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Citizens and scientists collect 
comparable oceanographic 
data: measurements of ocean 
transparency from the Secchi Disk 
study and science programmes
Richard R. Kirby1*, Gregory Beaugrand2, Loick Kleparski2,5, Susie Goodall3 & 
Samantha Lavender4

Marine phytoplankton accounts for approximately 50% of all photosynthesis on Earth, underpins the 
marine food chain and plays a central role in the Earth’s biogeochemical cycles and climate. In situ 
measurements of ocean transparency can be used to estimate phytoplankton biomass. The scale 
and challenging conditions of the ocean make it a difficult environment for in situ studies, however. 
Here, we show that citizen scientists (seafarers) using a simple white Secchi Disk can collect ocean 
transparency data to complement formal scientific efforts using similar equipment. Citizen scientist 
data can therefore help understand current climate-driven changes in phytoplankton biomass at a 
global scale.

�e ocean is a di�cult environment to access for in situ study due to its scale, remoteness and challenging 
conditions. Although ocean science research is vital for our sustainable  future1, scienti�c research lags current, 
climate-driven ocean  changes2. �e ocean’s phytoplankton account for approximately 50% of all photosynthesis 
on  Earth3,4 and temporal and spatial changes in the phytoplankton can in�uence marine  productivity5,  weather6 
and  climate7,8. Monitoring the phytoplankton is therefore essential as an early indicator of regional and global 
ecosystem  change9–12.

Around 44% of the human population lives within 150 km of the  coast13 and a number go to sea for work and 
recreation. �e seafaring public o�en visits the same locations, whether as sailors on short day trips, commercial 
�shermen accessing �shing grounds, or o�shore yachtsmen/women whose passages follow common routes dic-
tated by the season, prevailing winds and  currents14. �erefore, the seafaring public provides an opportunity to 
collect oceanographic data over varying spatial and temporal scales to contribute to scienti�c e�orts and many 
now participate in marine citizen  science15,16.

�e global Secchi Disk study (http:// www. secch idisk. org)17 engages seafarers to use a Secchi  Disk18 to collect 
in situ data on ocean transparency that can be used to estimate phytoplankton  biomass19. �e Secchi Disk study 
uses a simple, 30 cm diameter white Secchi Disk that is weighted and attached to a tape-measure, and lowered 
vertically into the water from a boat’s side. �e depth (m) below the surface when the Secchi Disk disappears from 
sight is the Secchi depth (ZSD), which measures ocean transparency. When the bathymetry is > 25 m depth and 
the distance > 1 km from shore, the primary in�uence upon ocean transparency is phytoplankton pigments and 
their breakdown products and therefore, ZSD estimates phytoplankton biomass in the water column; re-suspended 
sediments and dissolved organic matter from rivers further reduce transparency and introduce optical errors in 
shallower water and closer  inshore12.

Marine scientists have used Secchi Disks to measure ocean transparency since  186520 and archives of ZSD 
represent one of the longest-running, spatially extensive global marine  datasets21. Recently, the Secchi Disk has 
fallen from widespread use among marine  scientists22 due to spectrophotometric determination of chlorophyll 
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a12 and satellite measures of ocean  colour23. To re-establish the database of ZSD measurements and facilitate 
contemporary ZSD comparisons to historical data, the citizen science Secchi Disk study began in  201317.

Measuring in situ data at sea from a small boat is challenging. For citizen science e�orts of any type to be 
useful it is essential to ensure and assess data  quality24,25, and this was outlined recently in the ninth of the ten 
principles of citizen science outlined by the European Citizen Science Association (ECSA)26. Marine and ter-
restrial, observational, citizen science studies have assessed data quality and shown that citizens can collect 
reliable observational data when given good  instructions27–29. We have already shown that ZSD data collected by 
citizens agrees with satellite measures of chlorophyll a and satellite ZSD  estimates17. But, does ZSD data collected 
by citizens of varying backgrounds using oceanographic equipment compare to ZSD data collected by trained 
scientists using the same methods? Unfortunately, it is impractical to take citizens and marine scientists to sea 
together to measure ZSD at the same time and place to see how they compare. To overcome this impracticality, 
we compare ZSD measurements collected by citizens and scientists using Secchi Disks to independent satellite 
estimates of ZSD, i.e. the comparison Secchi Disk measurements were not used to generate the satellite algorithm.

Results
We found positive relationships between satellite ZSD and both the scientist and citizen ZSD (Fig. 1a–l). Remov-
ing 20 samples did not strongly alter the regression lines (Fig. 1b,f,j). �e red and blue polygons delineating the 
scientist and citizen data, respectively, as well as the regression lines, overlapped. Although a Kruskal–Wallis test 
revealed the regression lines were signi�cantly di�erent between scientist and citizen programmes (p < 0.01), 
these di�erences in slope were small and so there was only a small slope alteration when the data were merged. 
Correlation analysis revealed that scientist correlations were slightly higher when ocean + shelf and shelf only 
were considered (Fig. 1d,h,l). �e di�erence in correlation was higher when open-ocean data only were analysed 
(Fig. 1d,h,l). In general, scienti�c data had less variance in correlation except for the shelf where a higher variance 
may be explained by outliers (red crosses below the regression line within the red, dashed polygons) (Fig. 1b,f).

Next, we analysed the data from WOOD, WOD, ICES and the citizens, separately (Fig. 2a–l). �is analysis 
revealed that outliers could also be detected among scienti�c programmes (red crosses on the le� below the 
regression line inside the red polygon, Fig. 2b,f). As before, all the regression lines were signi�cantly di�erent 
(Kruskal–Wallis test, p < 0.01). We noticed large variability in the regression lines, especially for WOOD when 
open-ocean data was considered; due to a low number of degrees of freedom. �e histogram of the category of 
slopes showed a more signi�cant separation and less overlap for all programmes in shelf seas than the open-
ocean, which could re�ect regional peculiarities (Fig. 2c,g,k). �e histograms for each programme and for open-
ocean + shelf, shelf and open-ocean (Fig. 3a–c) showed that part of the di�erence in regression coe�cients may 
be due to location rather than the reliability of either citizen or scientist ZSD. We also found a di�erence in the 
correlations between open-ocean and shelf. With the exception of the open-ocean where citizen correlations were 
slightly lower than WOD, correlations involving citizen data were higher than other programmes (Fig. 2d,h,l).

When we compared the citizen and scientist data for systematic under- or overestimation using satellite ZSD 
as a reference, scientists always highly overestimate satellite ZSD as shown by the percentage of overestimates 
that are consistently well above 50% (Table 1, Fig. 4). We found that citizens tend to slightly underestimate satel-
lite ZSD when all data are considered (44.5%) and to a greater extent when ZSD is greater than or equal to 25 m 
(36.4%). Both citizens and scientists overestimate ZSD compared to satellite ZSD when the measurement is less 
than 25 m. In all cases however, the under- or over estimation is less for citizens than for scientists. In contrast to 
the percentage of overestimates, the mean deviation (Table 1) is a more quantitative measurement of the degree 
of under- or overestimation and can be in�uenced by individual deviation (the individual di�erences between 
in situ and satellite ZSD measurements). �e mean deviation shows nearly the same results as the percentage of 
overestimates although when we consider all ZSD together the underestimation by citizens (− 1.6 m) is slightly 
higher than the overestimation made by scientists (1.5 m) (Table 1). (�e discrepancy observed between the 
percentage of overestimates and the mean deviation is likely due to a few large, individual deviations that in�u-
ence the latter estimator). When we separated measurements of ZSD below and above 25 m the mean deviation 
is smaller in absolute value for citizens in agreement with what is shown by the percentage of overestimates.

�e mean square deviation (here, a measure of the level of the closeness between in situ and satellite ZSD) 
revealed that ZSD measured by scientists are consistently closer than ZSD measured by citizens. Histograms pre-
pared to examine the mean square deviation (Fig. 4d–f) suggest that a few observations made by citizens might 
cause the higher mean square deviation (Table 1). When we remove categories above 100  m2 the mean square 
deviation for citizens reduced by more than 50%, from 39.2 to 18.9  m2, and became very close to the scientist 
value (16.6  m2). Nevertheless, the degree of closeness between satellite and in situ ZSD is higher for scientists 
than for citizens. When the �rst 3 categories of the histogram are considered together (Fig. 4d) they comprise 
87% of the scienti�c data and 70% of the citizen data, which is a di�erence of 17%.

Discussion
�e Secchi Disk is among the simplest pieces of oceanographic equipment with its method of use, optical prop-
erties, limitations and variability well  understood18,30; these features are taken into account in the instructions 
provided to citizens in the Smartphone application called Secchi that accompanies the citizen science  study17. 
While our method of assessing citizen and scientist ZSD data by comparison to satellite ZSD is indirect and so 
imperfect (ideally citizens and scientists would go to sea together to make simultaneous measurements for such 
a comparison), our results show that scientists and citizens take reliable in situ measurements of ZSD at sea.

Although we found that citizens tend to underestimate satellite ZSD, scientists tend to overestimate to a greater 
extent (Table 1) when compared to satellite ZSD. We do not know the cause of this under- and overestimation and 
cannot exclude this is a chance result, and because citizens and scientists under- and overestimate respectively, it 
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Figure 1.  Relationships between scientist (red) and citizen (blue)  log10(ZSD) and satellite  log10(ZSD).  (a,e,i) 
Maps showing the positions of the scientist and citizen  ZSD data for shelf + open-ocean, shelf, and open-
ocean, respectively. Maps were created using MATLAB version 2021a, https:// www. mathw orks. com/ produ 
cts/ matlab. html. (b,f,j) Scatterplots, polygons and regression lines showing the relationship between scientist, 
citizen, and satellite  log10(ZSD) for shelf + open-ocean, shelf, and open-ocean data, respectively. Red and blue 
polygons delineate the scientist and citizen data, respectively, and regression lines in black represent combined 
scientist and citizen data. (c,g,k) Histograms of regression coe�cients between scientist, citizen and scientist/
citizen (black) and satellite  log10(ZSD) data for shelf + open-ocean, shelf, and open-ocean, respectively. (d,h,l) 
Histograms of linear correlations between scientist, citizen, combined scientist and citizen (black), and satellite 
 log10(ZSD) for shelf + open-ocean, shelf, and open-ocean data, respectively.
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is not possible at present to determine a correction factor; we nevertheless hope this can be resolved when more 
data is evaluated from both scientist and citizen programmes. We found higher variability in the mean square 
deviation for citizens and a 17% di�erence between citizen ZSD and scientist ZSD (when scientist data was com-
bined from the three scientist datasets we used) (Table 1). When we performed the analysis on  log10 transformed 
data the di�erences between citizens and scientists were much less apparent and to see them we need to look at 
the third digit of the mantissa (Supplementary Table S1).

�e di�erence in the mean square deviation between citizens and scientists could be explained by several 
factors. For example, the three science programmes we used likely involve measurements collected by just a 
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few individual scientists (for example on a single cruise), which will reduce the amount of individual observer 
variability that is inherent in the in situ measurement of ZSD

30 when compared to the citizen data where many 
individual participants each collect a few measurements. Interestingly, when we excluded categories of mean 
square deviation above 100  m2 the closeness between citizens and scientists improved greatly. Consequently, 
as the citizen data set increases in size, we hope to be able to conduct analyses at a participant level to better 
understand individual variability and to remove  outliers31. (�e comparison between scientists and citizens may 
also change when data from many scienti�c programmes are considered and over longer time periods and larger 
spatial scales). Other in�uences on the data may include the fact that scienti�c measurements may be focused on 
a particular water body and so spatial heterogeneity will be di�erent compared to the citizen data (Fig. 1a,e,i) and 
the fact that research vessels are likely to be more stable platforms compared to small boats and so measurements 
are likely to be easier to take. Finally, and importantly, scientists interact and train each other, which is di�erent 
to a global citizen science study where similar training is impractical. Consequently, even though instructions 
are given to citizens in the Secchi smartphone application upon how to take ZSD measurements, scientists are 
likely to show less variability because of their more formal training.

When we considered spatial heterogeneity, the ZSD collected by citizens and scientists showed a better rela-
tionship to satellite ZSD in the open-ocean (Fig. 2j,k). �e poorer relationship found in shelf seas between in situ 
and satellite ZSD (Figs. 1a,e,I, 2a,e,i) may therefore be due to the inherent properties of measurements made in 
speci�c oceanographic environments (Fig. 3) rather than the reliability of the Secchi Disk measurement in the 
hands of either citizens or scientists. Most likely, it is due to the greater spatial and temporal heterogeneity of 
shelf seas (where there may also be abiotic factors), which may all lead to an imperfect match between in situ 
and satellite ZSD data due to violations in the assumptions underlying the satellite algorithm. �e small overlap 
between volunteers (citizens) and professionals (scientists) (Fig. 1) when all the scientist data are combined 
together, compared to the clear overlap when we split the di�erent science data sets (Fig. 2), may consequently, 
be explained by data originating from di�erent ocean basins and environments, which is likely to alter in future 
when the data is more widespread.

Satellite estimates of ZSD are in�uenced by the in situ ZSD datasets used to generate the satellite algorithm and 
so will have inherent errors and biases. �e Morel et al.32 algorithm we used is based upon a relationship between 
chlorophyll a and ZSD for clear, open-ocean waters and a speci�c, scientist-collected, in situ ZSD dataset where 
the majority of measurements were collected in the summertime in the northern hemisphere. Validation using 
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Table 1.  Indirect comparison of citizen and scientist ZSD data with respect to under and overestimation and 
closeness. An underestimate of < 50% or a negative mean deviation means that in situ data underestimates 
satellite data and inversely. A percentage of overestimate or a mean deviation close to 0 means that there is no 
systematic under- or overestimation in the in situ data with respect to satellite data. When the mean square 
deviation is close to zero it means that in situ and satellite measurements are close together and exhibit a low 
variability.

Analysis Overestimate (%) Mean deviation (m) Mean square deviation  (m2)

All citizen ZSD data 44.5  − 1.6 39.2

All scientist ZSD data 80.3 1.5 16.6

Citizen ZSD data < 25 m 58.4 0.02 16.2

Scientist ZSD data < 25 m 81.6 1.4 10.3

Citizen ZSD data ≥ 25 m 36.4  − 1.3 39.8

Scientist ZSD data ≥ 25 m 72.4 2.8 31.7
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MODIS Level-3 composite data and in situ ZSD resulted in adjusted coe�cients as the modelled values tended 
to exceed the measured  values32, and it is these adjusted coe�cients that have been used in the implementation, 
in other words, the algorithm was tuned to match the speci�c in situ ZSD measurements.

In the open-ocean, satellite ZSD can overestimate in situ ZSD because the former assumes the layer extending 
down to ZSD is homogenous. In contrast, chlorophyll a always varies with  depth32; chlorophyll levels are typically 
lower at the surface than at depth under strati�ed open-ocean conditions and so satellite chlorophyll underes-
timates the depth-averaged value. Although a recent algorithm to calculate ZSD from current satellite sensors 
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has improved the relationship between satellite and in situ ZSD data going  forwards33, satellite remote sensing 
still only provides an integrated value that simpli�es the biological and environmental vertical and horizontal 
 heterogeneity34,35; as our results in shelf seas may indicate in the latter case in particular. Consequently, even in 
the modern era of remote sensing of ocean colour, in situ measurements of ZSD provide an essential insight into 
ocean transparency and phytoplankton biomass.

Despite the growth in marine  science36, due to the constraints of achieving widespread coverage by the limited 
scope of professional oceanographic cruises, the participation of the seafaring public provides an opportunity to 
extend oceanographic data collection. Citizen science has proven to contribute to gaps in our scienti�c knowledge 
in many  �elds15,37. By collecting ocean transparency data to contribute to historical and current in situ scienti�c 
ZSD e�orts, citizen scientists can help better understand the e�ects of current global-scale, climate-driven changes 
in the phytoplankton.

In order to assess long-term, global, ocean phytoplankton change in situ from the beginning of the 20th Cen-
tury, without combining di�erent types of data, it is necessary to increase the coverage of present-day Secchi Disk 
ocean transparency measurements to enable a direct comparison with historical Secchi Disk  data12,18. Seafarers 
acting as citizen scientists provide a unique opportunity to collect in situ ocean transparency data. �is study 
addressed the ninth principle of citizen science outlined by the ECSA, which recommends that citizen science 
should be evaluated for scienti�c data  quality26. We found that when citizen and scientist ZSD are compared to 
satellite ZSD calculated using the algorithm of Morel et al.32 citizen ZSD slightly underestimates the satellite value 
and scientist ZSD deeply overestimates the value (Table 1). �e percentage of estimates and the mean deviation 
suggest that citizens perform as well as scientists. Although citizen data is more variable, it remains reliable 
and consequently, with this understanding, it is possible to combine citizen-collected ocean transparency data 
together with scienti�c studies (Figs. 1d,h,l, 2d,h,l). We would recommend the type of analysis we have con-
ducted when ZSD data from di�erent studies are combined so that long-term changes in phytoplankton biomass 
are estimated correctly.

Methods
Scientist measurements of  ZSD. We obtained scientist ZSD from 3 datasets. (1) �e World Ocean Data-
base (WOD) (https:// www. nodc. noaa. gov/ OC5/ WOD/ pr_ wod. html)38. (2) �e World-wide Ocean Optics Data-
base (WOOD) (https:// acces sion. nodc. noaa. gov/ 00925 28)39. (3) �e International Council for the Exploration 
of the Sea (ICES) (https:// ocean. ices. dk/ Proje ct/ SECCHI/)22. We used ZSD data collected between 1997 to 2005, 
1997 to 2001, and 1997 to 1998 from WOD, WOOD and ICES datasets, respectively.

Citizen measurements of  ZSD. We used measurements of ZSD collected from 2013 to 2019 by seafarers 
participating in the on-going Secchi Disk  study17.

Satellite estimates of  ZSD. Satellite estimates of ZSD were the only possibility to compare citizen and sci-
entist measurements of ZSD since we do not have in situ data collected by citizens and scientists at the same loca-
tions contemporaneously. We obtained satellite measurements from the Hermes GlobColour website (http:// 
hermes. acri. fr/ index. php). �e dataset, obtained by merging data from four sensors (SeaWiFS, MODIS, MERIS, 
VIIRS) with an arithmetic mean on a 4 km resolution spatial grid, provided overlapping time series of ZSD for the 
time period 1997–2019. Estimates of ZSD were calculated using the algorithm of Morel et al.32.

Bathymetry and distance from the nearest coast. We only used measurements of ZSD collected in 
water > 25 m deep and > 1 km from the coast. Bathymetry data were obtained from a global ocean bathymetry 
chart (0.1 degrees latitude by 0.1 degrees longitude)40. We calculated distance from the nearest coast from a 
global data set of distances from the nearest coastline estimated at a spatial resolution of 0.01  degrees41. We used 
the nearest method of  interpolation42,43 to give a bathymetry or distance from the nearest coast for each ZSD.

Data pre-processing. We attributed a value of satellite-based ZSD for each in situ measurement of ZSD if a 
satellite estimate was available within 100 km of the in situ sample, plus three days before or a�er it’s measure-
ment. To retain as many measurements as possible near to the coast we calculated the estimation using the near-
est method of  interpolation43,44.

Data analyses. We conducted three analyses: (i) indirectly comparing all scientist ZSD data together and 
citizen ZSD data to satellite ZSD (ii) comparing the three scienti�c programmes’ data separately and citizen data, 
to satellite ZSD and (iii)  determining whether any biases occurred between citizen and scientist ZSD data when 
compared to satellite data.

First, we examined the relationship between satellite ZSD and both scienti�c (all programmes combined) and 
citizen ZSD data using scatter plots for open-ocean and shelf systems; shelf where bathymetry ≤ 200 m and distance 
to coast > 1 km, and open-ocean where bathymetry > 200 m. We highlighted the datasets by drawing polygons 
around only-scientist, only-citizen and both scientist/citizen data. We performed three regression  analyses37 (i) 
all data (scientist/citizen), (ii) scientist and, (iii) citizen. Each regression analysis was performed 1000 times, 
each time removing 20 samples to examine potential outliers’ in�uence on the regression. Increasing the removal 
of samples did not alter our conclusions; the variance increased when the removal of samples was higher and 
conversely. We therefore created 1000 regression lines for each of the three regression analyses. We displayed 
the histograms of all regression coe�cients for scientist, citizen and scientist/citizen data. A Kruskal–Wallis test 
was applied to test whether regression coe�cients for each dataset were signi�cant.

https://www.nodc.noaa.gov/OC5/WOD/pr_wod.html
https://accession.nodc.noaa.gov/0092528
https://ocean.ices.dk/Project/SECCHI/
http://hermes.acri.fr/index.php
http://hermes.acri.fr/index.php
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We also calculated the linear correlations between both scientist and citizen ZSD and satellite ZSD. We per-
formed 1000 simulations for this analysis, recalculating the correlation a�er randomly choosing 100 pairs of 
points when all areas (shelf + open-ocean) were selected, 100 for just shelf data and 90 for open-ocean data. 
�e number of pairs of points available drove the choice of these thresholds. We used histograms to display the 
correlation coe�cients.

Second, we performed similar tests to investigate the three scienti�c programmes separately (WOD, WOOD 
and ICES) and citizen data. However, while we used 1000 simulations to calculate linear correlations, we consid-
ered 65 pairs of points for open-ocean + shelf data and shelf data, and 29 pairs of points for open-ocean. �e ICES 
and Paci�c Ocean data were not used when we tested the relationships between scientist ZSD data and satellite 
ZSD for the open-ocean and shelf, respectively. We also produced histograms of ZSD for WOD, WOOD, ICES 
and citizen data for open-ocean + shelf, shelf, and open-ocean to determine if any changes in slopes (regression 
coe�cients) might be explained by the sampling region.

�ird, we determined if any biases occurred between citizen and science data when each was compared to 
satellite measurementsindependently. Speci�cally, we investigated whether citizen or scientist in situ measure-
ments of ZSD underestimated or overestimated satellite measurements of ZSD that were derived from the algorithm 
of Morel et al.32,ZSD (i.e. without  log10 transformation). Although a logarithmic transformation improves the 
regression analysis by stabilising the variance of the variable (homoscedasticity) (Fig. 1b), it was more straightfor-
ward to compare real values; we present the results for a logarithmictransformation in Supplementary Table S1. 
We assessed three estimators that are generally used to examine the performance of diversity  indices45: (i) the 
percentage of overestimates, (ii) the mean deviation MD and (iii) the mean square deviation (MSD).

�e percentage of overestimates is a measure of bias varying between 0 and 100%. An unbiased estimator 
should have a value of 50%, meaning that it underestimates or overestimates 50% of the time. In our context, we 
use this estimator to determine how frequently in situ citizen or scientist measurements were above or below 
satellite estimates. For example, a value of 20% for citizen ZSD would suggest that citizens deeply underestimate 
ZSD. �e MD (expressed here in m) is the average of the di�erences between an estimator and its true or expected 
value. In the context of our study, it is the mean di�erence between in situ and satellite measurements and it is 
calculated as follows:

where O is the in situ ZSD measurement (either citizen or scientist), S is the satellite measurement of ZSD and 
n is the number of couples of points (for example, citizen and satellite estimates of ZSD). MD can therefore be 
negative if in situ values are lower than satellite estimates and inversely.

In contrast to the two previous estimators, MSD is used generally to estimate  accur45. It is calculated by 
estimating the average of the square of the di�erences between in situ and satellite measurements as follows:

MSD (expressed here in  m2) varies between 0 and ∞ and is a measure of closeness between in situ and satellite 
data. A value close to 0 indicates that the accuracy of the estimator is high and inversely. In our case, it suggests 
that the values originating from in situ measurement (either citizen or scientist) are constantly close to the values 
assessed from satellites using the algorithm of Morel et al.32.

We also calculated histograms of the deviations (a deviation is the di�erence between O and S) between in situ 
and satellite measurements to compare in greater detail the degree of accuracy between citizens and scientists.

�e estimators and histograms, were calculated (i) on the whole set of untransformed data (see Fig. 4a) and 
data (ii) where ZSD < 25 m and (iii) where ZSD ≥ 25 m. �ey were also calculated between in situ citizen and sci-
entist data. �erefore, we had 6 values of percentages of overestimates, MD and MSD as well as six histograms 
(displayed as two per �gure) at the end of the procedure (see Table 1, Fig. 4).
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