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ABSTRACT AWi-Fi fingerprint consists of received signal strength values at a particular location alongwith

the location information. A Wi-Fi radio map is constructed by maintaining a database of Wi-Fi fingerprints

at various points in a building. A city radio map is a collection of radio maps for most buildings in a

city. A highly precise citywide indoor positioning service is possible, if an accurate city radio map is

available. However, tremendous time and effort are required to construct a city radio map through manual

calibration. This paper proposes amethod for constructing a city radiomap through the crowdsourcing ofWi-

Fi fingerprints from numerous smartphones. The proposed method classifies the buildings in a city into three

categories: buildings in residential areas, commercial areas, and public areas. Then, it develops location-

labeling techniques appropriate for the collected fingerprints from buildings in each category. Experiments

conducted in the cities of Daejeon and Seoul revealed that the proposed method can construct a precise city

radio map with minimal cost in a short period of time. Once city radio maps are constructed for most cities

around the world, the global indoor positioning system will be completed.

INDEX TERMS City radio map, crowdsourcing, indoor positioning, semi-supervised machine learning,

simultaneous calibration and address mapping (SCAM).

I. INTRODUCTION

The incorporation of indoor positioning services into mobile

devices makes daily life safer and more convenient. Naviga-

tion and route guidance can be utilized in spaces where this

service was not previously available. Outdoor car navigation

services are expanding their service areas to indoor environ-

ments to provide indoor-and-outdoor integrated navigation

services [1]–[3]. This is especially helpful for emergency ser-

vices to conduct rescue tasksmore effectively by immediately

locating a person who is in danger regardless of geographic

location. In addition, various unprecedented indoor location-

based serviceswill emerge from the utilization of the citywide

indoor positioning service.

There have been many attempts to provide a precise indoor

positioning service using various signals and sensors [4]–[7].

However, a building-based perspective is not a feasible

approach because overall coverage is required to provide a

valuable and complete system to users. Nevertheless, there

have been only a few attempts to provide a precise indoor

positioning service covering a large number of buildings in
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a city [8]. One fundamental question is what kind of sig-

nal input should be used for this kind of system? In fact,

many signal sources, such as cell towers, GPS, and Wi-Fi,

can be used for citywide indoor positioning. In this study,

we considerWi-Fi signals as the best candidate becauseWi-Fi

infrastructures have already been deployed in most buildings

in cities and they can achieve relatively precise positioning

accuracy [9]. This is a beneficial starting point for the devel-

opment of a citywide indoor positioning service.

The construction of a radio map is another crucial initial

step towards implementing an indoor positioning service.

A radio map models the location characteristics of each point

in an indoor environment from a collection of fingerprints of

received signal strengths (RSSs) from multiple Wi-Fi access

points (APs), which serve as reference locations [10]. How-

ever, these APs are limited to only one or a few specific

buildings. By contrast, a citywide radio map aims to model

Wi-Fi signal patterns at specific points within most buildings

in a city. Radio maps are usually constructed by manual

calibration or machine learning techniques for the location-

labeling of crowdsourced fingerprints. Crowdsourced finger-

print techniques have been considered as a practical approach

to constructing a city radio map because the alternative
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of manual calibration requires tremendous time and human

resources. When using crowdsourced data, location-labeling

techniques typically have two steps. In the first step, refer-

ence locations are acquired, and in the second step, location-

labeling of the crowdsourced fingerprints is conducted using

these references, which provides location information of the

fingerprints [11].

A city is composed of buildings with various heights that

are used for various purposes, such as residence, business,

shopping, exhibition, and entertainment. Consequently, radio

maps for buildings cannot be appropriately constructed with

only one particular location-labeling method. For example,

apartment hallways can be considered solely as transit spaces

that connect the entrance of the building with the entrances

of each apartment. By contrast, shopping mall hallways are

occupied by people who are resting, window shopping, meet-

ing, etc., which means they have a much higher impor-

tance regarding navigation and localization. Therefore, this

paper proposes a practical framework for citywide radio map

construction by considering different types of buildings and

assigning distinct crowdsource-based methods to each build-

ing category, which means that traditional manual calibration

is not required. Experiments performed for each building type

showed promising accuracy results, thus demonstrating the

suitability of the proposed framework.

II. RELATED WORK

Many crowdsourced-based location-labeling methods have

been invented in the last several years. The first approach

relied on user contributions for the collection of fingerprints

and addresses [12]. This method employs the app RedPin,

which allows users to enter location information, such as the

names and addresses of shops and restaurants and evaluate or

leave comments on them using the app during their stay. This

approach is called explicit crowdsourcing because it cannot

collect fingerprints and place information without explicit

user contributions.

Other techniques that are not reliant on the direct input of

users exist to derive address-based reference locations. For

instance, Internet of Things (IoT) devices and home appli-

ances, such as Internet protocol televisions (IPTV), set-top

boxes, internet-connected refrigerators, and smart machines,

can also be used for the collection of address-based refer-

ence locations. They collect fingerprints from which their

deployed address information should be available. It is known

that the deployed addresses of home appliances are left to

distributors or manufacturers for the delivery of goods or

after-sale services. By using this address information, the col-

lection time of references in the location-labeling of finger-

prints is very low because the references are collected directly

from smart devices without explicit contributions from users.

Owing to this lack of direct user participation, this method is

called implicit crowdsourcing and is considered effective in

constructing radio maps of areas inside buildings [13], [14].

In the above mentioned methods, the reference locations

are collected under the assumption that the addresses are

available. Thus, the main issue in collecting reference loca-

tions is how to map collected fingerprints to the available

addresses. Besides the possibility of querying third party

databases, in some situations, addresses and fingerprints can

be collected simultaneously through smartphone apps, such

as online shopping apps. Online shopping app users must

enter their home or office addresses for the delivery of their

items. In this situation, themapping of address and fingerprint

is much simpler than in the previous methods because the

fingerprints can be labeled with the simultaneously entered

addresses. However, mislabeled fingerprints should later be

filtered out through post processing.

The true essence of crowdsourcing is the collection

of datasets with unconscious user participation. Many

researchers have proposed implicit crowdsourcing systems

for indoor maps, which are especially useful for large areas.

Yang et al. proposed the method of locating in fingerprint

space (LiFS), which does not require any active participa-

tion from the users [15]. LiFS uses multidimensional scal-

ing (MDS) technology to record the fingerprints of users,

meanwhile mapping the Wi-Fi fingerprints to reference loca-

tions using the movement paths. Essentially, LiFS sets up

a geographical relationship between fingerprints using the

distance between two endpoints. It also does not require AP

information as this cannot be obtained in office or commercial

buildings. Similarly, Rai et al. scanned the Wi-Fi fingerprints

of users as they entered an indoor environment [16]. The

author used data from inertial sensors of smartphones to

track users and maintained a fingerprint database without

user interaction. The author named this system Zee, which

is capable of running in the background and requires no user

interaction to collect fingerprints. Unsupervised learning has

also been used for crowdsourced Wi-Fi fingerprint data by

some researchers in [17]. The authors collected Wi-Fi fin-

gerprints without reference locations following unsupervised

learning to cluster the fingerprints. This method proves that it

is possible to construct a precise radio map without collecting

reference locations. Furthermore, Graph-SLam develops a

system that can be installed on user devices to enable users

to share their walking path and Wi-Fi signals without any

explicit efforts [18].

Based on the above mentioned methods, the effective-

ness of the crowdsourcing can be inferred in the field of

indoor positioning system. However, all the existing sys-

tems focus on covering a specific type of building. The

buildings in a city have different types of architectures and

purpose. A method that performs well in a specific type of

architecture may not be effective for other types of build-

ings. The proposed method covers this limitation by clas-

sifying the buildings of a city in three types and proposes

a separate method for each type. Eventually, a citywide

indoor positioning system is achieved which is not available

before.
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FIGURE 1. Schematic overview of the proposed citywide radio map.

III. METHOD

A. BUILDING TYPE CLASSIFICATION

One of the main contributions of this paper towards a city-

wide indoor positioning system is the consideration of city

building types and the subsequent variety of requirements for

establishing an indoor radio map in these buildings. Current

systems lack this kind of information owing to limitations

such as tests done in a single environment e.g., one kind

of building, or the use of different methods e.g., manual

calibration, which we aim to avoid.

Buildings in a city are different from each other with

respect to their architectures, interiors, and purposes.

Depending on the purpose of a building and the way people

interact within it, it is recommended that different meth-

ods are applied for the location labeling of fingerprints for

different buildings. However, when considering this for the

establishment of an indoor positioning system, these unique

buildings must be classified in a way that the system can

provide a balance of accuracy andminimal calibration efforts.

Furthermore, a building can be used for several purposes; for

example, a car park in the basement used for parking, amarket

on the first floor used for shopping, and apartments on the

floors above used for living. Thus, the classification should

not be based on buildings themselves but rather on subareas of

buildings to remain flexible towards multipurpose buildings.

We propose differentiating the subareas of buildings in a city

into the following three most representative categories:
• Residential areas of buildings

• Commercial areas of buildings

• Public areas of buildings

The primary criterion for this classification is based on the

purpose of a particular area inside the building. Here, resi-

dential areas include all areas that solely serve as someone’s

home. People in residential areas are most likely interested in

reaching a specific home and use the hallways purely as tran-

sit space. Thus, highly accurate positioning is not necessary,

and room-level accuracy can be targeted. Commercial areas

are openly accessible areas that are mainly used for shop-

ping or general transactions. By contrast to residential areas,

hallways play a central role in commercial areas as people

occupy them for window shopping, resting, and interaction.

Hence, high positioning accuracy is essential for hallways in

commercial areas. Public areas are all other freely accessible

areas that are not classified as commercial or residential and

consist mainly of industrial areas and offices.

B. COLLECTION OF REFERENCE LOCATIONS

Based on the aforementioned building area classification,

an appropriate method for the collection of reference loca-

tions is assigned to each category. These methods are

explained in detail in the following sections. Fig.1 depicts an

overview of the building classes and their respective reference

location collection methods.

1) SOURCE OF REFERENCE LOCATIONS IN

RESIDENTIAL AREAS

Addresses stored in external databases can be a suitable can-

didate for the creation of reference locations by labeling col-

lected fingerprints with these addresses. To enable the usage

of addresses for this purpose, some kind of connecting feature

between the gathered fingerprint at an unknown location and

the external database must be utilized. In this case, mobile

apps can serve as such a connection.

For residential areas, the usage of an energy usage-

registering app, utilized by meter-readers to monitor the

energy usages of clients, can be considered to provide the

required collection of reference locations. We assume that

the meter-readers visit a home to monitor its energy usage,

such as electricity, water, or gas. The meter-readers enter the

measured values into an app running on their smartphones.

The reading and entering is usually conducted in front of

or near the usage-registering instruments, which again are

most likely located inside the house or apartment. Thus, when

fingerprints are collected from a meter-reader’s smartphone,

they can be considered as being collected from the home

address stored in an external database of the energy company

the app is connected with. By using these addresses for label-

ing, the collected fingerprints can be stored in the address-

labeled fingerprint database, which provides an initial

radio map.
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In some countries, advanced measurement instru-

ments (AMIs) are used instead to measure energy usage such

as automatic meter readers. Human meter-readers are thus

not required, which is why a fingerprint collecting routine

should be embedded into the AMI to ensure the collection of

address-based reference locations.

2) SOURCE OF REFERENCE LOCATIONS IN

COMMERCIAL AREAS

While an energy usage app can be used for the collection

of reference locations in residential building areas, a mobile

payment app is more suitable for collecting reference loca-

tions in commercial areas. When a person enters a shop, e.g.,

in a shopping mall, and buys a product there, the payment is

made at the cashier, which is most likely located within the

shop. Furthermore, nowadays, payments are often conducted

withmobile payment apps, which leads to the assumption that

fingerprints gathered through a smartphone during a payment

can be considered to be collected at the shop. Therefore,

it is possible to use the address associated with the given

shop, which will be located in an external database of the

payment app company, for address-labeling of the collected

fingerprints. These can then be stored in the address-labeled

fingerprint database for the initial radio map. This method is

not limited to shops as it can be utilized in any place where

payments are conducted and an address is available, e.g.,

restaurants and bars.

As stated above, reference locations from payment apps

are collected at the cashier desk in shops. However, the exact

location of the payment desk in a shop is not always known,

i.e., some shops have their payment desks in the front, some

are located at the center, etc. Hence, assigning the reference

locations in these environments to fixed locations is very

inaccurate as payment desk location can vary between shops.

Therefore, a location optimization algorithm is required to

overcome this significant issue for efficient location-labeling.

3) SOURCE OF REFERENCE LOCATIONS

IN PUBLIC AREAS

Both energy usage-registering apps and mobile payment apps

can also be used for the collection of reference locations

in public buildings such as airport terminals, subway sta-

tions, exhibition centers, universities, etc. However, in these

environments, only a limited number of reference locations

can be collected by such apps because the density of shops

or energy usage gauging instruments is rather low in pub-

lic buildings. Therefore, collecting GPS signals along with

Wi-Fi signals can provide a rough clue of the reference

locations. Additionally, by using the energy usage-registering

and payment apps, the address of each place can be stored

in the address-labeled fingerprint database. This should be

seen as a building-sharp identification to distinguish different

buildings from each other and to create an initial, limited

starting point for constructing a radio map. However, refer-

ence locations do not play a major role in radio map con-

struction in public areas due to the limited number of possible

reference points, which is why an unsupervised method is

used to construct the radio maps.

4) SIMULTANEOUS CALIBRATION AND ADDRESS

MAPPING (SCAM)

The previous sections showed that when a mobile application

is capable of collecting an address and fingerprints simultane-

ously, it can provide an opportunity for mapping the collected

fingerprints into an address to create reference locations.

We call the mapping of a fingerprint into an address collected

from a mobile application a simultaneous calibration and

address mapping (SCAM) in this paper. In addition, if a

mobile application allows SCAM, we call it a SCAM transac-

tion. Although no SCAM transactions are currently available,

many mobile applications can be transformed into SCAM

transactions by simply embedding a fingerprint collecting

routine. This applies not only to the previously mentioned

applications but to any application that can collect an address

and fingerprints simultaneously, such as online shopping apps

and delivery service apps.

C. RADIO MAP CONSTRUCTION

After deriving reference locations from the aforementioned

sources, the next step is to construct the radio maps for each

building subarea category.

1) RADIO MAP CONSTRUCTION FOR RESIDENTIAL AREAS

In an ideal scenario, energy usage-registering apps could

collect reference locations at most homes in residential areas

in collaboration with energy meter-readers. Note that in some

countries, meter-readers must visit each home periodically to

measure its energy usage or to check for leakage of gas, water,

or electricity, which can be seen as updates on the reference

locations. In a case where a remote sensor measures energy

usage, we assume that a module to collect reference locations

has already been embedded into the sensor.

Radio maps for residential areas can be constructed using

an interpolation technique for the reference locations because

homes are located separately and at regular distances from

each other, especially in high-rise apartments. Outdoor as

well as indoor radio maps can be constructed by interpolating

the collected reference locations. Outdoor radio map con-

struction is somewhat different from its indoor counterpart

because it must be constructed on 2D ground from reference

locations collected in 3D space. For indoor radio map con-

struction, however, the reference locations are expected to be

collected at each floor of the building. High-rise apartment

buildings are a classic example in such an approach. In South

Korea, this kind of housing accounts for the largest share

among housing styles, with a total share of 60.6% of all

housing units in 2017 [19]. Therefore, especially for this

kind of residential building (but also for relatively dense

detached house areas), interpolation techniques can be con-

sidered as a fast and sufficiently efficient radio map algorithm

strategy [20].
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FIGURE 2. Radio map construction process from HMM modeling.

A wide range of interpolation techniques are available,

such as linear, inverse distance weighting (IDW), and Krig-

ing interpolation [21], [22]. However, this study utilizes the

IDW interpolation method because it considers all reference

locations when creating interpolated values. Another major

benefit of using IDW is that it explicitly assigns more weight

to the reference points that are closer to the point being pre-

dicted. This means that IDWworks under the assumption that

the reference points close to each other are more dependent

on each other compared to the points that are far away. This

assumption is very beneficial for predicting geolocation coor-

dinates. The collected sample fingerprints serve as reference

point inputs for IDW, which then can predict an interpolated

value at any point in the environment.

Meanwhile, there are several approaches available to

assign a precise location to an address-labeled fingerprint.

One is to set the location to the center of a building because

the exact location at which wireless signals are scanned is

usually unknown. This would be the most inaccurate way and

should be avoided for large buildings. Another approach is

to set the collected location to the installed location of the

energy usage gauge, which is specified in the CAD files of

energy pipelines maintained by energy companies. Addition-

ally, the floor and room number are often given in the address,

which can be used in combination with floor plans to estimate

the location more accurately.

2) RADIO MAP CONSTRUCTION FOR

COMMERCIAL AREAS

In commercial areas, reference locations can be collected

from almost every shop through the aforementioned collab-

oration of mobile payment apps. If a fingerprint collection

module is embedded in a mobile payment app and it derives

fingerprints during a payment session in a shop, these col-

lected fingerprints can be labeled with the shop’s address and

stored in the databases of the payment companies. By con-

tinuing this procedure for all shops in the commercial area

of a building, the whole environment can be covered with

fingerprints.

However, commercial and residential areas of a building

differ in the use of navigation space, particularly in hallways.

People stay longer in hallways for shopping or resting in

commercial areas than they do in residential areas, which is

why the positioning service in hallways is critical in these

environments and so is the construction of radio maps in

hallways. Thus, owing to the higher number of available

reference locations and the demand for more accurate posi-

tioning, a semi-supervised location-labeling method is used

for the construction of radio maps in commercial areas. It is

proposed that the semi-supervised location-labeling method

uses address-unlabeled crowdsourced fingerprints collected

from various location-based service applications as its train-

ing data.

Nevertheless, the semi-supervised location-labeling

method should be adaptive to use the address-labeled fin-

gerprints for its reference locations. This is because the

exact locations from which fingerprints have been collected

in a shop are unknown, with only the address information

obtained through the payment. Cashier desks can be located

anywhere within a shop’s space. When a shop is large,

serious performance degradation of the learning may be seen.

To address this challenge, we use the method proposed in

our previous paper [23]. This method is an efficient semi-

supervised location-labelingmethod for fingerprints that uses

address-labeled fingerprints for its reference locations. In this

method, the reference locations can be associated with many

points in the shops they have been collected from. A summary

of the method is given below.

Fig. 2 shows the process of constructing radio maps with

the reference locations and crowdsourced fingerprints. Ini-

tially, only the locations of fingerprints collected by cashiers

inside shops are known, and they are represented with

red dots in the leftmost block. The inner structure of a

building is modeled by the topology of a hidden Markov

model (HMM) (step 1). More specifically, a floorplan image

is converted into the HMM topology, where a location

is represented as a state and the geographic accessibility

between locations is represented as transitions. The finger-

print sequences are considered as observation sequences from

the HMM. Voronoi-tessellation and Lloyd’s relaxation are

used to divide the area equally. The area is partitioned into

coarsely grained (10×10m2) and fine-grained (4×4m2) areas.
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However, as explained earlier, in commercial areas, local-

ization in hallways is important because of their frequent use.

An initial radio map that covers hallways is constructed in the

next step by applying interpolation on the reference locations

(step 2).

It is important to determine the optimal locations of cashier

desks inside the shops instead of assuming random posi-

tioning for better accuracy. The genetic algorithm is used to

find an optimal placement of labeled fingerprint sequences;

it starts its process from the creation of a chromosome and

a population. First, a random position is selected, which is

known as a chromosome, and each loss value is calculated.

In this way, many radio maps are constructed in a single

generation. For the next generation, the genetic algorithm

references the location with the smallest loss value by the

crossovermethod. The next time, the locationswith the small-

est loss values are generated, and the accuracy continues to

improve. Once the locations of address-labeled fingerprints,

which form the chromosome of the genetic algorithm, are set

at each shop, a radio map is constructed through interpolation

using the location-fixed fingerprints. IDW is used for the

generation of radio maps because of its simplicity [21]. The

initial radio map of hallways is represented by green dots

in Fig. 2(step 2).

After constructing the initial radio map, the method uti-

lizes the numerous available unlabeled crowdsourced finger-

prints to increase the overall accuracy (step 3). This step,

where the unlabeled fingerprints are placed at the appropriate

locations, is the most critical step in the whole procedure.

As the positioning services provide the unlabeled data, they

are usually in sequential form. These sequential fingerprints

are labeled using the HMM with the forward backward algo-

rithm. The forward backward algorithm calculates the pos-

terior marginals of the most likely state at a particular time.

The main reason for using the forward backward algorithm

is that we cannot model all states, such as the transitions

between floors, restrooms, and shops from inside. The large

(10 × 10m2) modeling is used for the labeling of crowd-

sourced fingerprints because it is computationally less costly.

Consequently, the sequences of unlabeled fingerprints are

placed as shown by orange, yellow, and blue lines in Fig. 2

(step 3). However, it is not possible to provide good accu-

racy with such large modeling, so (4 × 4m2) is utilized for

positioning.

To avoid the limitation due to the volume of available

training data, an objective function is defined to determine

the quality of the configurations of reference locations. This

loss function analyzes the distance of consecutively scanned

fingerprints for the evaluation. The genetic algorithm repeats

from step 2 to step 4, changing its initial population until it

finds an optimal placement (step 5). A complete final radio

map is obtained by the end of this procedure.

3) RADIO MAP CONSTRUCTION FOR PUBLIC BUILDINGS

A large number of reference locations can be collected from

buildings in residential and commercial areas, whereas only a

limited number of reference locations can be collected in pub-

lic buildings via collaboration with payment apps or energy

usage measuring apps. Therefore, radio map construction for

public buildings with the crowdsourced fingerprints is much

more challenging.

An unsupervised location-labeling method should be used

for the construction of radiomaps for public buildings. There-

fore, an unsupervised learning method titled ‘‘Unsupervised

Calibration based on a Memetic Algorithm (UCMA),’’ is uti-

lized here. This algorithm estimates the collected locations of

crowdsourced fingerprints without reference locations [17].

In UCMA, a global-local hybrid optimization algorithm esti-

mates the placement of the fingerprint sequences that best fits

into the topology of a building. The local optimization in the

hybrid optimization algorithm adopts the strategy of unsu-

pervised HMM training, which estimates the model param-

eters of a HMM using an expectation-maximization (EM)

algorithm given unlabeled data [25]. A likelihood function∫
Pr(U ,P|λ) is used simultaneously to evaluate a set of

estimated model parameters and for placement of unlabeled

fingerprint sequences, where U is a fingerprint sequence set,

P is the placement, and λ is a set of estimated HMM model

parameters.

λ =< π,A,B >

where π is an initial probability distribution on the location-

states, A is a transition probability matrix that represents

how a person moves in a building with the stairs, eleva-

tors, and walls, and B is the set of emission probabilities,

which provide the likelihood of an observation at a specific

point.

EM-style algorithms for HMM training take a local search

approach [24]. Hence, these methods often get stuck in

local optima, especially when dealing with a complex prob-

lem like the location-labeling of fingerprints. To deal with

this problem, a good initial guess of HMM parameters is

required as a starting point of the training. We can gen-

erate an initial estimate using address-labeled fingerprints.

The location of each address-labeled fingerprint is con-

verted into a specific point in the corresponding shop. The

initial estimate may not be a good choice in some situa-

tions, especially when the sizes of shops are not sufficiently

small. A population-based evolutionary search algorithm is

responsible for finding a reasonable initial estimate. This so-

called global search algorithm iteratively improves the initial

guesses and makes improvements to the local optimization.

The global search and local optimization algorithms are inte-

grated into a memetic algorithm, which is an evolutionary

approach, providing an efficient way to solve optimization

problems through the interaction between global and local

optimization.

IV. EXPERIMENTS AND RESULTS

We constructed radio maps using the proposed techniques

to evaluate the effectiveness of the proposed radio map con-

struction method.
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TABLE 1. Statistics of learning and testing data in residential areas.

A. RESIDENTIAL AREAS

Radio maps for residential areas were constructed in the cities

of Seoul and Daejeon. Although mobile payments are effec-

tive in collecting reference locations in commercial areas,

they cannot be used in residential areas because only few

shops are located in residential areas. The reference locations

in residential areas can be collected from the smartphones of

meter-readers who are supposed to visit each home.

Over one hundred energy usage meter-readers who visit

each home to check its energy usage collected the training

samples for 3 months. We validated the effectiveness of

collecting address-labeled fingerprints using another SCAM

transaction, energy usage measurement, in one residential

area in Seoul and two in Daejeon, Korea. Insa-dong, Seoul

is mostly occupied by traditional single- or low-story houses.

The area features narrow meandering roads connecting

small houses. Jeonmin-dong, Daejeon is a residential area

with four-story small-scale group houses with well-planned

grid structure roads. The houses are located in a complex

region and there exist medium-scale parking areas between

the buildings.

Training data were collected by collectors who visited

each home in the study areas. Approximately 19,000 Wi-Fi

fingerprints were collected from approximately 1,000 points

in total. The testing data, including Google Wi-Fi positioning

system (WPS) logs and Wi-Fi logs, were also separately col-

lected for the evaluation. The training samples were mostly

collected indoors, whereas the testing data were collected

both indoors and outdoors. This explains why the average

number of access points of the test data was slightly larger

than that of the learning data.

The radio maps were constructed without variation of the

locations of address-labeled fingerprints at each home. This

is because the primary purpose of the experiment was to test

whether each home could be detected with the radio map

constructed by the address-labeled fingerprints and address-

unknown crowdsourced fingerprints. Thus, when the predic-

tion was correctly, the error distance was set to zero in the

evaluation.

The positioning accuracy was measured using K nearest

neighbour(KNN) with K = 3 and was approximately 5-10 m

on average in Daejeon and Seoul. The accuracy was approx-

imately 5 m when the collection rate was 100%, whereas

the accuracy was approximately 10 m when the collection

rate was 50%. A collection rate of 100% means that the

training samples were collected from every home, whereas

a collection rate of 50%means that the training samples were

collected from every other home.

The ground truths of the testing data were confirmed

by manually marking the testing points on physical maps.

Table 1 summarizes the collected learning and testing data.

The accuracy was greatly improved compared to that of

Google

WPS, whose accuracy was approximately 20-40 m both

indoors and outdoors. This improved accuracy allows us

to locate a particular house in an apartment building or a

detached house area with over 90% probability using a finger-

print obtained at the house. Fig.3 shows that the positioning

accuracy improved with incremental increases in the number

of collected fingerprints in each area.

B. COMMERCIAL AREAS

Radio maps for commercial areas were constructed for three

landmark buildings in Seoul: COEX, Lotte World, and Times

Square. COEX is Asia’s largest underground shopping mall

and contains three five-star hotels, one 55-story and one

41-story premier office tower, a large department store, a sub-

way station, and more. Lotte World contains underground

shopping malls and an indoor amusement park in the tallest

building in Asia with 123 stories. Approximately 2000 APs,

with most of their locations unknown, had already been

installed in each landmark building. Times Square is one

of the biggest indoor shopping malls in Korea and contains

a large-scale discount store, a large department store, and

a CGV Starium. The COEX Mall is located in basement

B1F and has an area of 630 × 300m. Lotte World Mall

and Times Square Mall are both located on the first floor

1F and they have areas of 400 × 180m and 320 × 1800m,

respectively.

A mobile wallet application was used for the collection of

address-labeled fingerprints for six months. The app, which

already has the address information of shops, was down-

loaded by more than one million users. Approximately five

thousand fingerprints were filtered from the crowdsourced

fingerprints for the training at each building. The testing

samples were collected manually at the buildings, confirming
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FIGURE 3. Average error distances vs. Google WPS.

TABLE 2. Summary of data collected from the COEX, Lotte world, and
times square buildings.

their ground truth locations. Also, the reference locations

were collected at the shops in the test areas simulating offline

mobile payment. Collectors visited shops in the test areas to

collect reference locations. The Samsung S6 was used for the

collection of the testing samples and reference locations.

Table 2 summarizes the training and testing samples

collected for evaluation at the COEX, Lotte World, and

Times Square buildings. KNN was used with K = 3

to measure the accuracy of radio maps in commercial

areas. The accuracies measured on radio maps for the

COEX, Lotte World, Times Square buildings were 6.8 m,

7.2 m, and 7.1 m, respectively. The accuracies improved

from approximately 10 m to 7 m with increasing training

samples as shown in Fig. 4. The radio maps were con-

structed with the reference locations and unlabeled finger-

prints collected from shops and hallways. The radio maps

were constructed by the proposed semi-supervised location-

labeling method. The effect of adjusting reference locations

at each shop for the method was apparent. The adjust-

ment of reference location positions improved the results by

approximately 30%.

FIGURE 4. Accuracy improvement with increasing training samples at the
COEX, Lotte world, and times square buildings.

C. PUBLIC AREAS

The efficiency of the proposed unlabeled location-labeling

method was evaluated under various scenarios. The exper-

iments were conducted in a large-scale office building

at the Korea Advanced Institute of Science and Technol-

ogy‘(KAIST), Daejeon, Korea, called the N1 testbed, and the

KI building, in Shenzhen, Guangdong, China. Both energy

usage measuring apps and payment apps were used to collect

the Wi-Fi dataset with reference locations, and a mobile

crowdsourcing app was used to collect the unlabeled data.

N1 testbed building has an area of 75 m ×22 m, and the

KI building has an area of 120 m × 35 m. The N1 building

and KI building each have two staircases and four elevators.

The length and width of corridors in N1 are 194 m and 3 m,

respectively, and those in the KI building are 291m and 6.5m,

respectively.

Unsupervised learning is possible only with a sufficient

number of training samples: approximately 5,000 training

samples in this case. In addition, the learning has a high

computational time complexity. The time complexity is lin-

early proportional to the number of samples. Other factors are

the number of generations and the segmental K-means (SK)

local optimization algorithm. An advantage of using SK local
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FIGURE 5. Effect of changing the amount of training data on supervised
and unsupervised learning in N1.

optimization is that it does require any data reduction pro-

cedure as it can effectively handle innumerable RSS values

through a pre-processed distance matrix. Another important

feature of UCMA is the learning convergence. Some param-

eters, such as number of generations and population size, can

affect the convergence process, and both of them were set to

100 via a conventional parameter setting approach. It took

approximately one hour for a PC to construct the radio map

on testbed N1. The PC used for the implementation had 8 GB

of memory and a 3.40 GHz processor, and all implementation

was done in Java.

Evaluation in public areas was done using KNN with

K = 1. The positioning accuracy measured on the N1 testbed

by UCMA was approximately 4-5 m as shown in Fig. 5.

Although the radio map was constructed by the unsuper-

vised location-labeling method, the positioning accuracy was

comparable to the accuracy of 3-4 m achieved by manual

calibration.

The positioning accuracy achieved in the KI building was

9-12 m. There are strong reasons why UCMA could not give

good accuracy in the KI building compared to the N1 testbed.

The KI building size is much larger than the N1 testbed

size, and the width of corridors in the KI building is much

higher, which results in poor accuracy. In addition, the Wi-Fi

dataset collected in the KI building for the training of UCMA

was not sufficient for the convergence of UCMA learning.

Therefore, the KI AP environment is not as good as that of

the KAIST N1 building. The AP environment was not strong

in the test area of UCMA, which is a valid reason for this

accuracy. Table 3 provides a comparison of UCMA results in

the N1 testbed and KI building.

The problems raised in the KI building can be solved

by extending the UCMA so that it can utilize stair

and elevator reference locations whenever they are avail-

able. The original UCMA is still necessary because we

cannot expect all buildings to provide their stair and ele-

vator information to fingerprints collected in the build-

ings. However, if we want to make radio maps using

only Wi-Fi signals with unsupervised learning, sufficient

data and the presence of a reasonable AP environment are

mandatory.

TABLE 3. Comparison of UCMA evaluations for the KAIST N1 testbed and
the KI building.

V. DISCUSSION

The experiments conducted on different building structures

proved that the proposed method can be used to construct

radio maps of most buildings in cities without the need for

manual calibration. This research also suggests the most suit-

able crowdsourcing methods for each area, and the datasets

for each of the three area types were collected through the

proposed crowdsourcing techniques. The achieved accuracy

in all three area types proves that a global indoor localization

service can be provided using only crowdsourced data.

The average error distance in residential areas was 5-10 m

and was compared with Google indoor and outdoor WPS.

The accuracy of Google WPS, especially indoors, was insuf-

ficient, as opposed to our proposed method, which gave suf-

ficient accuracy. The proposed method could identify homes

individually in multi-story apartment buildings. The selected

buildings for evaluation in commercial areas were chosen

with great care as all three of them provide distinct archi-

tectures and scenarios. In all three commercial buildings,

the width of hallways is 15 m and the average accuracy

achieved by the proposed method is 6-7 m, which is appro-

priate. UCMA was proposed for public areas because it is

not feasible to collect reference locations in public buildings

through crowdsourcing. This is why only a small number of

reference locations were collected in public areas by using

energy usage measuring and payment apps; hence, we still

call it unsupervised learning because the amount of labeled

data was ignorable and training of UCMA was done solely

with unlabeled data. However, one problem with the unsu-

pervised approach is that it is time consuming; however, this

approach uses only an unlabeled Wi-Fi dataset and still gives

adequate results in buildings like the N1 testbed.
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In Section 2.3, previous methods for reducing the calibra-

tion effort in the indoor positioning field were discussed, but

thesemethods focus only on one type of building architecture.

This work is distinguished from other works because it pro-

vides a precise indoor positioning service with crowdsourced

fingerprints in residential areas, commercial areas, and public

areas. This paper suggests the most suitable approaches to

constructing radio maps for three types of areas in a city using

only crowdsourced data. Nevertheless, unlike the GPS, which

has matured, the global indoor positioning system (GIPS) is

still in its infancy. SCAM and the proposed location-labeling

methods are opening a new horizon for the GIPS, giving new

vitality to discarded fingerprints. The proposed methodology

provides the potential of constructing radio maps at a city or

even at a country level.

In fact, the areas in a city can be categorized into three rep-

resentative areas: residential, commercial, and public. How-

ever, not all buildings in a city can be covered. The proposed

method does not cover the buildings that fall into a combina-

tion of areas. In addition, in this study, we did not focus on

constructing outdoor radio maps.

Although the proposed method’s effectiveness has been

proved through many experiments, the cooperation of energy

and payment companies is indispensable in accomplishing

this goal. It has also been confirmed that the precision

of radio maps can be further improved by the proposed

location-labeling method utilizing crowdsourced fingerprints

and address-labeled fingerprints collected by SCAM. The

method requires indoor space modeling based on indoor

maps, which are not available yet for many buildings. There-

fore, the method can only be used for buildings whose indoor

maps are available. Fortunately, the number of buildings

whose indoor maps are available on the Internet is currently

rapidly growing.

VI. CONCLUSION

City radio maps provide the basis for a citywide indoor

positioning service. Crowdsourcing of fingerprints and

location-labeling of crowdsourced fingerprints are required

to construct a city radio map without manual calibrations.

It transpired that a city radio map could be constructed more

effectively by applying appropriate radio map construction

techniques depending on the category of buildings.

In residential areas, an energy usage-registering app is a

good means of collecting reference locations. An interpola-

tion technique allows us to construct amore precise radiomap

with the reference locations. In commercial areas, a mobile

payment app is a good way to collect reference locations.

A semi-supervised location-labeling method can be used to

construct radio maps covering hallways. Despite only being

able to collect a limited number of reference locations in

public buildings, radio maps can still be constructed for pub-

lic buildings by extending the unsupervised location-labeling

method.

This work provides a precise indoor positioning service

with crowdsourced fingerprints for all areas. An accuracy

of 10 m was achieved in four residential areas, which is

acceptable because homes could be located on the con-

structed radio maps. The accuracy of 6-7 m achieved by

the proposed method at the three landmark buildings was

acceptable because the widths of the hallways of the buildings

were approximately 15 m on average. The accuracy of 4-5 m

achieved in a university building was also sufficient.

If SCAM transaction applications become popular and

have many users, a huge number of address and fingerprint

pairs can be collected in a short time span without any

additional costs. Eventually, the mass of collected address

and fingerprint pairs will be an invaluable source of build-

ing address-based radio maps for most buildings in a city,

a nation, or all over the world.

In this paper, energy usage-registering apps and payment

apps were proposed to collect data for residential and com-

mercial areas, respectively. In this era of smart systems

and technology, the usage of payment apps is rising and

will increase further in the future. However, the system-

level problems, such as power consumption and security are

outside the scope of this study. This paper emphasizes and

proposes revolutionary ideas for integrating new apps in the

field of crowdsourcing of mobile signals. Separate research is

required to investigate these details. After proving the practi-

cality of these apps in city radiomap construction, the system-

level issues will be explored in our next study. Our proposed

method constructs radio maps using only anonymous data.

Thus, privacy is not a matter.
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