et al., 2017) 

Informal 

used as 

formal 

Noise 
Official 

alternative  

Participatory 

sensing  
If not available  

Increased 

accuracy  

(D’Hondt et 

al., 2013) 

5.3.2 Expert validation of integration approaches 

In total, five experts assessed the five approaches. The rating from the expert 

validation is shown in Table 5.2 divided by approach. The mean and standard 

deviation (SD) for every score is calculated for the score for a range of 1 to 5 to 

‘strongly disagree’ to ‘strongly agree’. Except the rating, experts also made 

comments on approaches or indicators of approaches. These comments are 

presented in Appendix C2. 

5.3.3 Evaluation per integration approach 

5.3.3.1 Approach 1: Use formal data to calibrate informal data 

In this approach, formal environmental sensing data are used to calibrate informal 

environmental sensing data. As indicated in Table 5.2, all experts strongly agree on 

the increased accuracy when using formal environmental sensing data to calibrate 

informal environmental sensing data as this will increase the accuracy of informal 

sensing data. This is in line with reported studies in literature (Table 5.1). For 

instance, Castell et al. (2017a) compared laboratory evaluation with field 

evaluation using commercial low-cost sensor platforms. In the laboratory 

evaluation, all tested gas measurements (CO, NO, NO2 and O3) had correlations 

higher than 0.9 with the reference values but in the field evaluation, most 



   85 

calibration parameters obtained in laboratory changed significantly, and sensors 

became sensitive to temperature and relative humidity (Castell et al., 2017a). 

Informal environmental sensing data is used without calibration in some cases due 

to reasons such as technical complexity, lack of support and facilities. In these cases, 

informal environmental sensing data may only be used in a limited way, for 

instance, used as trend indicative measurements. Some informal environmental 

sensors are calibrated in laboratories in controlled environment which could 

improve data quality. However, the improvement is still limited since lab 

environment is often quite different from the real environment. Using formal 

environmental data as calibration source would improve accuracy of informal 

environmental data substantially (Lin et al., 2015; Mead et al., 2013; Spinelle et al., 

2015b). By integrating formal environmental sensing data under real monitoring 

conditions, informal environmental sensing data can be calibrated to avoid for 

instance informal sensing data drift. 

Table 5.2 Expert validation of proposed approaches for the case study. 

Approach Indicator 

Percentage (%) 

Sum Mean SD 
Strongly 

disagree 
Disagree Neutral Agree 

Strongly 

agree 

Calibration Increased accuracy 0 0 0 0 100 5 5.00 0.00 

Formal 

complements 

informal 

Information complement 0 20 20 40 20 5 3.60 1.14 

Increased spatial coverage 0 20 40 0 40 5 3.60 1.34 

Increased frequency 0 40 40 20 0 5 2.80 0.84 

More timely 0 40 40 20 0 5 2.80 0.84 

Increased accuracy 0 20 20 20 40 5 3.80 1.30 

Informal 

complements 

formal 

Information complement 0 0 0 60 40 5 4.40 0.55 

Increased spatial coverage 0 0 0 40 60 5 4.60 0.55 

Increased frequency 0 0 60 40 0 5 3.40 0.55 

More timely 0 20 60 0 20 5 3.20 1.10 

Increased accuracy 0 50 50 0 0 4 2.50 0.58 

Data merge 

Information complement 0 0 0 60 40 5 4.40 0.55 

Increased spatial coverage 0 0 0 20 80 5 4.80 0.45 

Increased frequency 0 0 40 40 20 5 3.80 0.84 

More timely 0 0 80 20 0 5 3.20 0.45 

Increased accuracy 0 0 0 60 40 5 4.40 0.55 

Informal 

used as 

formal 

Information complement 0 25 0 50 25 4 3.75 1.26 

Increased spatial coverage 0 25 0 25 50 4 4.00 1.41 

Increased frequency 0 25 25 50 0 4 3.25 0.96 

More timely 0 25 75 0 0 4 2.75 0.50 

Increased accuracy 33 0 33 33 0 3 2.67 1.53 
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5.3.3.2 Approach 2: Use formal data to complement informal data 

In this approach, formal data are used to complement informal data. According to 

the experts’ validation (Table 5.2), information complement was supported by most 

experts. The other experts considered formal data has low data volume and 

therefore disagree on the information complement. As indicated in Table 5.2, the 

opinion on increased spatial coverage is quite disperse. The increased spatial 

coverage is considered neutral if official measurements are used together with low-

cost sensors (Appendix C2). Most experts chose either ‘disagree’ or ‘neutral’ on 

increased frequency. One reason, according to the comment, is that formal data are 

available in hourly value. However, the other experts agreed on this. In terms of 

more timely, there was no agreement. One comment was that formal data are 

available hourly, sensors will not be much faster (Appendix C2). More than half of 

the experts agreed on the increased accuracy. 

There was no literature found for this approach. However, logically this should be 

an option. Even though it seems not a hot topic for research, it is expected to be 

used in practice. In this sense, the integration of formal environmental sensing data 

could save budget for informal sensor network building. If existing formal 

environment sensing stations are taking into account to complement informal 

environmental sensing network, the informal network can be designed in a better 

way. For instance, in the case study (Mijling et al., 2017), there were two official 

monitoring stations in the project area. They could be used to complement the 

informal sensing network. 

5.3.3.3 Approach 3: Use informal data to complement formal data 

In this approach, informal environmental sensing data is used to fill the formal 

measurement gaps. Overall, all experts agreed on information complement and 

increased spatial coverage.  They were less positive on increased frequency and 

more timely. No expert agreed on indicator on increased accuracy (Table 5.2). 

However, one comment was that informal data can indicate representativeness of 

formal data and therefore improve overall modelling accuracy (Appendix C2). 

Often, formal measurement locations are planned for certain reasons from the legal 

monitoring purpose perspectives. However, it does not always meet the citizens’ 

concern. In the case study, due to heavy traffic in the selected areas, citizens living 

around these streets are very much concerned about the air pollution at these 

locations. They are eager to know more details about the status of air pollution in 

their living areas. However, two formal environmental monitoring stations in that 

area supply only limited information. By installing a number of informal sensors in 

these areas, more detailed information can be gained to monitor the air quality 

status and dynamics which cannot be supplied by available formal environmental 

sensing data alone. As studied by Droste et al. (2017), the citizen urban air 

temperatures monitoring by over 10 million battery temperature readings in São 

Paulo, Brazil were indicated potentially valuable to complement scarce official 

weather observations. 
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5.3.3.4 Approach 4: Merge formal and informal data 

In this approach, formal and informal environmental data are merged to one data 

set. The overall evaluation from the expert validation was positive (Table 5.2). One 

comment from an expert was that: “this approach is what we (might mean official 

environmental organizations from the expert perspective) should do, but 

integrating not only informal sensing data but also other relevant data sources” 

(Appendix C2). 

When informal environmental sensing data is considered qualified to merge with 

formal environmental sensing data, the merged data can supply information 

neither formal nor informal environmental sensing data can do. For instance, the 

merged data can result in increased measurement locations (spatial coverage) and 

measurement times. 

For this approach, the absolute accuracy might decrease due to the accuracy of 

informal data. The accuracy depends very much on the accuracy of informal 

environmental sensing data if we assume the formal measurements always have 

high accuracy even though it is not always true in all circumstances. However, even 

if the accuracy of informal data is lower than formal data but has sufficient accuracy, 

the merged data would still have better overall accuracy or modelling resolution 

(Mazzoleni et al., 2017) comparing to either sole formal or informal sensing data. 

5.3.3.5 Approach 5: Use informal data as formal data 

In this approach, informal environmental data are used as formal data. As can be 

observed from Table 5.1, there are some studies using this approach. However, 

experts are quite hesitating. Some experts chose not to rate this approach. One 

comment was that the informal data are not good enough so far to be used as formal 

data but it might be the way in some areas and countries if there is no formal 

alternative available (Appendix C2). A comment from an expert indicated the 

significance of data accuracy for this approach, it might be used somehow if data 

accuracy is at a relevant level for the indicated purpose (Appendix C2). 

The use of informal data as formal data happens often when no formal data exist or 

the formal data source does not meet the demands. For instance, after the 

Fukushima Daiichi nuclear disaster in Fukushima Prefecture, Japan, in 2011, 

citizens demanded sufficient radiation information which was not enough from the 

formal measurements. In that situation, citizens initiated informal sensing network 

which was growing fast and was used as formal information provision (Hemmi and 

Graham, 2014). 

For this approach, even though no formal data is existing, still, as commented by 

experts, data accuracy which determines the usefulness of the data is crucial to 

meet the purposes. What’s more, data accuracy is the base for other improvements. 

Only when the data are confirmed to be useful, the information complement, 

increased spatial coverage, increased frequency and more timely can be achieved 

(D’Hondt et al., 2013). 
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5.4 Discussion 

In this part, we first discuss the proposed framework and associated integration 

approaches. Next, data quality and data quantity related to informal sensing are 

then discussed. Finally, the methods for data merge are discussed. 

5.4.1 Evaluation of the framework 

Informal environmental sensing data are increasingly produced by citizens using 

affordable and portable sensors which are capable to measure diverse 

environmental parameters. However, how these data can be used is an important 

question even though there are increasing studies indicating the potential of these 

data (Kumar et al., 2015; Moltchanov et al., 2015; Schneider et al., 2017). In this 

paper, a conceptual framework is proposed to study how these informal sensing 

data could be used (Figure 5.1). The framework starts from the purposes of using 

formal data source, informal data source or their integration. As indicated, the 

purpose decides what would be the requirement that determines which data source 

should be used. For instance, if education is the purpose, informal sensing data 

might be sufficient for learning. But for legislation purposes, formal sensing data 

might be required. Five integration approaches are proposed based on the 

relationship of the two data sources (Abdelgawad and Bayoumi, 2012) and 

evaluated using literature study and expert validation. The first approach is using 

formal data to calibrate informal data. As studied by many researchers, Borrego et 

al. (2016) and Spinelle et al. (2015b) for instance, and evaluated by experts in this 

study, this approach can increase the accuracy of informal sensing data. Questions 

remain on: What if these data have similar quality as formal data? Or if the data 

quality of informal data is slightly lower than formal data? Can they be used for 

policy making or personal decision making? In other words, what would be the 

requirement or standard for informal environmental sensing data to reach the 

potential mentioned in an increasing number of studies or have the impact it may 

have. This is an import question since many scientists and politicians are talking 

about the motivation of citizens to participate in citizen sensing projects. Citizens 

will not be motivated when told the potential on the one hand but warned it should 

not be used on the other hand. Or without knowing how useful these data are and 

how these data can be used. No literature was found about Approach 2, but logically 

it is valid as an approach and it is likely to be used in practice. Approach 3 gives 

another way on how informal sensing data can be integrated with formal data to 

enhance the spatial coverage and complement information, but the data accuracy 

will not be improved according to expert validation. Approach 4 introduces the data 

merge of formal and informal environmental sensing data. According to the expert 

validation, it will improve all aspects including accuracy. This is interesting, based 

on the literature study (Table 5.1) and comments from experts (Appendix C2), the 

accuracy increased because informal environmental sensing data can supply extra 

valuable information for modelling which otherwise would result in lower accuracy 

(de Albuquerque et al., 2015; Mazzoleni et al., 2017; Restrepo-Estrada et al., 2018). 

This indicates that informal environmental sensing data can be used by merging 

with formal data to derive information with higher quality for better decision 
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making. Approach 5 is even more interesting, from the literature, this approach is 

often applied for emergency or natural disasters when formal data are limited or 

not available. Some experts recognized these applications but considered informal 

data are far from been accepted to be used as formal data. Nevertheless, the value 

of informal sensing data should be recognized in those circumstances. Therefore, it 

is essential to make standards for quality assurance to make sure when these data 

are used, their potential can be achieved, and their drawback can be reduced as 

much as possible for decision making. For instance, the Air Sensor Guidebook 

(Williams et al., 2014) classifies the purposes and suggests accuracy requirement 

according which guide citizens how to use informal data for certain purpose. 

An expert validation is used to evaluate the formal and informal environmental 

sensing data integration approaches. Experts do have expertise to evaluate the 

approaches, however, as indicated in (Jiang et al., 2018), experts may still have 

biased opinion. What is more, the validation was based on an air quality case study, 

it may not be representative for other domains. 

5.4.2 Data quality and big data 

According to the validation of formal and informal environmental sensing data 

integration approaches, it was clear that data quality of informal environmental 

sensing data should be known. This determines if the data are valuable for data 

integration. Therefore, recognized quality standards are needed. It is not yet 

possible for informal data to have the same quality as official data. Even though, it 

is likely that the quality of informal from sensors will increase. However, we cannot 

wait till the informal data have the same quality as formal data. . More studies 

should be conducted to explore the data quality requirement for different purposes. 

The government or policy makers should support and guide the informal data 

collection and applications. United States Environmental Protection Agency (EPA) 

gives a good example on this by giving Air Sensor Toolbox for citizen scientists, 

researchers and developers (https://www.epa.gov/air-sensor-toolbox). 

Some experts are concerned about the data quality which on the one hand 

stimulates the development of sensor technology, and on the other hand neglect the 

value of the increasing amount and diversity of informal sensor data. Some experts 

or official organizations may see the potential of informal sensor data but are still 

hesitating to use or integrate those data with formal data sources. For example, the 

Weather Observations Website (WOW) (http://wow.metoffice.gov.uk) is 

coordinated by the UK Met Office and by Dutch national weather service the Royal 

Netherlands Meteorological Institute (KNMI) for a Dutch version 

(https://wow.knmi.nl). The data quality and potential for integration were studied 

and explored (Bell et al., 2013; Bell et al., 2015; Merkus, 2016). Such research 

should be encouraged, also for other environmental aspects such as air quality, 

water quality, and soil quality. Data quality is indeed crucial and should never be 

ignored, but in the coming big sensor data era, the informal sensor data can 

complement the sparse formal data substantially in spatial and temporal aspects. 

By integrating formal data and informal sensor data using the approaches 
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described in this paper, the integrated data can complement each other to provide 

more comprehensive information. 

5.4.3 Methods for data merge 

In this chapter, we presented a conceptual framework for utilizing informal 

environmental sensing data. Apart from validation of the data quality as discussed 

in 4.1, another important aspect is the use of data merge methods. Geostatistical 

methods like kriging might give good interpolation for spatial data prediction (Li 

and Heap, 2014). Furthermore, since air quality is highly related to for example 

weather conditions, transportation system and land use, data sources for these 

parameters can help to build more complex models for better prediction (Briggs et 

al., 1997; Donnelly et al., 2016). To build these kind of models, machine learning 

algorithms might be used for calibration and to find the relationships (Esposito et 

al., 2016; Zheng, 2015; Zheng et al., 2013).  For instance Schneider et al. (2017) and 

Castell et al. (2017b) integrated the informal air quality sensing data into an 

emission model. It proved the added value for a more timely air quality prediction. 

If formal data with high quality also could be integrated in this model, it may further 

improve the model performance. We need to think how to efficiently and effectively 

use formal and informal environmental sensing data with different characteristics 

to provide the environmental information to meet diverse demands and purposes. 

5.5 Conclusions 

In this chapter, a framework is presented for the use of formal and informal sensing 

data for environmental decision making. At the most generic level the framework 

consists of 1) using only formal data, 2) using only informal data and 3) using an 

integration of formal and informal data.  The last level was identified as a research 

gap. 

Five conceptual approaches for formal and informal environmental sensing data 

integration have been proposed and were evaluated by experts and a literature 

study. It is concluded that the approach which is using formal data to calibrate 

informal data, was considered an important approach to increase the accuracy of 

informal data. The approach which is using formal data to complement informal 

data, may not be studied often but can be used in practice. The approach using 

informal data to complement formal data, was considered positively to information 

complement, increased spatial coverage, increased frequency and more timely, but 

less likely the increased accuracy. The approach which is merging formal and 

informal data, was considered as a goal to use information environmental sensing 

data and was positively rated for all five indicators. Finally, the approach which is 

using informal data as formal data, was partly controversial, the data quality was a 

concern but also considered to be useful when there is no alternative. Overall, the 

proposed framework is applicable to guide formal and informal environmental 

sensing data applications. The proposed integration approaches are valuable to 

improve data quality. Apart from calibration, more attention should be given to how 

to use these informal data. Establishing quality standards according to different 
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purposes is important. Best practices can also be used as guidelines. More research 

should be done to study and evaluate the methods on merging formal and informal 

data to reach the potential of informal environmental sensing data.   

Acknowledgements 

The valuable support of the experts who made the expert validation is highly 

appreciated by the authors.  





Chapter 6 

6 Synthesis 



94   

6.1 Main results 

The overall objective of this thesis is to assess opportunities for informal sensor 

data and their integration with formal sensor data to improve environmental 

information provision by investigating challenges and obstacles in not only 

technical but also societal aspects. According to this objective, four research 

questions were identified and covered in chapter 2 to 5 respectively. In this section, 

findings for these questions are summarized and discussed. In chapter 1, I 

introduced the context of this research by a short story indicating the problem 

citizens experience when they require environmental information to decide on a 

healthy route for daily commuting. According to the findings in this thesis, citizens 

can use low-cost sensors to help them gain information about environmental issues 

when sensors are calibrated and used properly even though this is still challenging. 

Citizens and experts do have different perceptions on both formal and informal 

data. It indicates that application of informal environmental sensing does not only 

encounter technical but also societal issues. Positively, even though the accuracy of 

informal environmental sensing data is largely unknown for both citizens and 

experts, both citizens and experts consider that informal environmental sensing 

data can complement formal ones and integrating them can improve environmental 

data provision in aspects such as spatial-temporal resolution. 

6.1.1 How does a bottom-up citizen science project develop, and can 

it contribute to environmental monitoring? 

Environmental information is demanded for policy-making, public service and 

personal decision-making. However, the information from formal environmental 

monitoring institutes is limited due to the cost of monitoring facilities and labour. 

On the other hand, citizens have been contributing to data collection in various 

domains such as ecology (Dickinson et al., 2010), astronomy (Schwamb et al., 2013) 

and agriculture (Beza et al., 2017). In terms of environmental monitoring, thanks to 

information and communication technology and especially the sensor 

development, citizens are able to measure aspects of the environment by 

themselves. The types of sensors to measure and monitor various environmental 

phenomenon are increasing, while at the same time the price and the size of sensors 

are decreasing. Sensors allow citizens to make measurements themselves on the 

environment that they are concerned about. With the open hardware and open 

software movements, described in chapter 2, citizens can even make or create their 

own sensing tools. The data produced from this citizen science movement can 

potentially not only answer the questions of the citizens regarding their direct 

surrounding but can also complement the formal environmental data for policy 

making and public services. 

To find out how citizen environmental sensing should be organized, we started the 

Amsterdam Smart Citizens Lab. A framework for a bottom-up sensor development 

approach was proposed which involved citizens in each step from raising questions 

or concerns to developing strategies, making tools, measuring, data analysis and 

interpretation, and finally decision making or action (Figure 2.1). 
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As part of this approach, several groups were exploring different environmental 

issues. One group of persons including citizens, air quality experts, makers and 

researcher focused on the air quality issue and used this as a case study. According 

to experiments by Mead et al. (2013), electrochemical sensors seem promising and 

these were therefore selected. Subsequently, we made the sensing tools and 

conducted sensing experiments. According to the experiments, the selected 

electrochemical sensors potentially can be used for urban air quality monitoring. 

However, proper hardware and software design, sensor calibration and data 

analysis are essential for bottom-up citizen science project, which develop sensing 

tools by the community. As also argued by Hubbell et al. (2018), I therefore 

recommend broad open cooperation involving wide backgrounds, interests and 

expertise especially for bottom-up citizen environmental science approaches and 

using digital tools like Meetup (https://www.meetup.com) to organize and 

stimulate sustainable and growing citizen environmental science communities. For 

a sustainable community, motivation is also an import aspect, environmental 

concerns are usually a key driver for  motivation as is shown by for example the 

Groningen earthquake monitor and the Airplane Monitor Schiphol communities in 

the Netherlands where citizens are eager to collect their own data  to protect their 

local environment (Carton and Ache, 2017). 

Based on the approach descripted in Chapter 2, it is demonstrated that citizens are 

able to design and implement local sensor networks for air quality monitoring, but 

how good are their sensed data?  Calibration of sensors is essential for knowing the 

quality of citizen sensing data. 

6.1.2 How to calibrate low cost air quality sensor data, and how 

valuable are these data? 

According to the experience of previous experiments (Mead et al., 2013), the sensor 

calibration appears to be of major importance for reliable data. Therefore, in 

Chapter 3 we focused on field calibration of informal sensor devices. Continuing 

with the air quality experiments, a follow-up project called Urban AirQ was started. 

The overall goal of this project was to evaluate low-cost air quality sensors for 

urban environment monitoring by citizens. In this project, citizens of the two most 

polluted streets in Amsterdam, the Netherlands, were invited to raise their 

concerns and questions about the local air quality. They collaborated with experts 

and scientists who took care of sensor calibration and evaluation. The sensor 

devices were installed at citizens’ home for a two months period of data collection. 

According to literature (Mead et al., 2013), the selected electrochemical sensors can 

be affected by temperature and/or relative humidity. Therefore, a sensor was 

added to each device to measure these parameters. The calibration was facilitated 

by collocating sensor devices on the roof of an official monitoring station. 

In the study, low-cost electrochemical air quality sensors were examined for citizen 

urban air quality monitoring. In general, it was confirmed that low-cost 

electrochemical sensors compared to official measurements with R2 values ranging 
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from 0.6 to 0.9 due to individual difference. This result indicates that these informal 

sensors are valuable for air quality data provision. This is in line with some of the 

results found for the same type of electrochemical sensors compared with 

reference measurements at an urban traffic location in Aveiro, Portugal, in 2014 

with diverse devices (Borrego et al., 2016). It is worth noting that they got quite 

different results with devices designed differently but using the same type of 

sensors. The individual difference may partly explain this, but he hardware design 

may also contribute to the different performance. These results show that informal 

sensors when well calibrated have the potential to complement official 

environmental monitoring data to help answer citizens’ questions, which may not 

be answered from official data. For example, when air quality data are used for an 

application like finding the healthiest route for daily commuting a higher spatial 

temporal detail is required to prepare this assessment. However, the sensor data 

quality should be known and proved valuable. We demonstrated the application of 

a multiple linear regression model to calibrate the sensor. It proves the value of 

low-cost sensors for citizen urban air quality monitoring if sensors are properly 

calibrated and recalibrated. It is possible to gain better performance if more 

advanced calibration methods are used. For instance, Cross et al. (2017) applied a 

high-dimensional model representation method for calibration which significantly 

improved the sensor performance in their experiment. As indicated by Mueller et 

al. (2017) who compared different models for ozone and nitrogen dioxide sensor 

calibration, more advanced models should be studied to improve the sensor 

performance in different environmental conditions. The calibration of air quality 

sensors still has open scientific questions and is not fully studied yet (Lewis and 

Edwards, 2016). Standard calibration procedures are not widely established. 

Therefore, citizen scientists are recommended to collaborate with experts on this. 

The research in Chapter 3 showed that citizens could produce valuable 

environmental data, but that calibration is essential. Can these citizens produced 

data, also called informal sensing data, be integrated with formal ones? What are 

the perceptions of both the experts and the citizens on formal and informal sensing 

data and their integration potential? 

6.1.3 What are the perceptions of citizens and experts on formal and 

informal environmental sensing data and their integration 

potential?  

Since the potential value of citizen environmental sensing is proven, how to reach 

that potential? Therefore, it is important to understand how citizens and experts 

think about the data produced by citizens as informal sensing data and the data 

produced by official organizations as formal environmental sensing data (Figure 

6.1). 

In chapter 4, I describe the design of an online questionnaire survey to find out the 

perceptions of citizens and experts on formal and informal environmental sensing 

data and their integration potential. The experts were selected from mainly Dutch 
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official environmental monitoring institutes including Dutch National Institute for 

Public Health and Environment (RIVM), the Royal Netherlands Meteorological 

Institute (KNMI) and their networks and the Public Health Service of Amsterdam 

(GGD). The citizens approached for the survey were involved in one or more of the 

three sensing communities: Internet-of-Things Sensemakers in Amsterdam, 

Amsterdam Smart Citizens Lab and the Smart Emission Community in Nijmegen. 

According to the results, both citizens and experts were quite positive about the 

accuracy and consistency of formal environmental sensing data (Figure 4.4). 

Interestingly, when asked in the questionnaire about sufficient accuracy of informal 

environmental sensing data, a large part of both citizens and experts chose 

‘Neutral’. They both considered that either formal or informal environmental 

sensing data were sufficient for environmental information provision. Relatively, 

citizens were more positive on informal sensing data while experts were more 

positive on formal sensing data. Positively, both experts and citizens recognized the 

value of informal environmental sensing and the potential to complement formal 

environmental sensing data in various aspects especially regarding the potential to 

increase the spatial coverage. Standardisation was considered the main obstacle to 

integrate informal sensing data with formal data. Training and support from 

experts was expected by citizens due to issues related to calibration and data 

analysis. 

Figure 6.1 Examples of formal and informal sensing devices: (a) official air quality 

monitoring stations; (b) miniaturized sensor device; (c) informal sensing device 

measuring air quality at citizen’s home in Urban AirQ project. 

Photo credit: Waag Society 

(a) (b) 

(c) 
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From the research in Chapter 4, it became clear that both citizen and experts see 

potential for integrating their sensor data. How can this be achieved? 

6.1.4 How can informal and formal sensing data be integrated to 

provide enhanced environmental information? 

In chapter 5, a framework for using formal and informal environmental sensing 

data based on purposes towards environmental issues was proposed. According to 

a certain purpose, either formal or informal environmental sensing data can be 

used. What is more, the integration of the two can also be used. The approaches to 

integrate the two was identified as a research gap. Therefore, five integration 

approaches, based on the relationship (Abdelgawad and Bayoumi, 2012) between 

formal and informal environmental sensing data, were proposed including: 1) use 

formal data to calibrate informal data, 2) use formal data source to complement 

informal data, 3) use informal data to complement formal data, 4) merge formal and 

informal data and 5) use informal data as formal data. Five success indicators were 

selected for evaluation of the proposed approaches. A literature study, and an 

expert validation using Urban AirQ project as a case study were used to validate the 

proposed integration approaches. According to the literature study and expert 

validation applying the success indicators, the proposed framework and 

integration approach are applicable. According to the literature study, the 

calibration approach (1) is currently most applied. The other approaches are 

gained increasing attention and have also been evaluated in other studies. However, 

the data quality of informal environmental sensing data is an important issue for 

those integration approaches. To establish quality standards for different purposes 

was therefore recommended. 

In this chapter, the focus was on the integration of formal and informal 

environmental sensing data measuring the same environmental parameter. 

Broadly, the other data sources measuring different environmental parameters can 

also be integrated to solve certain environmental issue. For instance, apart from 

measuring NO2 directly, also data on traffic intensity are useful to predict NO2 

distribution. Abdelgawad and Bayoumi (2012) defined this as cooperative 

integration. Cooperative integration can be used with formal or informal 

environmental sensing data respectively. It can also be applied to the proposed 

integration approaches. For instance, due to cross sensitivity the integration of 

informal NO2 and O3 data may improve the prediction of NO2 or O3 measurements 

(Mijling et al., 2017). For formal and informal data merge, other data sources can 

also be integrated to enhance modelling performance (Schneider et al., 2017). 

6.2 Reflection and Outlook 

In the previous section, the main results of this thesis research were presented. 

How do they fit into the larger picture? What are expected developments? In this 

section I will discuss these issues by focussing on the 1) the role of proximate 
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sensing for near real-time environmental data collection, 2) development of sensor 

networks for smart city applications and 3) the changing role of citizens and open 

data. 

6.2.1 Proximate sensing for various high spatial temporal 

environmental data provision 

On a global level, environmental sensing used to and still relies largely on satellite 

imagery. Those imagery with diverse electromagnetic bands provide large-scale 

environmental information, which give valuable information for environmental 

monitoring and decision-making. The information from satellites is continuously 

improving as the spatial, spectral and temporal resolutions are increasing. 

However, information derived from these imagery is still not sufficient for 

increasing environmental information demands for policy or personal decision-

making. For instance, NO2 detection by satellites can produce concentration 

information not with resolutions lower than km2 (Mijling et al., 2009), it is therefore 

not possible to supply street level information. To complement the satellites, aerial 

sensing from manned aircrafts and unmanned aerial vehicles (UAVs) for instance 

can fill the spatial and temporal gaps. However, there are still gaps for more 

detailed, timely and consistent environmental information provision. That is the 

part where the increasing availability of sensor networks can contribute. First, with 

increasing local to global sensor networks, the data collected are not only 

proximate imagery but also more diverse data which were not available from 

imagery data. For instance, in situ sensors are created with increasing capabilities 

to measure directly weather conditions including temperature, relative humidity, 

wind direction, precipitation and solar radiation (Bell et al., 2013; de Vos et al., 

2017; Mei et al., 2017). They can also measure gases related to climate change 

including CO2 and methane and related to air quality including for instance NO2, O3, 

and SO2. Furthermore, sensor networks are also capable of characterizing 

parameters related to water quality (Adu-Manu et al., 2017), soil parameters 

(Viscarra Rossel and Bouma, 2016) and other environmental parameters like noise 

(D’Hondt et al., 2013). Complementary, some of those parameters can be measured 

indirectly or be modelled using imagery data. Miniaturised diverse sensors give 

new ways to measure directly increasing amounts of environmental constituents. 

These measurements could give valuable information for decision making not only 

about environment policies related to such as climate change and environmental 

pollution, but also connected domains like precision agriculture. Those sensors can 

be connected as static sensor networks with sensors distributed in houses, rivers, 

roadsides and so on. They can also be connected as mobile networks installed on 

vehicles and be embedded in smart gadgets carried by citizens. Moreover, of course, 

static and mobile sensor networks can be combined. Those sensor data can first 

complement, or be integrated with, each other to provide enhanced information. 
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Figure 6.2 Locations of formal and informal sensing stations and modelling: (a) 

official NO2 monitoring stations in the Netherlands; (b) The Netherlands national 

scale NO2 modelling; and (c) formal and informal air quality measurement location 

during Smart Citizen Kit Amsterdam project in 2014. (Data source: 

https://www.luchtmeetnet.nl and https://smartcitizen.me)   

(a) 

(c) 

(b) 
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Taking the Netherlands as an example, as shown in Figure 6.2, there are a limited 

number of official air quality monitoring stations. In this case, NO2 monitoring 

stations are selected as an example. Those stations are also concentrated in a 

limited number of large cities. Policy makers or citizens who want to know the 

pollution level at certain locations not measured by those sparse stations are 

normally referring to data from modelling approaches (Beelen et al., 2009; Jato-

Espino et al., 2018) (Figure 6.2). Even though, for low-cost sensing, data quality is 

considered lower than formal sensing data, these measured data could derive 

better data than modelled figures according to studies evaluating the correlation 

between low-cost sensing data and reference data (Borrego et al., 2016) and the 

correlation between modelled data and reference data (Manders et al., 2017). On 

the other hand, as shown in Figure 6.2 (c), informal sensing data are increasingly 

becoming available, integration of these low-cost sensing data into these models 

could improve the performance of modelling (Schneider et al., 2017). In addition, 

low-cost environmental sensors are often minimized and portable. Their data can 

be used or integrated with data from other emerging wearable devices for personal 

spatial temporal air pollution exposure and health monitoring (Hu et al., 2014; 

Jerrett et al., 2017; Nieuwenhuijsen et al., 2015). 

6.2.2 Sensor networks, big data and smart city 

Globally, 54 percent of the population lived in cities in 2014 and it is predicted to 

be increased to 66 percent in 2050 (United Nations, 2015). This also creates 

problems. For instance, traffic jams, air pollution, waste management, water 

pollution, noise and so on are typical issues in cities. The smart city concept is 

proposed as a potential solution for these problems (Caragliu et al., 2011). The 

smart city, which has different definitions, either focuses on technological  or 

human aspects (Albino et al., 2015). For both the technological and the human 

aspect, data are important to realise smart cities. These data including both formal 

and informal ones are increasingly produced by sensor networks and citizens. As in 

the Amsterdam Smart Citizens Lab, citizens can get together, discuss their concerns, 

and collaborate with each other with different societal background and expertise in 

order to make sensing tools to measure air quality, water quality, noise and so on 

in the city. Citizens are helping to make a greener, sustainable and healthier city. 
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Figure 6.3 How formal and informal data sources produced in city can be integrated 

with each other to supply more valuable information for smart city decision 

making.     

In this thesis, I focused on evaluation and integration approaches of informal sensor 

data. Thinking more broadly, sensor networks will contribute substantially to the 

big data era and the development of smart cities. Sensors are increasingly 

producing data for big data analysis. According to Gandomi and Haider (2015), 

volume, variety and velocity are often used to define big data regardless other Vs 

and  evolving definitions. In this thesis, I focused mainly on the volume aspect of big 

data where informal environmental sensing is expected to contribute significantly. 

That is, for instance, informal NO2 measurements data complement directly to 

formal NO2 measurements. However, with other sensors measuring diverse 

environmental phenomena, which constitute the variety of big data. For instance, 

this relates to the use of transportation data, which measure the frequency of 
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vehicles including cars, trucks, ships and so on. These data are measured by other 

sensors than air quality sensors. But these data can be fed to models which can 

optimize air quality prediction (Zheng et al., 2013). Therefore, data integration 

becomes even more crucial. Next to the increasing data availability through active 

sensors in networks, also increasingly relevant data is produced passively by social 

media such as Twitter, Facebook and Instagram together with increasing data 

produced by sensors embedded in smartphones or sensors installed on light posts 

for smart cities. However, those data are often heterogeneous which makes 

integration more challenging. For instance, these data could have different types: 

points, texts, image (vector and raster), audio and video. They could have a different 

spatial temporal resolution and they could have different formats: Excel, text, API, 

data stream. Furthermore, there might be different processing requirements. For 

instance, driverless cars need to interact with other cars and environment in near 

real time. Consequently, the current city maps are not capable to assistant this 

requirement, even though, Waze (https://www.waze.com) a community based 

traffic APP is contributing near real time traffic information by mainly drivers. 

Semantic web and linked data (Le-Phuoc and Hauswirth, 2009; Llaves et al., 2016) 

may help to tackle data heterogeneity issues. And the edge computing which 

process data locally might help to solve the velocity issues (Bibri, 2018). 

As indicated in Figure 6.3, both formal and informal data produced in cities are the 

sources to analysis and solve city issues. Those data can be used directly to create 

information needed for decision-making. But they can also be integrated: formal 

with formal, informal with informal and also formal with informal to create 

enhanced information for better understanding of issues and more wise decisions 

to tackle issues or create solutions for smart cities. Standards are therefore critical 

for sharing and utilize data. 

6.2.3 Citizen science and open science 

Open science is defined by Michael Nielsen as “the idea that scientific knowledge of 

all kinds should be openly shared as early as is practical in the discovery process” 

as cited in (European Commission, 2016). In the Oxford Dictionaries (2018), citizen 

science is defined as “The collection and analysis of data relating to the natural 

world by members of the general public, typically as part of a collaborative project 

with professional scientists”. However, there is no consensus on one citizen science 

definition and its definitions are evolving (Eitzel et al., 2017). In this thesis, the 

integration of informal data produced by citizens and formal data produced by 

experts are studied. I argue that not only the data should be integrated, the citizen 

science and science domain should also be integrated. That is how open science 

should interact with citizen science. 

Citizen science and open science are two connected movements getting more and 

more attention but also encounter challenges. For instance, open access of 

publications received quite some attention and there are increasing open access 

options too. However, those open access publications often require author(s) to pay 

publication process fee rather than asking readers to pay subscription fee. The 

other aspect becoming more popular is open data due to increasing amount of data 
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been produced. Privacy is a big issue. However, open data without open algorithms 

may not accelerate innovation dramatically. In terms of citizen science, data quality 

is an issue of major concern. Sometimes, citizen science is considered as part of 

open science. From chapter 2 it was concluded that a successful citizen science 

project should be open and involve wide collaboration, even though we do 

recognize that an individual can also do citizen science (Bonney et al., 2016). Citizen 

science can either be a bottom-up citizens’ initiative or top-down scientists’ 

initiative. The openness will stimulate participation and wide collaboration among 

scientists, hardware and software developers, designers, domain experts, policy 

makers and others. Openness and wide collaboration together helps creating tools, 

improving data quality and establishing trust as shown in citizen radiation 

monitoring after Fukushima Daiichi nuclear disaster in Japan, 2011 (Hemmi and 

Graham, 2014). Scientists joining citizen initiatives could not only help citizens for 

project development but also help themselves to produce scientific results. On the 

other hand, scientists opening up science by open publications, methods, data and 

so on can also stimulate citizens participating in science. Ideally, I think science 

should be open to everyone and in this view citizens play a role in science 

development as well (Figure 6.4). 

As observed in the Amsterdam Smart Citizens Lab project in chapter 2, citizens are 

anyway more capable to do science based on their concerns and interests by using 

open source tools and organize online and offline communities locally, nationality 

and globally. Some of them indeed are motivated by dissatisfaction about formal 

data sources. At the same time, some scientists and experts do question the 

relevance of citizen science especially the data produced by them. However, as 

indicated by Cohn (2008), citizens are capable to produce data with the same 

quality as experts. By conducting a case study, Pratihast et al. (2014) also showed 

that citizens can collect accurate data to supply valuable complementary 

information for forest change monitoring. Moreover, we observe that more 

scientists and experts are embracing citizen science and open their science to 

citizens. Scientists and experts opening their science do not only stimulate peer 

collaboration but also feedback, application and further development by citizens. 

By co-creating in science projects with citizens, scientists can not only get data but 

also other input like research questions, tools and method development. Citizens, 

on the other hand, can also benefit from the integration of citizen science and open 

science. For instance, the calibration and recalibration challenge of air quality 

sensors mentioned in chapter 3 was supported by experts and scientist and 

therefore produced data with reasonably quality to provide environmental 

information. When standard calibration procedures would become available, 

citizens can follow these procedures and with potential additional help from 

scientists produce valuable data for further big data analysis and smart city 

applications. After the Fukushima Daiichi nuclear disaster in Japan, 2011, the 

citizen radiation monitoring initiative were successful partly also because they 

keep the community open for diverse scientists and experts which solved many 

technical challenges and established trust (Hemmi and Graham, 2014). 
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Figure 6.4 An ideal relationship between citizen (science) and (open) science. 

6.3 Recommendations for further research 

Based on the research results from my PhD research, I recommend the following 

research topics for further investigation: 

1. Research on advanced air quality sensor calibration and data analysis for 

improved data quality and prediction is recommended. This includes 

consideration the complexity of sensor measurements involving 

challenges such as cross sensitivity, temperature and/or relative humidity 

interference (Mead et al., 2013). It would be valuable to study the 

behaviour of a group of sensors measuring different species of gaseous and 

to apply advanced calibration methods and data analysis algorithms to 

improve data quality and performance of prediction.  

2. Research on integration methods for heterogeneous multiple data sources 

is recommended. Formal and informal sensing data do have differences in 

terms of data quality, standards, formats, etc. The integration methods 

studied in this thesis focused on point-sensed data from sensors only. How 

about measurement by different Unmanned Vehicle Systems platforms 

with electric noses? How about other informal data and other data type like 

raster, audio and video? It would be relevant to study and develop methods 

to integrate more heterogeneous data sources including both formal and 

informal ones. For instance, the informal data source can also be social 

media data (Sakaki et al., 2010; Salas-Olmedo et al., 2018) and the formal 

data source can be satellite images. 

3. Research on the developments of citizen science and open science and 

their impact on society is recommended. Citizen science and open science 

have different development routes and levels in different countries due to 

diverse cultures and social systems. Different domains and different 

communities may also have different development levels, for instance 

citizen science in agriculture (Beza et al., 2017). It would be relevant to 

study these different developments and their impact on society. 
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Appendix A: Supplementary material for chapter 3 

NO2 regression model coefficients 

Units c0 (Intercept):μg m-3 

Units c1 (SWE):μg m-3/count 

Units c2 (SAE):μg m-3/count 

Units c3 (T):μg m-3/°C 

Units c4 (RH):μg m-3/% 

Units c5 (O3):μg m-3/μg·m-3 

Table S1 Relation sensor ID and its network ID, which is used as reference in 

raw data 

Sensor device ID WiFi chip ID 

SD01 1184206 

SD02 14560051 

SD03 55303 

SD04 54200 

SD05 1184527 

SD06 1184739 

SD07 1183931 

SD08 53788 

SD09 26296 

SD10 1185325 

SD11 1184453 

SD12 717780 

SD13 55300 

SD14 13905017 

SD15 1184838 

SD16 54911 
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Appendix B: Supplementary material for chapter 4 

Small and low cost sensors provide alternative approaches for citizens to collect environmental 

data (informal). These data potentially can complement the data collected by official 

organizations (formal). This survey is designed to analyse the opinions from citizens and 

experts on: 1. environmental sensing data collected by citizens and official organizations 

respectively, 2. the integration of these data. 

The survey results are planned to be part of a scientific paper. 

Your privacy is guaranteed. 

Best regards,  

Qijun Jiang, Arnold Bregt and Lammert Kooistra 

Wageningen University & Research 

* Please choose one role (expert or citizen) and fill in the questionnaire according to
this role.

I am an expert on environment sensing. 

I am a citizen interested in environmental sensing. 

* Do you have experience on following environmental sensing applications. (Tick one or more boxes)

฀ Air monitoring  

฀ Noise monitoring  

฀ Soil monitoring 

฀ Vegetation monitoring  

฀ Waste monitoring 

฀ Water monitoring  

฀ Weather monitoring 

฀ I have no experience  

฀ Other (please specify) 

Questionnaire on Formal and Informal Environmental Sensing Data 

Introduction 
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* What is your role related to environmental sensing? (Tick one or more boxes) 

฀ Environmental policy maker  

฀ Environmental researcher  

฀ Sensor researcher 

฀ Data scientist  

฀ Data provider 

฀ Hardware developer  

฀ Software developer  

฀ Citizen scientist  

฀ Citizen 

฀ Data user 

฀ Just interested 

฀ Other (please specify) 
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* What is your opinion on formal environmental sensing data? 
                                            Fully disagree    Disagree          Neutral           Agree        Fully agree      I don't know. 

 

 

 

 

 

 

 

 

 

 

 

 
* Which data do you trust? 

 

  Formal environmental sensing data 

  Citizen environmental sensing data (informal)  

  All above 

  None, reason: 

 

 
* Environmental sensor networks should be coordinated by official organizations. 

 

Fully disagree        Disagree              Neutral                  Agree        Fully agree      I don't know. 
 

 
   

 

Questionnaire on Formal and Informal Environmental Sensing Data 
 

I. Formal environmental sensing data 

 
 

 
 

 
 

 
 

 
 

 
 

It has sufficient 

accuracy. 

 
 

 
 

 
 

 
 

 
 

It is easily accessible.                                                                                                

 
 

 
 

 
 

 
 

 
 

It is easy to understand.  
 

 
 

 
 

 
 

 
 

 
 

It has sufficient coverage.                                                                                           

 
 

 
 

 
 

 
 

 
 

It is real time.  
 

 
 

 
 

 
 

 
 

 
 

It is sufficient to get 

environmental                                                                                                            

information.                                                                                                            

 
 

 
 

 
 

 
 

 
 

 
 

It is produced by huge 

monitoring stations. 

 
 

 
 

 
 

 
 

 
 

It is produced by  

static monitoring stations.                                                                                           

 
 

 
 

 
 

 
 

 
 

It is consistent.  
 

 
 

 
 

 
 

 
 

 
 

It is complete.                                                                                                             

 
 

 
 

 
 

 
 

 
 

 
 

It is measured  

frequently. 
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*What do you think about citizen environmental sensing data (informal)? 

                                            Fully disagree    Disagree          Neutral           Agree        Fully agree      I don't know. 

 

 

 

 

 

 

 

 

 

 

 
 
* It is important that citizens collect environmental data by themselves.  

Fully disagree        Disagree              Neutral                  Agree        Fully agree      I don't know. 
 

 
* What is the value of environmental sensor data provided by citizens (informal)? (Tick one or more 
boxes)  

฀ It helps to raise public awareness of environmental problems.  

฀ It can influence policy making.  

฀ It can supply complementary information to formal environmental information.  

฀ It can supply high spatial resolution data.  

฀ It can monitor the environment in (near) real time.  

฀ Other (please specify)  

 
 
 
 

 

Questionnaire on Formal and Informal Environmental Sensing Data 
 

II. Citizen environmental sensing data (informal) 

 
 

 
 

 
 

 
 

 
 

 
 

It has sufficient 

accuracy. 

 
 

 
 

 
 

 
 

 
 

It is easily accessible.                                                                                                

 
 

 
 

 
 

 
 

 
 

It is easy to understand.  
 

 
 

 
 

 
 

 
 

 
 

It has sufficient coverage.                                                                                           

 
 

 
 

 
 

 
 

 
 

It is real time.  
 

 
 

 
 

 
 

 
 

 
 

It is sufficient to get 

environmental                                                                                                            
information.                                                                                                            

 
 

 
 

 
 

 
 

 
 

 
 

It is produced by  

small sensors. 

 
 

 
 

 
 

 
 

 
 

It is produced by  

mobile sensors.                                                                                                         

 
 

 
 

 
 

 
 

 
 

It is consistent.  
 

 
 

 
 

 
 

 
 

 
 

It is complete.                                                                                                             

 
 

 
 

 
 

 
 

 
 

 
 

It is measured  

frequently. 
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* Citizen sensing offers an alternative way to collect environmental data.

Fully disagree        Disagree              Neutral                  Agree   Fully agree    I don't know. 

* Citizen sensing data are underestimated because of lower trustworthiness compared to official 
data.

Fully disagree    Disagree    Neutral    Agree   Fully agree    I don't know. 

*It is difficult for citizens to calibrate low cost sensors.
Fully disagree        Disagree              Neutral   Agree   Fully agree    I don't know. 

*It is difficult for citizens to maintain low cost sensors.
Fully disagree        Disagree              Neutral   Agree   Fully agree    I don't know. 

*Citizens need training or support from experts in following aspects.

  Fully disagree    Disagree    Neutral    Agree    Fully agree      I don't know. 

Proper use of sensors  

*Do you think the citizen sensing data can contribute to better understanding of our environment.

Fully disagree        Disagree              Neutral                  Agree        Fully agree      I don't know. 

*Citizen sensing data need to be analysed by experts to derive meaningful environmental
information.

Fully disagree    Disagree    Neutral    Agree   Fully agree      I don't know. 

*For which aspect(s) do you think citizen sensing data (informal) could complement formal data?
(Tick one or more boxes)

฀ Data accuracy  

฀ Data amount  

฀ Spatial coverage 

฀ Measurement frequency  

฀ Accessibility  

฀ Consistency  

฀ Completeness 

฀ Other (please specify) 

Sensor calibration 

Data analysis 
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*Integration of citizen sensing data (informal) with formal data can improve data in the following aspects. 
(Tick one or more boxes) 

฀ Data accuracy  

฀ Data amount  

฀ Spatial coverage 

฀ Measurement frequency  

฀ Other (please specify) 

 
*The following aspects hinder the integration of citizen sensing data (informal) and formal environmental 
sensing data. (Tick one or more boxes) 

฀ Accuracy  

฀ Accessibility  

฀ Completeness  

฀ Consistency  

฀ Standardization  

฀ Metadata  

฀ Privacy 

฀ Other (please specify) 

 

  

 

Questionnaire on Formal and Informal Environmental Sensing Data 
 

III. Integration of formal and informal environmental sensing data 
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If you have additional comments, please let us know: 

If you want to be informed about the results of this survey, please enter your name and email address. 

Full name 

Email address 

Thank you for your contribution! 

We are deeply grateful for your participation. For further questions, please contact qijun.jiang@wur.nl 
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Appendix C: Supplementary material for chapter 5  
 

Appendix C1: Expert validation formal and informal environmental sensing 

data integration 
 

Name: 

 

Date: 
 

Introduction 

The objective of this expert validation is to validate the conceptual approaches for 

formal and informal environmental sensing data integration. The informal 

environmental sensing data are measured by citizen(s) using sensors. The formal 

environmental sensing data are measured by official environmental institutes. The 

proposed five integration approaches illustrated below are individually elaborated 

later on (Figure 1).  

Five indicators to be evaluated are: 

Information complement: by integration, complementary information can be 

derived by increased data volume.    

Increased spatial coverage: by integration, derived information covers more 

locations.  

Increased frequency: by integration, increased measurements derives 

information which otherwise not be possible. For instance, only hourly information 

is available without integration, after integration, information by minute become 

possible.   

More timely: by integration, information is available in a more timely way. For 

instance, information may only be available days after measuring for one data 

source, when integrating this data source with more timely data source, 

information may become available in seconds.     

Increased accuracy: by integration, derived information has better accuracy than 

without integration.  
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Figure 1: Overview of five conceptual approaches for formal and informal 

environmental sensing data integration  

Case study: Formal and informal air quality sensing data integration 

In city of Amsterdam, there are 12 formal air quality monitoring stations operated 

by GGD Amsterdam or RIVM. Among them, there are 10 stations measuring NO2. A 

project called Urban AirQ was conducted in 2016 with a group of citizens, experts 

and researchers using 16 low-cost sensor devices. The data produced are called 

informal data source. They were measured from June to August 2016 around two 

selected most polluted streets. The data were calibrated by collocating sensor 

devices to one formal station at Vondelpark before and after measurement 

campaign and validated by comparing data from one sensor device to a nearby 

formal station at Oude Schans.   

We would like you to validate the value of the five formal and informal 

environmental sensing integration approaches for the air quality case study 

presented above by answering the questions for each approach. 

Approach 1: use formal data to calibrate informal data 

Approach 2 

Approach 4 

Approach 3 

Approach 5 

Approach 1 
Informal 

data 
Formal 
data 

Calibration 

Informal 
data 

Formal 
data 

Complement 

Informal 
data 

Formal 
data 

Complement 

Informal 
data 

Formal 
data 

Data merge 

Informal 
data 

Formal 
data 

Use as 
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In this integration approach, formal data are used for informal data calibration 

often by co-locating sensors to official environmental monitoring station(s) in real 

environment as applied in the case study. 

How do you rate the indicator in the table for this integration approach 1? 

Indicator Rating Comment 

Increased accuracy 1 2 3 4 5 

 Rating: 
1. Strongly disagree
2. Disagree
3. Neural
4. Agree
5. Strongly agree

Approach 2: Use formal data to complement informal data 

In this approach, formal data will be used to complement informal data. Formal data 

normally have higher quality, therefore formal data are considered to be used first 

to avoid unnecessary repeated measurements when planning informal data 

collection. In the case study, data coming from official station located in the 

research area can be integrated with informal data coming from distributed sensor 

devices. 

How do you rate the indicators in the table for this integration approach 2? 

Indicators Rating Comment 

Information complement 1 2 3 4 5 

Increased spatial 
coverage  

1 2 3 4 5 

Increased frequency 1 2 3 4 5 

More timely 1 2 3 4 5 

Increased accuracy 1 2 3 4 5 

 Rating: 
1. Strongly disagree
2. Disagree
3. Neural

4. Agree
5. Strongly agree

Approach 3: Use informal data to complement formal data 

In this integration approach, informal data will be used to complement formal data. 

This is mainly the function of informal data when formal data is not sufficient to 

provide needed environmental information due to sparse measurement locations 

and/or low measurement frequency. Therefore, these informal data are used to 

derive local environmental information timely when this is not possible by formal 

data sources. This is also the main purpose of the case study.   



   139 

How do you rate the indicators in the table for this integration approach 3?  

Indicators  Rating Comment  

Information complement  1 2 3 4 5  

Increased spatial 
coverage  

1 2 3 4 5  

Increased frequency  1 2 3 4 5  

More timely  1 2 3 4 5  

Increased accuracy  1 2 3 4 5  

   Rating: 
1. Strongly disagree   
2. Disagree   

3. Neural   
4. Agree  
5. Strongly agree   

 

Approach 4: Merge formal and informal data 

In this approach, formal and informal data will be merged to a unified format as a 

new data source. This is different compared to the above approaches. In the earlier 

mentioned approaches, the information from informal and formal data are 

integrated to derive more comprehensive understanding of the environment which 

neither can achieve. But the data are not merged, informal and formal data still have 

different data accuracy, measurement frequency, format, standards and so on. 

Integrating by data merge create an unified data set. In the case study, it means 

merging the formal and informal data sources as one data set and use it for 

applications.  

How do you rate the indicators in the table for this integration approach 4?  

Indicators  Rating Comment  

Information complement  1 2 3 4 5  

Increased spatial 
coverage  

1 2 3 4 5  

Increased frequency  1 2 3 4 5  

More timely  1 2 3 4 5  

Increased accuracy  1 2 3 4 5  

   Rating: 
1. Strongly disagree   

2. Disagree   
3. Neural   
4. Agree  
5. Strongly agree   

 

Approach 5: Use informal data as formal data 

In this approach, informal data are the only (or main) data source when there are 

no (or a few) formal data existing locally. The informal data are used as formal data 
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to provide environmental information. On a larger scale, these informal data can be 

integrated with other informal and formal data for national environmental 

information provision. In the case study, there are official stations measuring at a 

few locations in the city. To street level in the study area, the informal data are 

considered to be used as formal data to fill the gap if this approach is applied.       

How do you rate the indicators in the table for this integration approach 5? 

Indicators  Rating Comment  

Information complement  1 2 3 4 5  

Increased spatial 
coverage  

1 2 3 4 5  

Increased frequency  1 2 3 4 5  

More timely  1 2 3 4 5  

Increased accuracy  1 2 3 4 5  

   Rating: 
1. Strongly disagree   
2. Disagree   

3. Neural   
4. Agree  
5. Strongly agree   

  



 141 

Appendix C2: Comments made by the experts in the expert validation 

Approaches Indicators Comments 

Approach 1 
Increased 

accuracy 

Without the formal measurements the sensor 
data would be meaningless. 

Low-cost sensors still suffer from severe issues 

such as drift, cross-sensitivity and sensitivity loss. 

In-field calibration next to a formal station is 

essential before application. 

Approach 2 

Information 

complement 

Data volume formal data is low. 

More instruments mean more information. With 

one remark, the sensor data has to be reliable and 

accurate. In Urban AirQ the sensors were still not 

so good. In the near future they will likely 

improve strongly. 

Increased 

spatial 

coverage 

Data volume formal data is low. 

In principle, more instruments mean more spatial 

coverage. But it makes more sense to use the 

official measurements for calibration and then 

you have to put a sensor at each official location 

and the official measurements do not add spatial 

coverage to the sensor measurements 

Increased 

frequency 

Formal measurements are formally available in 

hourly values, but if you want you can get minute 

values, sensors are not going to add much. Unless 

you compare with formal NO2 measurements 

with Palmes tubes which give month values. If 

these were complemented by sensors with 

minute values it would increase frequency 

considerably. 

This strongly depends on the response time of the 

low-cost sensor, and the required integration 

time to suppress measurement noise sufficiently. 

More timely 

Formal data is available every hour, sensors are 

not going to be much faster. 

Both raw formal and informal data can be 

delivered near-real time. However, for both data 

streams holds that an analysis based on 

calibrated data will take more time. 
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Increased 

accuracy 

Using formal data for on the fly calibration. 

Without the formal measurements the sensor 

data would be meaningless 

Approach 3 

Information 

complement 

More instruments mean more information. With 

one remark, the sensor data has to be reliable and 

accurate. In Urban AirQ the sensors were still not 

so good. In the near future they will likely 

improve strongly. 

Increased 

spatial 

coverage 

More instruments mean more spatial coverage. 

Increased 

frequency 

Formal measurements are formally available in 

hourly values, but if you want you can get minute 

values, sensors are not going to add much. Unless 

you compare with formal NO2 measurements 

with Palmes tubes which give month values. If 

these were complemented by sensors with 

minute values it would increase frequency 

considerably. 

This strongly depends on the response time of the 

low-cost sensor, and the required integration 

time to suppress measurement noise sufficiently. 

For e.g. Palmes tubes the integration time is by far 

longer than the formal data frequency (weeks 

versus hours). 

More timely 

formal data is available within one hour at 

luchtmeetnet.nl. 

Formal data is available every hour, sensors are 

not going to be much faster. 

Both raw formal and informal data can be 

delivered near-real time. However, for both data 

streams holds that an analysis based on 

calibrated data will take more time. 

Increased 

accuracy 

Without the formal measurements the sensor 

data would be meaningless. The other way 

around, the sensors may give you information 

about how representative a formal measurement 

point is. This increases the overall accuracy, in the 
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sense that model calculations may also become 

more accurate. 

I don’t think adding informal data with formal 

data for a given location will improve the 

accuracy of the formal measurement. 

Approach 4 

Information 

complement 

When using appropriate data assimilation 

techniques 

Increased 

spatial 

coverage 

When using appropriate data assimilation 

techniques 

Increased 

frequency 

More timely 

Increased 

accuracy 

When using appropriate data assimilation 

techniques 

Approach 4 

This is what we should do, but the integration should also include 

other information, like emission numbers. There is already an air 

quality model that combines measured data, emission numbers, 

chemical processes, weather information etc. Sensor data needs 

to be an integral part of this system and then it will enhance the 

spatial coverage and increase accuracy etc. 

Approach 5 

Information 

complement 

Uncertain (i.e. informal) measurements are 

better than no measurements at all. However, 

given their large error bar and calibration issues, 

they should be used with great care. 

Increased 

spatial 

coverage 

Uncertain (i.e. informal) measurements are 

better than no measurements at all. However, 

given their large error bar and calibration issues, 

they should be used with great care. 

Increased 

frequency 

More timely 

Increased 

accuracy 

Depends strongly on the way informal data are 

calibrated on the fly (e.g. with the help of air 

quality models, or network analyses). If that is 

successful than accuracy issues might be tackled 

to an extent that informal data can be treated as 

formal data in one way or another. 



144   

Uncertain (i.e. informal) measurements are 

better than no measurements at all. However, 

given their large error bar and calibration issues, 

they should be used with great care. 

Approach 5 

I have a problem with seeing it like that for the Dutch situation 

where we have so much information from other sources 

combined into good models that we can use to fill in the gaps, see 

my comment above. Sensor data may be an important part of the 

system, but as for now they are just not good enough to come 

anywhere near the status of formal data. 

But I can imagine situations where there is very little information 

available (in Africa or South America or some parts of Asia) that 

sensor data may take up the role of formal data source, because 

there is simply no alternative. 

Overall 

...to judge the different approaches it is really important to know 

the quality of both the formal and informal sensors. As informal 

sensors are, at the moment, in general less accurate, they first 

need to be corrected: the more informal sensors are available 

and the more ancillary data (for example about the environment) 

is available the better this correction and filtering of data will 

work. To achieve this, our strategy is data merging (approach 4). 

For example, we combine formal data, informal data and site 

characteristics (like solar radiation from satellites, AHN, 

Topographic information, actual land cover from satellites, etc.) 

to correct WOW stations. And within a pilot study regarding air 

quality we combine both formal and informal AQ-measurements 

with other data sources (traffic, AQ-models, environment) to 

assess the biases in informal networks and correlate the informal 

measurements with formal and ancillary data. For approach 4 we 

also use approach 1 first. Approach 5 is still far future for 

meteorological applications. 



Summary 

Citizens contributing to science started even before scientist became a profession. 

Traditionally, citizens mainly contribute to data collection through their 

observations. With the development of sensor technology, and information and 

communication technology (ICT), citizens are increasingly able to use low-cost 

sensors to collect environmental data they could not do before. However, how good 

is the quality of the data they collect with low-cost sensors?  How should the 

collected data be used? What is the role of traditional environmental monitoring 

facilities operated by authorized environmental organizations? These are examples 

of questions, which need to be answered in the changing landscape of 

environmental data collection in which citizens play an increasing role. 

The environmental data collected by citizens using low-cost sensors are defined as 

informal environmental sensing data and the environmental data collected by 

official environmental organizations are defined as formal environmental sensing 

data in this thesis. The overall objective of this thesis is to assess opportunities for 

informal sensing data and their integration with formal sensing data to improve 

environmental information provision by investigating challenges and obstacles 

regarding technical and societal aspects. The thesis was guided by four main 

research questions: 1) How does a bottom-up citizen science project develop, and 

can it contribute to environmental monitoring? 2) How to calibrate low cost air 

quality sensor data, and how valuable are these data? 3) What are the perceptions 

of citizens and experts on formal and informal environmental sensing data and 

their integration potential? 4) How can informal and formal sensing data be 

integrated to provide enhanced environmental information? 

In chapter 2, a bottom-up approach to develop sensing tools for urban 

environmental data collection by citizens is presented. By conducting an air quality 

monitoring case study, different steps of the bottom-up approach from selecting 

sensors, developing sensor devices to doing preliminary experiments were 

conducted. Low-cost electrochemical NO2 sensors were proven to have the 

potential to provide valuable environmental information for urban environmental 

monitoring. However, it was clear that except proper hardware and software 

design, sensor calibration and data analysis were also important to reach the 

potential to provide valuable environmental information. All these aspects were 

actually quite challenging for citizens, especially the calibration, which is still 

technically complicated, and needs facilities for support. Therefore, broad 

cooperation including participants with a diverse background and expertise is 

recommended for such bottom-up citizen sensing communities. At the same time, 

fully utilizing offline and online facilities was recommended for a sustainable citizen 

sensing community.  
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As indicated by the preliminary experiments with electrochemical sensors in 

chapter 2, a more serious sensor calibration was needed to evaluate how useful the 

low-cost air quality sensing data are. Therefore, sensor calibration is the focus of 

chapter 3. An updated version of an informal sensor device was developed by 

mainly adding a temperature and relative humidity sensor to examine the influence 

of the changing environmental conditions. In total, 16 of these sensor devices were 

developed and installed on top of an official air quality monitoring station for 

calibration. This was conducted before the measurements campaign at citizens’ 

homes started. A multiple linear regression model was developed for sensor 

calibration. Then, a measurement campaign lasting two months was conducted at 

locations selected based on citizens’ concerns. After that, a recalibration was 

conducted to study the data drift and improve the calibration model. According to 

the results, the sensors have individually a varying performance. Therefore, sensors 

should be individually calibrated. A field calibration with an official measurement 

station under real environment conditions is essential and needs more study for 

different environmental situations. As part of the data analysis, data outliers need 

to be filtered properly. Sensor aging and data drift are problems, which need to be 

considered seriously for long measurement period. Recalibration is therefore 

considered crucial as demonstrated.   

In chapter 3, it was shown that low-cost informal sensors were useful to provide 

valuable environmental information. However, is the value really recognized by 

citizens and experts? What are their opinions? Can formal and informal 

environmental sensing data be integrated? In chapter 4, a perception study was 

conducted to answer these questions. An online questionnaire was prepared to 

investigate the perceptions of citizens and experts on formal and informal 

environmental sensing data and their integration potential. Experts were mainly 

from official environmental monitoring organizations. Citizens were mainly from 

three citizen sensing related communities. According to the results, citizens and 

experts do have agreement. For instance, both citizens and experts were positive 

on formal environmental sensing data in terms of data accuracy and consistency. 

However, there were disagreements too. For instance, citizens and experts have 

different opinions on measurement frequency. Interestingly, a large part of both 

citizens and experts chose ‘Neutral’ about the data accuracy of informal 

environmental sensing data. Even though both experts and citizens recognized the 

value of informal environmental sensing data, it is still far to that potential due to 

challenges in aspects like standardization, accuracy, metadata and privacy. 

In chapter 5, a conceptual framework for using formal and informal environmental 

sensing data for different purposes towards environmental issues is proposed. The 

integration of formal and informal environmental sensing data was found to be a 

research gap. Five approaches are proposed for integration: use formal data to 

calibrate informal data, use formal data source to complement informal data at 

information level, use informal data to complement formal data at information 

level, merge formal and informal data and use informal data as formal data. To 

evaluate these approaches, five success indicators were selected. A literature study 

and expert validation was used to evaluate the five approaches based on the success 

indicators. According to the evaluation, the proposed integration framework is 



 147 

applicable. The calibration approach currently is used most often to evaluate the 

informal data quality. Very few studies have started to explore the data merging 

approach. In this study, the data quality was found important for data integration. 

A standard for data quality assurance according to purposes (legislation, education 

or personal decision making for instance) is recommended.  

Chapter 6 discusses the main results of the thesis and reflects on the broader 

context. The research questions are discussed comprehensively. The reflection 

focuses on proximate sensing for various high spatial and temporal resolution 

environmental data provision, sensor networks, big data and smart cities, and 

citizen science and open science. Finally, recommendations for further research are 

presented. 
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