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ABSTRACT

In this paper, we propose and demonstrate a novel wireless

camera network system, called CITRIC. The core component

of this system is a new hardware platform that integrates a

camera, a frequency-scalable (up to 624 MHz) CPU, 16 MB

FLASH, and 64 MB RAM onto a single device. The device

then connects with a standard sensor network mote to form

a camera mote. The design enables in-network processing

of images to reduce communication requirements, which has

traditionally been high in existing camera networks with cen-

tralized processing. We also propose a back-end client/server

architecture to provide a user interface to the system and sup-

port further centralized processing for higher-level applica-

tions. Our camera mote enables a wider variety of distributed

pattern recognition applications than traditional platforms be-

cause it provides more computing power and tighter integra-

tion of physical components while still consuming relatively

little power. Furthermore, the mote easily integrates with ex-

isting low-bandwidth sensor networks because it can com-

municate over the IEEE 802.15.4 protocol with other sensor

network platforms. We demonstrate our system on three ap-

plications: image compression, target tracking, and camera

localization.

Index Terms— Wireless Sensor Network, Camera Sensor,

Sensor Architecture, Embedded System.

1. INTRODUCTION

Wireless sensor networks (WSNs) have emerged as a new

class of information technology infrastructure where comput-

ing is embedded into the physical world [9, 1, 11]. A WSN
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consists of a large number of spatially distributed devices with

computing and sensing capabilities, i.e., motes, which form

an ad-hoc wireless network for communication. Applications

of WSNs include building control [13], environmental moni-

toring [29], traffic control [20], manufacturing and plant au-

tomation [34], service robotics [17], and surveillance [23].

The standardization of communication protocols for sensor

networks, namely IEEE 802.15.4 and ZigBee, has facilitated

the effort to commericalize WSNs.

The research in WSNs has traditionally focused on low-

bandwidth sensors (e.g., acoustic, vibration, and infrared sen-

sors) that limit the ability to identify complex, high-level

physical phenomena. This limitation can be addressed by

integrating high-bandwidth sensors, such as image sensors,

to provide visual verification, in-depth situational awareness,

recognition, and other capabilities. This new class of WSNs

is called heterogeneous sensor networks (HSNs). The inte-

gration of high-bandwidth sensors and low-power wireless

communication in HSNs requires new in-network informa-

tion processing techniques and networking techniques to re-

duce the communication cost for long-term deployment.

In this paper, we describe the design and evaluation

of a wireless camera mote for HSNs, called the CITRIC

mote, which is a wireless camera hardware platform with a

1.3 megapixel camera, a PDA class processor, 64 MB RAM,

and 16 MB FLASH. This new platform will help us develop

a new set of in-network information processing and network-

ing techniques for HSNs. Since wireless camera networks

performing in-network processing are relatively new, it is im-

portant for our platform to balance performance with ease of

development of in-network computer vision algorithms to en-

able a wider base of applications. Modularity is a key tenet

of our design, reflected in the separation of the image pro-

cessing and networking hardware on the CITRIC mote and in

the separation of functions in our client/server back-end soft-

ware architecture for the entire CITRIC system. Surveillance

is used as an example scenario throughout this paper.

Figure 1 shows a typical network configuration for our
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Fig. 1. Architecture of our wireless camera network.

surveillance system. The CITRIC motes are wirelessly net-

worked with each other and possibly with other types of

motes over the IEEE 802.15.4 protocol. Some motes also

communicate with gateway computers that are connected to

the Internet. The motes first perform pre-processing functions

on images captured from the camera sensors and then send the

results over the network to a central server, which routes the

information to various clients for further processing and visu-

alization. The server itself may also provide some centralized

processing and logging of data. This architecture allows vari-

ous clients to interact with different subsets of the motes and

support different high-level applications.

We envision our surveillance system to be deployed in a

perimeter (e.g., a building or a park) where security can be

administered by a single entity. Multiple surveillance sys-

tems can also be connected over the Internet. The central

server should not be a significant bottleneck in the system

because much of the image processing and computer vision

algorithms will be run on the motes, meaning the wired back-

end system will not be processing raw image streams. Also,

by not streaming images over the network, the system pro-

vides better security against eavesdropping and better privacy

protection to those under surveillance.

The rest of this section surveys existing camera mote plat-

forms and motivates why a new design is necessary to meet

all our design requirements. We believe that our platform pro-

vides the best balance between performance, cost, power con-

sumption, ease of development, and ease of deployment.

1.1. Related Work

Similar to the design of our platform, many of the existing

camera motes consist of a camera-and-processor board and

a networking mote. A comparison of some representative

platforms with our platform is shown in Table 1. A good

treatment on the baseline computation requirements for in-

network image processing can be found in [8]. The network-

ing motes have minimal on-board processing, typically not

suitable for running image processing or computer vision al-

gorithms.

Some platforms in the past focused on streaming video to a

centralized server for processing, such as eCAM [25], a small

wearable camera platform consisting of an image compres-

sion module (no programmable CPU) and a networking node.

One of the earliest camera motes with significant on-

board processing is Panoptes [10]. The latest version of

the Panoptes platform consists of a Stargate “gateway mote,”

an 802.11b PCMCIA wireless card, and a USB camera.

Panoptes is targeted at applications where one would selec-

tively stream video to conserve bandwidth. To this end, the

platform has a priority-based adaptive buffering scheme, a

filter to remove uninteresting video frames, a video/camera

query system, and video compression. The use of commer-

cial devices in Panoptes, instead of a tightly integrated de-

sign, imposes extra limitations. Most notably, the frame rate

of the camera is limited by the USB bus speed, which forces

the USB camera to compress the image and the Stargate pro-

cessor to decompress the image to perform processing, thus

consuming extra computation and power.

On the other hand, the Cyclops [27], WiSN [8], and WiCa

[15] platforms have much tighter camera and on-board pro-

cessor integration. Cyclops was designed for low power op-

eration and connects a complex programmable logic device

(CPLD) directly to the camera for basic image processing

such as background subtraction and frame differencing. How-

ever, the 8-bit, 7.3 MHz low-power CPU and 64 KB RAM

limits the computation capability for supporting higher-level

computer-vision algorithms. WiSN uses a more powerful

32-bit, 48 MHz CPU and also 64 KB RAM, but the proces-

sor is shared between networking and image processing pro-

cesses. Similar to the Cyclops, the second generation WiCa

mote speeds up low-level image processing using an 84-MHz

Xetal-II SIMD processor, which has a linear processor array

of 320 parallel processing elements and a 16-bit global con-

trol processor for higher-level sequential processing. It uses a

separate 8051 MCU and ZigBee module for networking [14].

The platform most similar to the CITRIC mote is a proto-

type platform used by [30], which consists of an iMote2 [5]

connected to a custom-built camera sensor board. The plat-

form consists of an XScale CPU running at a slightly lower

clock speed, 32 MB RAM, 32 MB FLASH, and an OmniVi-

sion camera. Unlike the CITRIC mote, the networking and

image processing functions are both performed on the XScale

processor, and the platform does not have a built-in micro-

phone. The separation of the image processing unit from the

networking unit in the CITRIC mote allows for easy develop-

ment and testing of various image processing and computer

vision algorithms.

Finally, multi-tiered camera networks have also been pro-

posed to use low cost/power/resolution camera motes to wake

up higher cost/power/resolution cameras to capture and pro-



Table 1. Comparison of existing wireless camera mote platforms with the new CITRIC mote platform.

Platform Processor RAM ROM Camera Wireless

eCAM OV528 Serial Bridge N/A N/A COMedia C328-7640 board Eco node

[25] (JPEG Compression only) uses OV7640 camera uses nRF24E1 radio+MCU

(640 × 480 pixel @ 30 fps) (1 Mb/s, 10 m range)

Panoptes Intel XScale PXA255 64 MB 32 MB Logitech 3000 USB Camera1 802.11 PCMCIA Card

[10] (400 MHz, 32-bit CPU) (640 × 480 pixel @ ≈ 13 fps) (11 Mb/s for 802.11b)

(160 × 120 pixel @ ≈ 30 fps)

Cyclops Atmel ATmega128L 64 KB 512 KB ADCM-1700 Mica2 mote

[27] (7.3728 MHz, 8-bit CPU) (352 × 288 pixel @ 10 fps) uses TR1000 radio

Xilinx XC2C256 CoolRunner (40 kbps)

(16 MHz CPLD)

WiSN Atmel AT91SAM7S 64 KB 256 KB ADCM-1670 built-in CC2420 radio

[8] (48 MHz, 32-bit +32 KB2 +2 MB2 (352 × 288 pixel @ 15 fps) (802.15.4, 250 kbps)

ARM7TDMI CPU) ADNS-3060

(30 × 30 pixel @ 100 fps)

WiCa (Gen 2) Xetal-II 1.75 MB N/A Unknown Aquis Grain ZigBee+MCU

[15, 14] (84 MHz, 320 PE LPA + GCP) (640 × 480 @ 30 fps) uses CC2420 radio

(802.15.4, 250 kbps)

iMote2+Cam Intel XScale PXA271 32 MB 32 MB OV7649 built-in CC2420 radio

[30] (up to 416 MHz, 32-bit CPU) (640 × 480 pixel @ 30 fps) (802.15.4, 250 kbps)

(320 × 240 pixel @ 60 fps)

CITRIC Intel XScale PXA270 64 MB 16 MB OV9655 Tmote Sky mote

(up to 624 MHz, 32-bit CPU) (1280 × 1024 pixel @ 15 fps) uses CC2420 radio

(640 × 480 pixel @ 30 fps) (802.15.4, 250 kbps)

cess interesting images. One such notable multi-tier camera

network system is SensEye [16], which consists of 3 tiers

of cameras. In the future, we also envision deploying our

CITRIC mote in a multi-tier network, particularly ones com-

posed of heterogeneous sensors (e.g., passive-infrared motion

sensors and microphones).

2. ARCHITECTURE AND DESIGN

2.1. Camera Mote

The CITRIC platform consists of a camera daughter board

connected to a Tmote Sky board (see Figure 2, left). The

Tmote Sky [19] is a variant of the popular Telos B mote

[26] for wireless sensor network research, which uses a Texas

Instruments MSP430 microcontroller and Chipcon CC2420

IEEE 802.15.4-compliant radio, both selected for low-power

operation.

The camera daughter board is comprised of a 4.6 cm ×
5.8 cm processor board and a detachable image sensor board

(see Figure 2, middle). The design of the camera board uses

a small number of functional blocks to minimize size, power

consumption, and manufacturing costs.

To choose a proper onboard processor, we have the op-

tion to use either field-programmable gate arrays (FPGAs)

or general-purpose processors running embedded Linux. Al-

though FPGAs have advantages in terms of speed and low-

power consumption, the user would need to program in a

hardware description language, making algorithm implemen-

tation and debugging a time-consuming process. On the other

hand, many well-studied image processing and computer vi-

sion algorithms have been efficiently coded in C/C++, such as

the OpenCV library [2]. Therefore, we chose to use a general-

purpose processor running embedded Linux (as opposed to

TinyOS [32]) for the camera board for rapid prototyping and

ease of programming and maintenance.

2.1.1. CMOS image sensor

The camera for our platform is the OmniVision OV9655, a

low voltage SXGA (1.3 megapixel) CMOS image sensor that

offers the full functionality of a camera and image processor

on a single chip. It supports image sizes SXGA (1280×1024),

VGA, CIF, and any size scaling down from CIF to 40 × 30,

and provides 8-bit/10-bit images. The image array is capable

of operating at up to 30 frames per second (fps) in VGA, CIF,

and lower resolutions, and 15 fps in SXGA. The OV9655 is

designed to perform well in low-light conditions [24]. The

typical active power consumption is 90 mW (15 fps @SXGA)

and the standby current is less than 20 µA.

1Frame rate limited by compression and USB bandwidth.
2External memory extension. Extending both RAM and ROM not per-

mitted.



Fig. 2. (Left) Assembled camera daughter board with Tmote. (Middle) Camera daughter board with major functional units outlined. (Right)

Block diagram of major camera board components.

2.1.2. Processor

The PXA270 [12] is a fixed-point processor with a maximum

speed of 624 MHz, 256 KB of internal SRAM, and a wireless

MMX coprocessor to accelerate multimedia operations. The

processor is voltage and frequency scalable for low power op-

eration, with a minimum voltage and frequency of 0.85 V and

13 MHz, respectively. Furthermore, the PXA270 features the

Intel Quick Capture Interface, which eliminates the need for

external preprocessors to connect the processor to the camera

sensor. Finally, we chose the PXA270 because of its maturity

and the popularity of its software and development tools. The

current CITRIC platform supports CPU speeds of 208, 312,

416, and 520 MHz.

2.1.3. External Memory

The PXA270 is connected to 64 MB of 1.8 V Qimonda Mo-

bile SDRAM and 16 MB of 1.8 V Intel NOR FLASH. The

SDRAM is for storing image frames during processing, and

the FLASH is for storing code. 64 MB of SDRAM is more

than sufficient for storing 2 frames at 1.3 megapixel resolu-

tion (3 Bytes/pixel × 1.3 megapixel × 2 frames = 8 MB), the

minimal requirement for background subtraction. 64 MB is

also the largest size of the Single Data Rate (SDR) mobile

SDRAM components natively supported by the PXA270 cur-

rently available on the market. As for the FLASH, the code

size for most computer vision algorithms falls well under

16 MB. Our selection criteria for the types of non-volatile and

volatile memory are access speed/bandwidth, capacity, power

consumption, cost, physical size, and availability.

Our choices for non-volatile memory were NAND and

NOR FLASH, where the former has lower cost-per-bit and

higher density but slower random access and the latter has

the capability to execute code directly out of the non-volatile

memory on boot up (eXecution-In-Place, XIP) [6]. NOR

FLASH was chosen not only because it supported XIP, but

also because NAND Flash is not natively supported by the

PXA270 processor.

Our choices for volatile memory were Mobile SDRAM

and Pseudo SRAM, both of which consume very little power.

Low power consumption is an important factor when choos-

ing memory because it has been demonstrated that the mem-

ory in handsets demands up to 20 percent of the total power

budget, equal to the power demands of the application pro-

cessor [33]. Mobile SDRAM was chosen because of its sig-

nificantly higher density and speed.

We had to forgo using multi-chip packages (MCPs) that in-

corporate a complete memory subsystem (ex. NOR + Pseudo

SRAM, NAND + Mobile SDRAM, NOR + NAND + Mobile

SDRAM) in a single component due to their availability, but

they may be used in future versions of the platform.

2.1.4. Microphone

In order to run high-bandwidth, multi-modal sensing algo-

rithms fusing audio and video sensor outputs, it was impor-

tant to include a microphone on the camera daughter board

rather than use a microphone attached to the Tmote Sky wire-

less mote. This simplified the operation of the entire sys-

tem by dedicating the communication between the Tmote

Sky and the camera daughter board to data that needed to

be transmitted over the wireless network. The microphone

on the board is connected to the Wolfson WM8950 mono au-

dio ADC, which was designed for portable applications. The

WM8950 features high-quality audio (at sample rates from 8

to 48 ks/s) with low-power consumption (10 mA all-on 48 ks/s

mode) and integrates a microphone preamplifier to reduce the

number of external components [35].



2.1.5. Power Management

The camera daughter board uses the NXP PCF50606, a power

management IC for the XScale application processors, to

manage the power supply and put the system into sleep mode.

When compared to an equivalent solution with multiple dis-

crete components, the PCF50606 significantly reduces the

system cost and size [21]. The entire camera mote, includ-

ing the Tmote Sky, is designed to be powered by either four

AA batteries, a USB cable, or a 5 V DC power adapter cable.

2.1.6. USB to UART bridge

The camera daughter board uses the Silicon Laboratories

CP2102 USB-to-UART bridge controller to connect the

UART port of the PXA270 with a USB port on a personal

computer for programming and data retrieval. Silicon Labo-

ratories provides royalty-free Virtual COM Port (VCP) device

drivers that allow the camera mote to appear as a COM port

to PC applications [28]. The CP2102 is USB 2.0 full-speed

(12 Mbps) compliant, and was chosen because it minimizes

the number of physical components on the PCB.

The camera daughter board also has a JTAG interface for

programming and debugging.

2.2. Wireless Communications

As shown in Figure 1, sensor data in our system flow from

the motes to a gateway over the IEEE 802.15.4 protocol, then

from the gateway over a wired Internet back-end to a cen-

tralized server, and finally from the server to the client(s).

The maximum data rate of 802.15.4 is 250 kbps per frequency

channel (16 channels available in the 2.4 GHz band), far too

low for a camera mote to stream images back to the server at a

high enough quality and frame rate for real-time applications.

A key tenet of our design is to push computing out to the

edge of the network and only send post-processed data (for

instance, low-dimensional features from an image) in real-

time back to the centralized server and clients for further pro-

cessing. If an event of interest occurs in the network, we can

then send a query for the relevant image sequence to be com-

pressed and sent back to the server over a slightly longer pe-

riod of time. Since we are using commercial off-the-shelf

motes running TinyOS/NesC, we can easily substitute differ-

ent standard routing protocols to suit an application’s particu-

lar needs. For instance, the real-time requirements of surveil-

lance imply that typical communication does not need to run

over a reliable transport protocol.

2.3. Client/Server Interface

From a more abstract point of view, the sensor network can be

modeled as a shared computing resource consisting of a set of

nodes that can be accessed by multiple users concurrently. As

such, users logging into the system can assign different tasks

to different nodes. The first user to log in to a node becomes

a “manager” of that node (see Figure 3). Other users logging

in to the system can assign tasks to any unmanaged nodes,

but will only be able to listen to the data output by managed

nodes. For example, if there is a node performing a tracking

task for a given user then a new user will not be able to assign

a face recognition task to the node but s/he will still be able

to log in and listen to the output data for the tracking task. As

users log out of the nodes, the manager role is passed on to

the next logged in user. In the future, the system will be ex-

tended to allow users to negotiate the use of the resources by

integrating an interface for users to yield the role of manager

to others.

Note that in this shared computing model, the server is “in-

visible” to the users. In reality, the server will provides some

services (such as database storage for more memory intensive

tasks) but its role will be hidden from the user.

3. CAMERA MOTE BENCHMARKS

3.1. Energy Consumption

The power consumption of the camera mote was determined

by logging the current and voltage of the device when it was

connected to four AA batteries (outputting ≈ 6 V). A Tek-

tronix AM 503B Current Probe Amplifier was used to convert

current to voltage, and a National Instruments 9215 USB data

logger was used to log both the voltage of the batteries and

the voltage of the current probe.

First, we measured the power consumption of the camera

daughter board alone running Linux but with no active pro-

cesses (Idle). We then took the same measurement but with

the Tmote attached, although no data was sent to the Tmote

(Idle + Tmote). In this test, the Tmote was running an appli-

cation that waits to receive any packets from the camera board

and transmits over the radio. On average, Idle consumes 428 –

478 mW, and Idle + Tmote consumes 527 – 594 mW, depend-

ing on the processor speed.

We also measured the power consumption of the mote run-

ning a typical background subtraction function. The test uti-

lizes all the components of the mote by both running the CPU

and using the Tmote to transmit the image coordinates of the

foreground. At the processor speed 520 MHz, the power con-

sumption was 970 mW. Note that the power consumption may

be reduced by enabling power management on the Tmote.

The current draw is relatively constant over time, even

though the voltage of the batteries decreases with time. The

calculations were made using the nominal voltage of 6 V in

order to be consistent, since each experiment starts and ends

with a different voltage. If we assume the camera mote con-

sumes about 1 W and runs on batteries with 2700 mAh capac-

ity, we expect the camera mote to last over 16 hours under

continuous operation.



Fig. 3. Screenshot of user interface. (Left) A text menu is available for assigning tasks to the motes. At the top of this menu is a table

showing that the user is the “manager” of one node and “not logged in” on the other node. (Right) The graphical visualization of the network

physical layout and a detected foreground region from a selected mote.

3.2. Speed

The speed benchmarks for the camera board were chosen to

reflect typical image processing computations. We compared

the benchmarks with and without the Intel Integrated Perfor-

mance Primitives (IPP) library to evaluate whether IPP pro-

vides a significant performance increase.

All benchmarks were performed on 512 × 512 image ar-

rays. The Add benchmark adds two arrays. The Background

Subtraction benchmark computes the difference of two arrays

and then compares the result against a constant threshold to

get a boolean array (mask). The Median Filter benchmark

performs smoothing by taking the median pixel value of a

3 × 3 pixel area at each pixel. The Canny benchmark imple-

ments the first stage of the Canny edge detection algorithm.

The benchmark results for Add and Background Subtraction

were averaged over 1000 trials, while those for Median Filter

and Canny were averaged over 100 trials.

Figure 4 shows the average execution time of one itera-

tion for each benchmark. Note that the IPP versions of the

functions are not necessarily always faster than their non-

IPP counterparts. For example, the Background Subtraction

benchmark consists of an arithmetic operation and a compar-

ison. Implemented in IPP, this requires two function calls and

thus two iterations through the entire array. But implemented

without IPP, we can perform both operations on the same it-

eration through the array, resulting in only one iteration and

fewer memory accesses. Such non-IPP optimizations should

be taken into consideration when building future applications

in order to obtain maximum performance. Also, the non-

linear performance curve for different CPU frequencies can

be attributed to the constant speed of memory access (the bus

speed is 208 MHz regardless of the processor speed).

4. APPLICATIONS

In this section, we demonstrate the capacity and performance

of the proposed platform via three representative low-level vi-

sion applications: image compression, target tracking, and

camera localization. The algorithms are implemented in

C/C++ on the camera motes and a base-station computer. In

Fig. 4. Average run time of basic image processing functions on

512 × 512 images (over ≥ 100 iterations). Execution time at 520

MHz is shown in parentheses.

all the experiments, the processor speed is set at 520 MHz.

4.1. Image Compression

Image compression is an important function to many camera-

based applications, especially in networks designed to push

captured images to a back-end server for further processing.

We quantitatively measure the speed of image compression

on the CITRIC mote platform, and the rate-distortion and

time-distortion trade-offs between two compression schemes:

JPEG and Compressed Sensing (CS) [4].

The embedded Linux OS includes the IJG library that im-

plements JPEG compression.3 Since the onboard CPU only

has native support for fixed-point arithmetic, we used the in-

teger DCT implementation.

The CS scheme using random matrices [7, 3] has been

shown to provide unique advantages in lossy compression,

particularly in low bandwidth networks with energy and com-

putation constrained nodes. While a detailed discussion about

CS is outside the scope of this paper, we briefly describe the

key elements used in our experiments. Suppose an n × n im-

age or image block I ∈ R
n2

stacked in vector form can be

written as a linear combination of a set of basis vectors; i.e.,

3Available from http://www.ijg.org



I = Fx, where F ∈ R
n2

×m is some (possibly overcomplete)

linear basis. If one assumes that only a sparse set of basis vec-

tors is needed, i.e., all but a small percent of the coefficients

in x are (close to) zero, then it has been shown that, with

overwhelming probability, x can be stably recovered from a

small number of random projections of the original image I ,

y
.
= RI = RFx ∈ R

d, where R ∈ R
d×n2

is a random

projection matrix, and d is the number of coefficients used in

compression [7, 3]. The sparse representation x can be recov-

ered via ℓ1-minimization:

x
∗ = arg min

x

‖x‖1 subject to y = RFx. (1)

The reconstruction of the image is then Î = Fx
∗.

In this paper, the components of the random matrix R

are assigned to be ±1 with equal probability (i.e., the

Rademacher distribution). Therefore, computing the random

projections only involves addition and subtraction, which is

particularly suitable for fixed-point processors.4 We apply

an Exponential-Golomb coding method to encode the random

projection coefficients. At the decoder, the inverse DCT ma-

trix is used as the image basis F to perform reconstruction via

ℓ1-minimization.

Compared to image compression based on block DCT

transform or wavelets, there is no surprise that random pro-

jection requires more coefficients to achieve the same com-

pression quality. On the other hand, the random projection

scheme has the following unique advantages:

1. Transmission of the random projections y is robust to

packet loss in the network. Even if part of the coeffi-

cients in y is lost during transmission, the receiver can

still adaptively create the appropriate measurement ma-

trix R′ and carry out ℓ1-minimization at the expense of

less accuracy.

2. It is straightforward to implement a progressive com-

pression protocol using random projection, e.g., one can

construct additional random projections of the image

signal I to improve the reconstruction accuracy.

3. In terms of security, if (part of) the projection signal y

is intercepted but the random seed used to generate the

random matrix is not known to the intruder, it is more

difficult to decipher the original signal I than using co-

efficients by DCT and wavelets.

We use two standard test images, “Lena” and “Barbara”,

for our compression evaluations. Each test image is a 512 ×
512 grayscale picture. To evaluate compression performance,

we measure the reconstruction quality with peak signal-to-

noise ratio (PSNR), the byte rate, and the compression time.

4We have compared the reconstruction quality using ±1 random coeffi-

cients with general real Gaussian coefficients, and we found the difference is

minimal.

The byte rate indicates the size of the data transmitted by the

mote while the compression time gives an indication of the

amount of energy expended while compressing. Each test im-

age is compiled into the program code and copied to a mem-

ory buffer in run-time before compression on the mote, while

the reconstruction is performed on the computer. All time

measurements are averaged over 1000 trials.

Figure 5 shows selected results from our experiments.

Since JPEG is a widely used compression scheme with well

understood performance, we leave out its Rate-Distortion

curve for space reasons. For the Time-Distortion curve us-

ing JPEG, an important observation is that if we extrapolate

the curve to the point where quality goes to 0, we arrive at the

computational overhead of JPEG, i.e., we still require a com-

putational time of 70 ms per image. In contrast, there is al-

most no overhead in CS: If we look at the its Time-Distortion

curve, as the reconstruction quality tends towards zero, the

computation time required also tends towards zero.

4.2. Single Target Tracking via Background Subtraction

Due to the inherent richness of the visual medium, video-

based scene analysis (such as tracking, counting, and recog-

nition) typically requires a background-subtraction step that

focuses attention of the system on smaller regions of inter-

est in order to reduce the complexity of data processing. A

simple approach to background subtraction from video data

is via frame differencing [27]. This approach compares each

incoming frame with a background image model and clas-

sifies the pixels of significant variation as part of the fore-

ground. The foreground pixels are then processed for identi-

fication and tracking. The success of frame differencing de-

pends on the robust extraction and maintenance of the back-

ground model. Some of the known challenges include illu-

mination changes, vacillating backgrounds, shadows, visual

clutter, and occlusion [31].

Because there is no single background model that can ad-

dress all these challenges, the model must be selected based

on application requirements. In the context of camera motes,

the computational complexity of the algorithm and run-time

are also crucial factors, which justifies our choice of a simple

background subtraction technique such as frame differencing

in this demonstration.

The data flow in Figure 6 shows the target-detection algo-

rithm based on background subtraction. The first component

performs two tasks: a background-foreground segmentation

and an update on the background model Bt. An initial mask

M0

t (i, j) := |It(i, j) − Bt(i, j)| > τ is set based on a spec-

ified threshold τ , and then post-processed by using median

filtering (a 9 × 9 block is used in our examples). All contigu-

ous foreground regions in M0

t are grouped together as blobs

and any blob smaller than a specified threshold is removed.

The result is a segmentation output Mt, a binary array with a

value of 1 for foreground and 0 for background. Finally, a set



Fig. 5. (Left) Time-Distortion curve for JPEG. (Middle) Rate-Distortion curve for CS with random projections. (Right) Time-Distortion

curve for CS with random projections.

of boxes St bounding the resulting blobs in Mt are computed

and used for tracking. The tracking results from a single cam-

era view are displayed in Figure 7.

Fig. 6. Data-flow diagram of mote target-detection algorithm.

Fig. 7. Tracking results for a single camera view. (Left) Sample

image. (Right) The path represents the motion of the center of mass

of the target.

Figure 8 illustrates the data flow of the entire system. In

this example, two CITRIC motes perform background sub-

traction in real-time. The resulting images are stored locally

on the motes and downloaded offline (left side of Figure 8).

Features based on the observations are sent to the server via

radio, i.e., the coordinates of the bounding box. A client can

then log on to the server and receive information streamed

from the motes. On the right side of Figure 8 we observe a

screenshot of the current visualization available on the client.

The left plot in this visualization is a diagram of the floor plan

where the camera motes are located, with rays specifying the

angles in which there was a detection. The right plot depicts

bounding boxes for the corresponding camera mote.

The execution time per frame for background subtraction

and the bounding box computation is typically 0.2 – 0.4 s at

Fig. 8. Data diagram for Target Tracking application. Motes with

corresponding local observations are displayed to the left, and client

visualization to the right.

a resolution of 320 × 240, and 0.3 – 0.8 s at 640 × 480. The

frame rate is not fixed due to the variable execution time of

the algorithm depending on the number of foreground pixels.

4.3. Camera Localization using Multi-Target Tracking

Most camera networks benefit from knowing where the sen-

sors are located relative to one another in a common coordi-

nate frame, i.e., localization. Camera localization is the pro-

cess of finding the position of the cameras as well as the ori-

entation of each camera’s field of view. In this subsection, we

demonstrate a localization method based on [18]. The method

simultaneously tracks multiple objects and uses the recovered

tracks as features to estimate the position and orientation of

the cameras up to a scale factor.

The tracks of the moving objects are formed in the image

plane using a single point per object at each time instance. In

our experiment, this point is the center of the bounding box

around a detected foreground object. Over the whole surveil-

lance sequence of duration T , there are K unknown number

of objects. Denote the number of independent objects de-

tected at time t as nt and the set of their coordinates in the



image as yt = {yj
t ∈ R

2 : j = 1, . . . , nt}. Then, the set

of all objects during the whole sequence is Y = ∪t=1,...,T yt.

The problem of multi-target tracking is defined as a partition

of Y

ω = {τ0, τ2, . . . , τK},

where τ0 collects the false alarm samples, and τi, i =
1, . . . ,K, collect the samples that form the K tracks, respec-

tively.

One common drawback for target tracking via direct back-

ground subtraction is that the method is not stable enough for

tracking multiple moving objects. In [22], the multi-target

tracking algorithm models each of the K tracks using a lin-

ear dynamic model. Then, the maximum a posteriori (MAP)

probability P (ω|Y ) is optimized using Markov Chain Monte

Carlo Data Association (MCMCDA). Hence, the optimal par-

tition ω∗ corresponds to the tracks of K objects in the image

sequence. The solution allows us to build tracks from mul-

tiple moving objects at any given time and use more infor-

mation from the dynamics of the scene than just using the

background subtraction results directly.

In our experiment, we positioned two camera motes 8.5

feet apart and pointed them at an open area where people were

walking, as shown by the top row of pictures in Figure 9. Each

camera mote ran background subtraction on its current image

and then sent the bounding box coordinates back to the base

station for each detected foreground object. The center of

each bounding box was used to build the image tracks over

time on the base station computer, as shown in Figure 10.

It can be seen that multiple tracks are successfully estimated

from the image sequence.

Fig. 9. (Top) Image frames from the left and right camera motes,

respectively, viewing the scene. (Bottom) The detected foreground

objects from the scene.

The localization algorithm then takes these tracks and per-

forms multiple-view track correspondence. This method is

particularly suitable for a low-bandwidth camera network be-

cause it works well on wide-baseline images and images lack-

ing distinct static features [18]. Furthermore, only the coor-

Fig. 10. The tracks of the moving objects in the image planes of the

left and right camera motes, respectively, formed by MCMCDA.

dinates of the foreground objects need to be transmitted, not

entire images. In implementing the localization, tracks from

the two image sequences are compared, and we adapt the

method such that minimizing reprojection error determines

which tracks best correspond between images. We used 43

frames from the cameras at an image resolution of 640×480.

Foreground objects were detected in 22 of the 43 frames and

tracks were built off these detected foreground objects. Four

tracks were built in the first camera and five tracks were built

in the second camera. Using the adapted localization method,

we were able to determine the localization of the two cameras

relative to one another with an average reprojection error of

4.94 pixels. This was based on the matching of four tracks

between the two cameras which minimize the reprojection er-

ror.

Fig. 11. (Left) The matching of tracks between the cameras that

were used for localization. (Right) The reprojection error measured

in pixels for each of the 20 points of the tracks.

The accuracy of the camera localization estimate is affected

by a few factors. First, the choice of the (low-cost) camera

has an effect on the quality of the captured image. Second,

the precision of the synchronization between the cameras af-

fects the accuracy of the image correspondence. Last, we only

used a small number of frames to estimate track correspon-

dence. Using a longer image sequence with more data points

can reduce the estimation error.

5. CONCLUSION AND FUTURE WORK

We have presented the architecture of CITRIC, a new wire-

less camera mote system for low-bandwidth networks. The

system enables the captured images to be processed locally

on the camera board, and only compressed low-dimensional

features are transmitted through the wireless network. To this



end, the CITRIC mote has been designed to have state-of-the-

art computing power and memory (up to 624 MHz, 32-bit XS-

cale processor; 64 MB RAM; 16 MB ROM), and runs embed-

ded Linux. The mote communicates over the IEEE 802.15.4

protocol, which also makes it easy to integrate with existing

HSNs.

We plan to improve the usability of our system by enabling

clients to manage and interact with clusters of motes instead

of individual motes. We will also expand the available C li-

brary of image processing functions on our camera motes and

evaluate their performance. The platform will enable investi-

gators to explore different distributed camera network appli-

cations.
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