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Abstract

The international standard CityGML is both a data model and an exchange format to store digital 3D models of cities.

While the data model is used by several cities, companies, and governments, in this paper we argue that its

XML-based exchange format has several drawbacks. These drawbacks mean that it is difficult for developers to

implement parsers for CityGML, and that practitioners have, as a consequence, to convert their data to other formats if

they want to exchange them with others. We present CityJSON, a new JSON-based exchange format for the CityGML

data model (version 2.0.0). CityJSON was designed with programmers in mind, so that software and APIs supporting it

can be quickly built. It was also designed to be compact (a compression factor of around six with real-world datasets),

and to be friendly for web and mobile development. We argue that it is considerably easier to use than the CityGML

format, both for reading and for creating datasets. We discuss in this paper the main features of CityJSON, briefly

present the different software packages to parse/view/edit/create files (including one to automatically convert

between the JSON and GML encodings), analyse how real-world datasets compare to those of CityGML, and we also

introduce Extensions, which allow us to extend the core data model in a documented manner.
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Introduction
CityGML is an open data model and exchange format to

store digital 3D models of cities and landscapes, and it is

standardised by the Open Geospatial Consortium [22]. It

defines ways to describe most of the common 3D objects

found in cities (such as buildings, roads, rivers, bridges,

vegetation and city furniture) and the (hierarchical) rela-

tionships between them. It also defines different levels of

detail (LoDs) for the 3D objects, allowing us to represent

3D city objects for different applications and purposes [3].

As it can be observed from the CityGML specifica-

tions and the related scientific literature (for instance,

among many, [5, 8, 11, 14, 15]), the vast majority of the

efforts have been spent on developing the concepts and

the data model. In our opinion, very little attention has

been paid to deriving a usable exchange format. Indeed, as

we further explain in the paper, the only encoding that is

standardised and supported by the OGC, an XML/GML-

based one [21], is verbose, hierarchical, complex, and not

adapted to the web. We believe these drawbacks hinder
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the use of CityGML in practice, which can be observed by:

(1) the low number of software packages supporting full

read/write/edit capabilities for CityGML files; and (2) the

relatively low number of datasets stored in CityGML files.

We present in this paper CityJSON (version 1.0.0), a

JSON1 encoding for the CityGML 2.0.0 data model. JSON

is, like GML, a text-based data exchange format that can

be read both by humans and machines. It was chosen

as an alternative encoding to GML for several reasons.

First, and most importantly, JSON dominates the web:

nowadays if two applications need to exchange data they

will most likely use JSON (over XML). According to [25],

of the ten most popular APIs on the web, only one will

expose its data in XML, the others all use JSON. Sec-

ond, JSON is predominantly favoured by developers (on

Stack Overflow it is by far the most discussed exchange

format [25]) whichmeans that more libraries and software

will support it, and these will most likely be maintained.

Finally, JSON is based on two data structures that are

available in virtually every programming language (more

details below), and we can thus structure a file in the

way that a developer would build and index in memory

the objects (developers then do not need to use external
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libraries, all features and geometries are already indexed,

and ready to use).

It should be observed that, at this moment, CityJSON is

not an official OGC standard, and there are no concrete

plans for it to become one. It was developed to simplify the

tasks of developers and thus to foster the use of the official

data model in practice, but with a usable and simple-to-

use encoding.

CityJSON follows the philosophy of another (non-

standardised) encoding of CityGML: 3DCityDB [27]. That

is, to be stored efficiently and allow practitioners to

access features and their geometries easily, the deep hier-

archies of the CityGML data model are removed and

replaced by a ‘flat’ representation. Furthermore, there is

one and only one way to represent the semantics and

the geometries of a given feature, and some more addi-

tional restrictions are applied. The encoding of CityJSON

allows us to bypass most of the drawbacks of the GML

encoding: CityJSON files from real-world datasets are

on average 6× more compact (we demonstrate this with

real-world examples), and their structure can be parsed

and manipulated easily by many programming languages,

including JavaScript. This can be seen in the easiness

with which CityJSON software has been built so far

(see section below).

CityJSON also supports extensions to the core data

model of CityGML for specific applications and use-cases;

in the CityGML world, these are called ADEs (application

domain extensions) and several exist [6]. Our Extensions

are defined as simple JSON files, and support the addi-

tion of new feature types, as well as the addition of new

attributes for features and for datasets.

CityGML: a data model and an encoding
To represent a city, CityGML 2.0.0 [11, 22]2 recur-

sively decomposes it into semantic objects. It defines

the classes most commonly found in an urban or

a regional context, and the hierarchical relationships

between them (e.g. a building is composed of parts, which

are formed of walls, which have windows). Figure 1 shows

how a given building, containing two parts, would be

decomposed semantically and geometrically; notice that

both decompositions should ideally be coherent [24].

The geometry of the objects is realised with a subset

of the geometry definitions in ISO 191073 [13], which

also allows aggregations of geometries (Multi/Composite

geometries): a single building can for instance be mod-

elled with a CompositeSolid, such as that in Fig. 1.

The CityGML semantic classes are structured into sev-

eral modules, e.g. Building, Land Use, Water Bodies, or

Transportation.

One of the main characteristics of CityGML is that it

supports five levels of detail (LoDs) for each of the classes.

This allows practitioners to use appropriate representa-

tions of a city depending on the application.

It is possible to extend the list of classes with new

ones, and also to define new attributes. The mechanism

to accomplish this is called application domain exten-

sion (ADE), and involves creating new XML schemas that

inherit from the CityGML XML schemas.

A CityGML file, encoded with XML, is structured in

a hierarchy that ultimately reaches down to individual

objects and their attributes. These objects have a geome-

try that is described using GML, and it is possible to attach

textures and/or material to each of the surfaces.

Main criticism of CityGML as an encoding

CityGML files are known to be very difficult to parse and

to extract information from. We briefly describe the main

issues, at three levels: XML, GML, and CityGML.

XML. Asmentioned in the Introduction, when JSON suf-

fices, it is usually preferred by developers over XML. This

preference is mainly because JSON is far simpler than

XML, which reflects the fact that JSON is a data format

while XML is a markup language, and it is thus much eas-

ier to write software for JSON than XML. Some common

arguments in favour of JSON include its smaller file size,

greater ease of reading (by humans), greater ease of pars-

ing (by software), and the general difficulty of dealing with

malformed XML (which is common). JSON is also based

on simple data types and data structures that are available

Fig. 1 A building is semantically decomposed into different objects, and each objects is defined with geometry
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in almost all programming languages, and thus mapping

the content of a file to a data structure that can be eas-

ily queried is trivial. In fact, many programming languages

treat JSON as a near-native type and can read and write

to it (ie serialisation and deserialisation) without the need

of external libraries. By contrast, XML usually needs to be

parsed in a process that requires the use of libraries and

which creates a hierarchy of more complex objects, and

this structure still needs to be traversed according to the

logic of CityGML.

GML. While GML allows us to represent geometries, the

fact that there are many different ways to store the same

geometry is a big handicap in practice. A vivid example is

shown by [23]: a simple square can be stored in at least 25

different variations in GML. The large number of possible

variations means that a developer needs to figure out all

possible variations for every geometry type and write code

to handle them appropriately. The variations also increase

with the dimensionality, so the storage of a solid would

have even more variations (because polygons are used as

building blocks). Apart from the large efforts required to

find and handle all possible configurations, this is a sit-

uation that causes differences in how different software

packages handle different datasets.

CityGML. CityGML builds upon XML and GML, and so

it inherits most of the advantages and disadvantages of

these formats, but some specific features of CityGML are

also problematic. First, one thing to notice is that a city

can be large and as a consequence CityGML files tend to

be massive (1GB+ are common). As this means that they

often do not fit in the memory of a computer, CityGML

software sometimes needs to do more complex process-

ing than it would be required otherwise (e.g. dynamically

reading from and writing to a database). Second, as it

can be seen in Fig. 1, the hierarchy for a single simple

building can become rather deep, which translates into

many classes which are nested hierarchically in XML. This

makes files very difficult to read by a person (which nul-

lifies a big advantage of XML), and the many different

classes might need specialised code to be written for each.

Third, CityGML makes extensive use of XLinks (XML

Linking Language). While these are in theory powerful,

in practice the links need to be resolved, which is prob-

lematic, especially for large files, or when references are

external URIs (i.e. pointing to objects not in the file). Sev-

eral XML libraries and software do not resolve XLinks.

Furthermore, many of the key features of CityGML are

based on XLinks, e.g. they are necessary for semantic

surfaces.

The following are also problematic:

1 semantic surfaces can be stored in many different

ways (similar to GML versions of a polygon), a trait

that is often seen in practice.

2 Implicit Geometries make extensive use of XLinks,
and one issue is that a given template feature can be

located anywhere in a file. It is thus the burden of the

developer to read the whole file, index all potential

features, and then resolve them.

3 because GML is used, the CRS of each object in a file

can be defined. This means that all the objects in a file

could in theory be of a different CRS. Even a building

could have its windows defined in a different CRS.

This means that a standard-compliant CityGML

software needs to contain projection libraries.

4 use of GML means that all 3D geometries are

according to Simple Features, which means no

topology is stored.

The consequences of the above is that software sup-

port for CityGML is lacking. As a telltale example, there

are still no full JavaScript parsers for CityGML (which are

necessary in order to exchange and process files on the

web), and thus the efficient exchange and processing of

CityGMLmodels on the web is very difficult, if not impos-

sible. We emphasise the word “full” here, given that there

are existing JavaScript parsers but these are rather limited,

as they are usually hard-coded for specific files or files

written by a specific program.When used with other files,

they might therefore ignore some parts of a file or simply

crash, because a particular CityGML representation has

not been accounted for.

CityJSON
The current version of CityJSON implements most of the

CityGML data model, and all of the CityGML modules

have been mapped. The parts that were not implemented

are based on the fact that they would have unnecessarily

complicated the encoding, and that they are not used in

practice (with the files that are publicly available at least).

We explain in the following the main engineering

choices that were made, and we also describe where and

how the data model differs from that of CityGML. The full

specifications are available online at https://cityjson.org/

specs/.

The JSON data format defines simple data types for

boolean values, numbers, and strings, as well as two data

structures:

1 An ordered list of elements, which are separated by

commas and enclosed with square brackets, i.e. [].
We refer to it as an “array”.

2 An object consisting of key/value pairs (key is often

named “property”), which are in the form key:
value and are enclosed with curly brackets, i.e. {}.

https://cityjson.org/specs/
https://cityjson.org/specs/
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We refer to it as a “dictionary”. It is often called a

map, a hash table, an associative array, or in the

context of JSON simply as an object.

A JSON object can be any combination and nesting of

the above elements.

A CityJSON file represents a given geographical area;

the file contains one JSON object of type "CityJSON"
and would typically contain the following JSON proper-

ties:

1 {
2 "type": "CityJSON",
3 "version": "1.0",
4 "CityObjects": {},
5 "vertices": [],
6 "appearance": {}
7 }

City objects are “flattened out”

The property "CityObjects" contains a dictionary

where the properties are the identifiers of the city

objects (IDs). The schema of CityGML has been flat-

tened out and all hierarchies removed. Figure 2 shows

the city objects that are supported in CityJSON, both 1st-

and 2nd-level city objects are stored in the dictionary

"CityObjects".
As an example, for a building containing 2 parts, the 3

objects will be represented at the same level and linked by

their IDs.

1 "CityObjects": {
2 "id-1": {
3 "type": "Building",
4 "attributes": {...},
5 "children": ["id-2", "id-3"],
6 "geometry": [{...}]
7 },
8 "id-2": {
9 "type": "BuildingPart",

10 "parents": ["id-1"],
11 "geometry": [{...}]

12 ...
13 },
14 "id-3": {
15 "type": "BuildingPart",
16 "parents": ["id-1"],
17 "geometry": [{...}]
18 ...
19 }
20 }

Each city object can have a "parents" and/or a

"children" property, and this is how in the snippet the

building "id-1" is linked to its 2 parts. The fact that

a dictionary is used means that developers have direct

access to the city objects through their IDs (and also in

constant time if a hashmap is used to implement the

dictionary).

A city object can be of any of the types defined in

Fig. 2, and each of them must have the same structure,

and at a minimum contain a "geometry" property.

If attributes are to be stored, they have to be in the

"attributes" property. This simplifies the work of the

developer because there is a single point of entry for all

geometries and attributes, unlike with CityGML.

1 {
2 "type": "PlantCover",
3 "attributes": {
4 "averageHeight": 11.05,
5 "colour": "green"
6 },
7 "geometry": [{...}]
8 }

Geometry

CityJSON defines the same 3D geometric primitives used

in CityGML, with the same restrictions for linearity/pla-

narity. However, since they are rarely used in a 3D context,

Point and LineString only have their Multi* counterparts;

a single Point is a MultiPoint with only one object. When

a geometry is defined, it must contain a value for the LoD.

Fig. 2 The implemented CityJSON classes (same name as CityGML classes) are divided into 1st and 2nd levels
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In order to avoid ambiguities, we encourage the use of

the refined LoDs, as defined in [4], over the five standard

CityGML ones. City Object can have several LoDs, and

thus CityJSON, as is the case for CityGML, allows us to

store concurrently several LoDs for the same object.

1 {
2 "type": "MultiSurface",
3 "lod": 2.1,
4 "boundaries": [
5 [[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0, 1, 5,

4]]
6 ]
7 }

It should be noticed that CityJSON uses a different

approach from (City)GML to store the (x, y, z) coordinates

of geometric primitives. A geometric primitive does not

list all the coordinates of its vertices, rather the coordi-

nates of the vertices are stored in a separate array (the

"vertices" property of the CityJSON object), and geo-

metric primitives refer to the position of a vertex in that

array.

1 "vertices": [
2 [8623.234, 487111.009, 13.92],
3 [8829.456, 488115.134, 10.07],
4 [8554.508, 487229.995, 19.61],
5 ...
6 [8523.134, 487625.134, 2.03]
7 ]

The indexing mechanism of the format Wavefront OBJ4

is reused, because it has been used for many years, with

success, in the computer graphics community. There are

several advantages to this approach. First, the files can be

compressed: 3D vertices are often shared by several sur-

faces, and repeating them can be costly (especially if they

are very precise, often sub-millimetre is used). Second,

this increases the topological relationships that are explic-

itly stored in the file, and several operations can be sped up

and made more robust (e.g. are two buildings adjacent?).

Third, it is very easy to convert to a representation listing

all coordinates; the inverse is not true.

The geometry is based on an enumeration of the

vertices forming each ring of a surface, as follows. A

"MultiSurface" has an array containing surfaces,

where each surface is modelled by an array of arrays, the

first array being the exterior boundary of the surface, and

the others the interior boundaries. A "Solid" has an

array of shells, the first array being the exterior shell of

the solid, and the others being the interior shells; each

shell has an array of surfaces, modelled in the exact same

way as a "MultiSurface". Notice that unlike with

(City)GML, there is only one variation per geometry type,

which (greatly) simplifies the life of developers.

1 {
2 "type": "Solid",
3 "lod": 2.2,
4 "boundaries": [
5 [ [[0, 3, 2, 1, 22]], [[4, 12, 123, 5, 6,

7]], [[0, 1, 5, 4]],
6 [[1, 2, 6, 5]] ], //-- exterior shell

7 [ [[240, 243, 124]], [[244, 246, 724]], [[34,
414, 45]], [[111,

8 246, 5]] ] //-- interior shell
9 ]

10 }

Semantic surfaces

In one given city object (say a "Building"), several
surfaces can have the same semantics (think for instance

of a complex building that has been triangulated, there

can be many triangles for one given surface). Because of

this, a semantic surface, which is a pivotal concept in

CityGML, becomes a JSON object that is stored sepa-

rately from the geometry of a city object. By doing so, a

semantic surface object has to be declared only once, and

each of the surfaces used to represent it can point to it.

This is achieved by first declaring all the semantic surfaces

in a "surfaces" array, and then declaring an added

"values" array that links each surface to its correspond-

ing semantic surface using their respective positions in the

arrays.

1 {
2 "type": "Solid",
3 "lod": 2,
4 "boundaries": [
5 [ [[0,3,2,1,22]], [[4,5,6,7]], [[0,1,5,4]],

[[1,2,6,5]] ]
6 ],
7 "semantics": {
8 "surfaces" : [
9 { "type": "RoofSurface" },

10 {
11 "type": "WallSurface",
12 "paint": "blue"
13 },
14 { "type": "GroundSurface" }
15 ],
16 "values": [ [0, 1, 1, 2] ]
17 },
18 }

Geometry templates

CityGML’s Implicit Geometries, better known in com-

puter graphics as templates, are one method to compress

files since identical geometries (e.g. benches, lamp posts,

and trees), need only be defined once (and translations/

rotations/scaling are applied). In CityJSON, they are

implemented slightly differently than in CityGML: they

are stored at one specific location in the file, and each tem-

plate can be reused. In CityGML, one reuses the geometry

used for another city object, and thus there is no struc-

tured way to store them, and furthermore, one has to

search for them in the file (with XLinks) because they

can be located anywhere (the link could even point to an

external reference that needs to be resolved).

1 "geometry-templates": {
2 "templates": [
3 {
4 "type": "MultiSurface",
5 "lod": 2,
6 "boundaries": [
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7 [[0, 3, 2, 1]], [[4, 5, 6, 7]], [[0,
1, 5, 4]]

8 ]
9 }

10 ],
11 "vertices-templates": [...]
12 }

A given city object can have a geometry of type "Geom-

etryInstance" (instead of those defined above), which

defines the (x, y, z) location, a link to the geometry tem-

plate, and the transformation matrix.

1 {
2 "type": "SolitaryVegetationObject",
3 "geometry": [
4 {
5 "type": "GeometryInstance",
6 "template": 0,
7 "boundaries": [372]
8 "transformationMatrix": [
9 2.0, 0.0, 0.0, 0.0,

10 0.0, 2.0, 0.0, 0.0,
11 0.0, 0.0, 2.0, 0.0,
12 0.0, 0.0, 0.0, 1.0
13 ]
14 }
15 ]
16 }

Appearance

Both textures and materials are supported, and the same

mechanisms as CityGML are used for these. The mate-

rial is represented with the X3D specifications5, as is

the case for CityGML. For the texture, the COLLADA

specifications6 are reused, as is the case for CityGML.

Just as for the geometry templates, all material and

textures must be located at the same entry point in a

CityJSON file; this is in contrast to CityGML where they

can be located anywhere.

Schema validation

CityJSON uses schemas defined in JSON Schema7 to doc-

ument its data model and to validate whether a CityJSON

file respects the allowed structure and syntax. All the

city objects, their attributes, the allowed geometries, and

other constraints are defined in schemas that are openly

available at https://cityjson.org/schemas/.

It should be noticed that JSON Schemas are less flexi-

ble than XML Schemas, inheritance and namespaces are

for instance not supported. They nevertheless allow us

to document most of what is possible with XML, and

we have added extra validation functions to the software

cjio for the properties and constraints that cannot be

expressed with JSON Schemas, see the section about soft-

ware below for details. The extra constraints can be seen

as validating the internal consistency of a given CityJSON

file, and examples of these are:

• are the links between 1st- and 2nd-level city objects

consistent?

• are the arrays for the boundaries and the semantics

coherent? (i.e. same structure)
• are there duplicate IDs for city objects?
• are there duplicate or orphan vertices?
• are there vertex indices that do not exist?

CityGML support

CityJSON implements most of the data model, and all

the CityGML modules have been mapped to CityJSON

objects. However, for the sake of simplicity and efficiency,

some modules and features have been omitted and/or

simplified. If a module is supported, it does not mean that

there is a 1-to-1 mapping between the classes and features

in CityGML and CityJSON, but rather that it is possible

to represent the same information, but in a different man-

ner. CityJSON is thus conformant to a subset of CityGML,

although technically only CityGML files (encoded with

the XML format) can be conformant to the specifications

of CityGML [22, Clause 2 about Conformance].

The main features that are not supported are:

• The LoD4 of CityGML, which was mostly designed to

represent the interior of buildings (including details

and furniture), is not implemented. The main reason

is that this concept will be revamped completely in

the next CityGML version [19], and currently there

are virtually no datasets having LoD4 buildings.
• No support for arbitrary coordinate reference

systems (CRSs). Only an EPSG code8 can be used.
• All geometries in a given CityJSON object must use

the same CRS.
• In CityGML most objects can have an ID (usually

gml:id). That is, not only can one building have an

ID, but also each 3D primitive forming its geometry

can have an ID. In CityJSON, only city objects and

semantic surfaces can have IDs.

Compression of CityJSON files

To reduce the size of a file, it is possible to represent

the coordinates of the vertices with integer values, and

store the scale factor and the translation needed to obtain

the original coordinates (stored with floats/doubles). If

compressed, a CityJSON file contains a "transform"
property:

1 "transform": {
2 "scale": [0.01, 0.01, 0.01],
3 "translate": [4424648.79, 5482614.69, 310.19]
4 }

and the real-world coordinates of a given vertex v are

obtained easily, for example for the x component:

x = (vx ∗ transform.scalex) + (transform.translatex)

Several file formats use this, for instance LAS [1] and

TopoJSON [7]. For CityJSON, it typically compresses the

https://cityjson.org/schemas/
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files by around 5–10%; we give below examples with real-

world datasets. It should be noticed that it also makes files

more “robust”, in the sense that the coordinates are not

prone to rounding because of floating-point representa-

tion in a computer [10]. This is the favoured way to store

CityJSON files.

Handling and streaming (large) CityJSON files

One drawback of representing geometries by having ref-

erences to a list of vertices is that large files are difficult

to handle (one needs to read all of the file in memory to

reconstruct the geometries) and that streaming of large

files is thus complicated.

There exists a misconception that CityGML, since it

uses the Simple Features paradigm [20], can be easily and

directly streamed. We claim that while it is easier, this

is not completely true. CityGML files also often contain

references between objects in a given file (XLinks), and

before this file can be streamed, these references need to

be resolved and the objects copied to the location pointing

to it. This also increases the size of the file.

Isenburg and Lindstrom [12] proposes to reorganise the

order of the information in the file so that the vertices

are not all at the end, they rather are located close to the

geometries that need them. Special tags in the file informs

us about the fact that a vertex will not be used anymore,

thus allowing us to free the memory.

This cannot be used with the current structure of CityJ-

SON, but we propose instead to partition a CityJSON file

into several files. The rule can be based on a spatial par-

tition, on the type of city objects, or simply randomly. It

suffices to update the list of vertices and the indices, which

is a simple operation. The open-source software cjio has

an implementation of this.

Partitioning a given CityJSON file into several usually

will not increase the storage. There will be several proper-

ties (e.g. the CRS, metadata, etc.) that will be repeated for

each of the files, but the indices in each file will be smaller

(always starting at 0), and thus in practice we have noticed

that the size will actually decrease.

Support for metadata

CityGML has very limited support for metadata [16]. Only

a few elements are supported, such as the bounding box

and the CRS, and most elements are on the city model

level and not on the module or city feature level. While

there exists a metadata ADE for CityGML9, in CityJSON

metadata is incorporated into the core schema. CityJSON

metadata is developed with ISO 19115 (themetadata stan-

dard specifically for geographic information developed

by the International Organization for Standardization) as

the base and further includes elements important for 3D

city models, such as the levels of detail present, exten-

sions (and their metadata), presence of textures and/or

materials, etc. It also supports metadata at the city model

level, the module level and the city feature level.

This is the only addition that CityJSON makes to the

CityGML data model.

Implementation and experiments
Software to read/write CityJSON

There are already several software programs to create,

parse, visualise, and edit CityJSON files. These were writ-

ten in different languages (mostly Java, C++, Python, and

Ruby) and have been coded during the development of the

CityJSON specifications; our workflow involved testing

new features to ensure that in practice they are imple-

mentable.

The structure of a CityJSON file has been developed

so that the developer who wants to parse the file does

not have to use an auxiliary data structure to index and

extract information from the file. One example is that all

city objects are indexed in a dictionary (by their identi-

fier), which allows the developer to have direct access to

them; this is particularly useful because the city objects

have been flattened out, and a "Building" refers to its

"BuildingPart"s by their identifiers. Many other fea-

tures of CityJSON are based on the simple indexing of

objects in an array (templates, textures, materials, etc.),

and thus they can be accessed directly by their index in the

array.

We provide in this section an overview of a few software

implementations, but this list is not exhaustive.

citygml4j: an open-source Java class library and API for

facilitating the reading/writing/editing of CityGML files.

Starting from version 2.6.0, it supports parsing and writ-

ing CityJSON, and all of the features of CityJSON are

supported. It can automatically convert CityGML toCityJ-

SON (and vice-versa); the datasets used for the experi-

ments in this paper have all been automatically converted

with citygml4j. [https://github.com/citygml4j/citygml4j]

cjio: a Python command-line interface (CLI) program

to process and manipulate CityJSON files. The different

operators can be chained to perform several processing

operations in one step (thus avoiding saving several tem-

porary files). Examples of operators are: creating a subset

given certain rules, validating with the CityJSON schemas,

merging several files in one, reprojecting to a different

CRS, and modifying the paths for the textures. [https://

github.com/tudelft3d/cjio]

azul: a modern 3D viewer for macOS, written in Swift

and C++. It supports the primitives and semantical

surfaces in CityJSON; textures, material and geometry

templates are currently not supported. The datasets in

https://github.com/citygml4j/citygml4j
https://github.com/tudelft3d/cjio
https://github.com/tudelft3d/cjio
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Fig. 3 are visualised in azul. [https://github.com/tudelft3d/

azul].

3dfier: a software to automatically construct 3D city

models from 2D GIS datasets and elevation datasets

(LiDAR). The polygons are lifted to their elevation, and

their semantics is taken into account. One of the out-

put formats of 3dfier is CityJSON. [https://github.com/

tudelft3d/3dfier]

QGIS plugin: a simple QGIS plugin to load CityJSON

files has been developed in Python. The city objects

are loaded as features in layers and can be divided

and styled in different layers according to their object

type; their geometry can be visualised both in the 2D

and 3D view, while their semantic information can

be displayed in the attribute table. [https://github.com/

tudelft3d/cityjson-qgis-plugin].

val3dity: a validator for the 3D geometries defined in

ISO 19107 [13]. Written in C++. CityJSON fully sup-

ported. Full details of the implementation in [17] and [18].

[https://github.com/tudelft3d/val3dity]

CityJSON web-viewer: a simple web-based viewer writ-

ten in JavaScript. Anyone can simply open a local file

and visualise it, all the operations are done locally in

the browser. It does not support attributes querying or

Fig. 3 CityGML datasets used for the experiments, details in Table 1. (a) Den Haag; (b) Montréal; (c) New York; (d) Railway; (e) Vienna; (f) Zürich

https://github.com/tudelft3d/azul
https://github.com/tudelft3d/azul
https://github.com/tudelft3d/3dfier
https://github.com/tudelft3d/3dfier
https://github.com/tudelft3d/cityjson-qgis-plugin
https://github.com/tudelft3d/cityjson-qgis-plugin
https://github.com/tudelft3d/val3dity
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other queries at this moment, but demonstrates that sim-

ple tools can be built quickly if the encoding is simple.

[https://viewer.cityjson.org/]

Experiments with real-world datasets

To demonstrate and test the software packages mentioned

above, we have taken a few subsets of openly available

datasets stored in CityGML, and converted them auto-

matically (with citygml4j) to CityJSON. The datasets used

are shown in Table 1 and Fig. 3.

These datasets were reconstructed with different

methodologies and utilising different software, and they

cover a wide-range of possibilities: textures, no textures,

material, geometry templates, different LoDs, etc.

The first thing to notice is that CityGML files, as

downloaded, often contain several carriage returns, extra

spaces, and tabs, and these can significantly increase the

file size (and have no use for computers). We have there-

fore removed all of these to provide a fair comparison

of the file size with CityJSON (which do not contain any

either). While this might seems unimportant, one can

observe that for the CityGML datasets we used, the com-

pression obtained is already large, e.g. for the Montréal

dataset we obtain 25%.

Notice also that the compression obtained by encoding

the vertices in integers (see the section about compression

of CityJSON files, above) can also be significant.

If we compare CityGML files without any spaces or

carriage returns to the CityJSON files (integer coordi-

nates), the average compression factor is about six (it

varies between 4.4 and 8.1). This varies because of several

reasons: (1) if several geometries are shared/adjacent, in

CityJSON the vertices are merged; (2) generic attributes

are very verbose in CityGML, and in CityJSON they do

not occupy extra space, they are considered simply as an

attribute; (3) simple files like Zürich contain only sim-

ple LoD1 blocks, and there is no semantics or any other

features used (e.g. geometry templates); (4) some of the

compression is obtained because in the original CityGML

file each polygon has a gml:id, and this is lost during

the translation (we believe this ID has little meaning in

practice, and is stored simply because the export function

created it).

Observe that the presence of textures andmaterials does

not seem to affect the compression factor, this is explained

by the fact that the sizes of the textures is not taken into

account (both CityGML and CityJSON simply refer to the

files on disk), and more or less the same mechanism is

used.

We have tried with several other different datasets, and

we have obtained similar results.

Extensions to the core data model
The CityGML data model allows us to represent the

most common city objects, but sometimes practitioners

may want to model additional objects and/or add cer-

tain attributes to the data model. For this, CityGML has

the concept of ADEs (application domain extensions). An

ADE is defined in an extra XML Schema (XSD file) with

its own namespace. Commonly, inheritance is used to

refine the classes of the CityGML data model to define

entirely new classes, and to modify any class by adding

for instance new geometries and complex attribute [9].

An ADE allows us to document in a structured way, and

also to validate, an instance of a CityGML document

that would contain both classes from the core model and

Table 1 Datasets converted (see Fig. 3)

CityGML CityJSON

Size(a) No space(b) LoD Texture Size-float(c) Size-int(d) Compr.(e)

Den Haag(1) 23 MB 18 MB 2 Material 3.1 MB 2.9 MB 6.2

Montréal(2) 56 MB 42 MB 2 Yes 5.7 MB 5.4 MB 7.8

New York(3) 590 MB 574 MB 2 No 110 MB 105 MB 5.5

Railway(4) 45 MB 34 MB 3 Yes 4.5 MB 4.3 MB 8.1

Vienna(5) 37 MB 36 MB 2 No 5.6 MB 5.3 MB 6.8

Zürich(6) 435 MB 423 MB 1 No 127 MB 100 MB 4.4

(a)size does not take into account the size of the textures files (PNG, JPG, etc) since CityJSON refers to the same ones
(b)the carriage returns, tabs, and spaces are removed, for a fair estimation of the compression factor
(c)coordinates represented as double/float
(d)coordinates represented as integer (compressed files)
(e)compression factor = CityGML(no spaces) / CityJSON(size-int)
(1)tile 01, https://data.overheid.nl/data/dataset/ngr-3d-model-den-haag
(2)tile VM05, https://tinyurl.com/y8eglpmn
(3)LoD2 tile DA13, https://www1.nyc.gov/site/doitt/initiatives/3d-building.page
(4)CityGML v2 demo Railway, https://www.citygml.org/samplefiles/
(5)the demo file, https://tinyurl.com/yaopvy6w
(6)version withMax height, https://data.stadt-zuerich.ch/dataset/geo_3d_blockmodell_lod1

https://viewer.cityjson.org/
https://data.overheid.nl/data/dataset/ngr-3d-model-den-haag
https://tinyurl.com/y8eglpmn
https://www1.nyc.gov/site/doitt/initiatives/3d-building.page
https://www.citygml.org/samplefiles/
https://tinyurl.com/yaopvy6w
https://data.stadt-zuerich.ch/dataset/geo_3d_blockmodell_lod1
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from the ADEs. There exists several ADEs, see [6] for

an overview.

In a similar manner, CityJSON defines Extensions. An

Extension is a JSON file that documents how the core data

model of CityJSONmay be extended, and is utilised in the

validation of CityJSON files. Unlike ADEs where the user

is allowed to extend the data model in any way she wants,

CityJSON restricts the possible cases to these three:

1 Adding new complex attributes to existing city

objects

2 Creating a new city object, or “extending” one, and

defining complex geometries

3 Adding new properties at the root of a document

While Extensions are less flexible than CityGML ADEs

(inheritance and namespaces are for instance not sup-

ported, and less customisation is possible), it should be

noted that the flexibility of ADEs comes at a price: the

software processing an extended CityGML file will not

necessarily know what structure to expect and how to

handle it, which means that software support for them

will likely be inconsistent. There is ongoing work to use

the ADE schemas to automatically do this [26, 27], but

this currently is not supported by most software. Viewers

might not be affected by ADEs because the geometries are

usually not changed by an ADE. However, software pars-

ing the XML to extract attributes and features might not

work directly (and thus specific code would need to be

written).

Because Extensions cannot have namespaces (a limita-

tion of JSON Schemas), to avoid conflicts between dif-

ferent Extensions we recommend prepending new City

Objects and attributes with the name of the Extension;

the lack of namespaces does not cause any other issues in

practice.

A CityJSON Extension is a JSON file such as this one:

1 {
2 "type": "CityJSON_Extension",
3 "name": "Noise",
4 "uri": "https://someurl.org/noise.json",
5 "version": "0.1",
6 "description": "Extension to model the noise"
7 "extraRootProperties": {},
8 "extraAttributes": {},
9 "extraCityObjects": {}

10 }

It must define the name of the Extension, its URI, and

its version. The three cases to extend the core model, as

described above, are three properties of the file. Each of

these properties contain snippets of JSON schemas, and

these can reuse and refer to the definitions and geometric

primitives defined in the schemas of CityJSON.

Since the file is not technically a JSON Schema file, there

needs to be a software that preprocesses the file (or poten-

tially other Extensions, since a given CityJSON file could

contain several Extensions) and ‘links’ it to the CityJSON

definitions. One of such software is cjio.

CityJSON Extensions are designed such that they can be

read and processed by standard CityJSON software with-

out extra work on the developer’s part. Often no changes

in the parsing code is required. This is achieved by enforc-

ing a set of simple rules when adding new city objects. If

these are followed, then a CityJSON file containing Exten-

sions will be seen as a ‘standard’ CityJSON file. Examples

of these rules are:

1 The name of a new city object must begin with a +,
e.g. "+NoiseBarrier"

2 A new city object must conform to the rules of

CityJSON, i.e. it must contain a property "type"
and one "geometry". If the object contains
appearances, the same mechanism should be used so

that the new city objects can be processed without

modification.

3 All the geometries must be in the property

"geometry", and cannot be located somewhere

else deep in a hierarchy of a new property. This

ensures that all the code written to process,

manipulate, and view CityJSON files will be working

without modifications.

As a concrete example, here is a snippet of the Exten-

sion in which we want to add two new attributes to the city

object "Building". Both attributes start with a "+",
which is the CityJSON convention to add new objects and

attributes. The first attribute is simply of type string, and

the second one is a complex type to store a measurement.

1 "extraAttributes": {
2 "Building": {
3 "+noise-buildingReflection": { "type": "

string" },
4 "+noise-buildingReflectionCorrection": {
5 "type": "object",
6 "properties": {
7 "value": { "type": "number" },
8 "uom": { "type": "string" }
9 }

10 }
11 }
12 }

A CityJSON file in which this Extension is used would

look like this:

1 {
2 "type": "CityJSON",
3 "version": "1.0",
4 "extensions": {
5 "Noise": {
6 "url" : "https://someurl.org/noise.json",
7 "version": "0.1"
8 }
9 },

10 "CityObjects": {
11 "id-1234": {
12 "type": "Building",
13 "attributes": {
14 "roofType": "gable",
15 "+noise-buildingReflectionCorrection

": {
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16 "value": 4.123,
17 "uom": "dB"
18 },
19 "+noise-buildingRelection": { "facade

" }
20 },
21 "geometry": [...]
22 }
23 }
24 }

Conclusions
In programming, choosing the least powerful language

suitable for a given purpose is known as a principle of

good design [2]. While doing so might seem limiting at

first, it ultimately results in software and standards that

are easier to design, write, test, and use.

In the context of 3D city models, we recognise that

having an open standardised data model like CityGML

is essential, but we also observe that its GML encoding

can be overly complex in a way that is often unfriendly

to developers. The difficulties of parsing CityGML files,

interpreting all the different ways in which geometries can

be stored, resolving XLinks, dealing with different CRSs,

and implementing support for ADEs, add up and create

a high barrier for developers to support CityGML. This

discourages the adoption of the standard by developers

and is especially hostile to small independent ones, such

as those at the heart of the open-source GIS community.

This results in poor software support, and a lack of tools

to do even basic processing (as can be currently observed

in practice).

CityJSON greatly reduces the complexity of develop-

ing applications for the CityGML data model through the

use of a simpler JSON encoding. JSON is designed as a

simple data interchange format and is natively supported

by many programming languages, including JavaScript,

Python, and Ruby. Easy to use libraries add native-like

support for it in many other popular languages, includ-

ing C++. Parsing a (City)JSON file is thus often a one-line

operation that results in a tree of native data types, which

can then be easily queried using standard functions. In

contrast, the developers who work with CityGML are

often forced to write their own CityGML parser based

on generic XML parsing libraries, which is a much more

complex and error-prone process. This is true even for

simple operations, such as to assess if a file is fit-for-use

within a specific application.

In recognition of the fact that a 3D city model format

is of little us unless implemented, the development of the

specifications of CityJSON has been done in a developer-

centred process. Each iteration of the specifications has

been tested by implementing support for it in a few soft-

ware packages with different programming languages. By

doing so, we were able to use the insight gained through

this process to propose improvements for the next iter-

ation, as well as to avoid the escalation of complexity

that often occurs in geoinformation standards. Moreover,

since we were able to implement support for CityJSON

with ease, we are certain that it will be easy for other

developers to do the same.

Our JSON-based encoding allows practitioners to con-

tinue use the CityGML data model, as it is simply an extra

encoding; the features not implemented, which are a few,

are in our opinion rarely used, are meant to keep the

encoding simple, and are well-documented on the web-

site. For exchanging datasets, but also for creating and

editing them, we believe CityJSON offers a more flexible

encoding, and the fact that files are more compact ( 6×

in practice) is beneficial, especially in a web context. Since

there is open-source software to convert—without loss of

information—between the JSON and the GML encodings,

one can decide to perform some tasks with CityJSON and

some others with the GML encoding.

We believe CityJSON will be useful to the whole com-

munity because it will foster the development of (open-

source) tools from small programmers and researchers,

and it will make it easier for practitioners to exchange and

process their datasets. The development of the CityJSON

specifications (and its accompanying software) is open on

GitHub, and everyone is welcome to contribute.

As future work, we plan to implement a tiling scheme to

subdivide large files into different parts, using for instance

a quadtree. We also plan to offer a binary encoding, using

for instance Binary JSON (BSON)10; this would allow us to

compress even more the files. Finally, when the new spec-

ifications for CityGML v3 will be released by the OGC, we

will study them and modify the CityJSON specifications

accordingly, as long as they do not clash with the prin-

ciples of simplicity and usability that CityJSON is based

upon. We plan on continuing to develop CityJSON to

make it as usable as possible in practice, and we invite oth-

ers to join us and propose new features to add (or to delete,

for the sake of simplicity!).

Endnotes
1The JavaScript Object Notation: http://json.org
2 in the following it is assumed that CityGML refers to

the latest version 2.0.0
3Only linear and planar primitives are allowed.
4https://en.wikipedia.org/wiki/Wavefront_.obj_file
5https://en.wikipedia.org/wiki/X3D
6https://www.khronos.org/collada/
7https://json-schema.org/
8https://epsg.io
9https://github.com/tudelft3d/3D_Metadata_ADE
10http://bsonspec.org/

http://json.org
https://en.wikipedia.org/wiki/Wavefront_.obj_file
https://en.wikipedia.org/wiki/X3D
https://www.khronos.org/collada/
https://json-schema.org/
https://epsg.io
https://github.com/tudelft3d/3D_Metadata_ADE
http://bsonspec.org/
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