
Pereira et al. Journal of Internet Services and Applications (2015) 6:24

DOI 10.1186/s13174-015-0039-z

EXPERIENCE REPORT Open Access

CitySDK Tourism API - building value
around open data
Ricardo Lopes Pereira1,2*, Pedro Cruz Sousa1, Ricardo Barata1, André Oliveira3 and Geert Monsieur4

Abstract

Tourism is a major social and cultural activity with relevant economic impact. In an effort to promote their attractions

with tourists, some cities have adopted the open-data model, publishing touristic data for programmers to use in

their own applications. Unfortunately, each city publishes touristic information in its own way.

A common Application Programming Interface (API) for accessing this information would enable applications to

seamlessly use data from several cities, increasing their potential market while reducing the development costs. This

would help developers in making cross-city applications, lowering the overhead of supporting new cities and

providing them with increased exposure. Finally, tourists will also benefit from better and cheaper applications due to

the boosted competition.

This paper provides an overview of the design, deployment and utilization of the CitySDK Tourism API, which aims to

provide access to information about Points of Interest, Events and Itineraries. It was designed in order to be used by

municipalities, regional or national governments as well as other public or private entities interested in publishing

touristic information. The API comprehends a delegation model, allowing applications to access worldwide

information by only knowing a single API endpoint.

The API was created and validated in the context of the CitySDK project, through which a server reference

implementation, client libraries and a set of demonstration applications have also been made available. The API is

currently available for the cities of Amsterdam, Helsinki, Lamia, Lisbon and Rome. Several companies have developed

mobile applications that use this API.

Keywords: Smart cities, Tourism, API, Open data

1 Introduction
1.1 Motivation

Tourism is a very important social, cultural and economic

activity. According to the World Tourism Organization,

in 2014 tourism was responsible for 9 % of the world’s

Gross Domestic Product (GDP) and for 1 in every 11

jobs1. Tourism generated over 1.5 trillion US$ in exports

and accounts for 6 % of the world trade and 30 % of

the services exports. The number of international tourists

reached 1.135 billion in 2014 and is expected to continue

growing at an average rate of 3.3 % a year until 2030 [1].

*Correspondence: ricardo.pereira@inesc-id.pt
1Instituto Superior Técnico, Universidade de Lisboa, Avenida Professor Cavaco

Silva, 2744-016 Porto Salvo, Portugal
2INESC-ID, Avenida Professor Cavaco Silva, Edifício IST, 2744-016 Porto Salvo,

Portugal

Full list of author information is available at the end of the article

More than half of international tourists elect Europe as

their destination.

As vacation time is limited and tourism is a costly activ-

ity, tourists wish to make the most of their stay. There is

an industry around travel guides, maps and advice. This

business is also being explored on the Internet and is now

making its way to the ubiquitous smartphone, where it can

take advantage of interactivity, positioning systems, wire-

less Internet access, augmented reality, social networks

and crowd-sourcing. However, often the foundation for

tourism applications continues to be accurate, high qual-

ity, reliable information from authoritative sources.

National, regional and city authorities compile large

amounts of information to use in their internal processes.

Municipalities understand the value of these data and

many have gone through a multi-step process to share

it with tourists in order to improve their experience and

attract them to their cities. First, municipalities created

© 2015 Pereira et al. Open Access This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and
reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the
Creative Commons license, and indicate if changes were made.

http://crossmark.crossref.org/dialog/?doi=10.1186/s13174-015-0039-z-x&domain=pdf
mailto: ricardo.pereira@inesc-id.pt
http://creativecommons.org/licenses/by/4.0/

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 2 of 13

applications (web or mobile) for sharing data with the

tourists. This approach is costly and unsuitable for most

cities: the number of visitors is not large enough to recu-

perate the investment; municipalities are not software

houses, being unable to keep up with the pace of innova-

tion. Furthermore, municipalities are limited in the types

of applications they can provide: e.g. publishing negative

opinions written by users about an attraction could expose

them to liability.

Making data available to third parties is often a better

investment andmany entities have followed the open-data

path in a second step. With access to data, programmers

bear the costs and risk, but are free to integrate data from

several sources to create novel applications. Market forces

should drive innovation, creating the applications tourists

want. By publishing data openly, municipalities may fur-

ther contribute to local economic growth by aiding in

the creation of local businesses exploiting this data [2].

Still, the open-data model is not without flaws as each

entity publishes different datasets using different data for-

mats. For instance, the municipality of Lisbon publishes

open data sets under several formats: Excel spreadsheets,

CSV files (each with its own structure and semantics),

Webservices (each with its own Application Programming

Interface (API))2. Additionally, these are very difficult to

merge, as even location information is different with some

sources using street addresses while others rely on coor-

dinates. The city of Helsinki also does the same 3, as do

many others. Programmers are forced to invest into deal-

ing with the particularities of each data representation

format, thus limiting the number of data sources that can

be included into an application. These factors will limit

the breadth of data and the number of cities covered by

each application and thus its potential market, limiting the

number and size of the investments. Also, the local nature

of the applications will make them difficult for tourists to

find, as they must discover the particular application for

each city visited.

The path taken by municipalities has also been walked

by other entities related to tourism, such as national and

regional governments, museums, concert halls or cultural

events organizers.

1.2 CitySDK

If the same touristic data was made available in a sin-

gle format by several entities, programmers would be able

to reach larger audiences with a smaller investment. This

would increase competition and tourists would benefit

from a wider choice of applications.

Smart City Service Development Kit and its application

Pilots (CitySDK) was an European European Information

and Communication Technologies (ICT) Policy Support

Programme (PSP) project involving 29 partners from 9

countries, running from January 2012 to October 2014.

One of the most important goals of CitySDK was to cre-

ate an ecosystem in which the work of an application

developer is facilitated by having unified and open data

interfaces available across different cities in Europe. This

means that it should be relatively easy for developers to

make use of touristic data coming from multiple Euro-

pean cities, because in such an ecosystem data access

is open and unified. Developers will be able to use this

information and create useful, innovative applications that

use it in new ways and combine it with other sources of

information.

In the scope of CitySDK three APIs were designed and

deployed: one for participation services (e.g. FixMyStreet),

one for mobility data (e.g. public transport data) and one

for touristic information. In this paper, we present the

CitySDK Tourism API, show how it addresses the prob-

lems that municipalities and developers face, present the

dissemination and bootstrapping efforts and discuss the

lessons learned in the process. The CitySDK Tourism API

enables access to information about Points of Interest

(POIs), events and thematic itineraries. It can be imple-

mented by municipalities (the main focus in the scope of

the CitySDK project), other government levels and other

private or public organisations such as museums or con-

cert halls. Endpoints for the CitySDK Tourism API are

currently available for the cities of Amsterdam, Helsinki,

Lamia, Lisbon and Rome.

Tourists stand to gain the most from the availability of

the CitySDK Tourism API, even though they will never

need to interact directly with it, or even know it exists.

They will be able to choose the applications that best

suites their needs and use it in different locations. Appli-

cations can provide functionality to replace or comple-

ment most information providing artifacts used by tourist

today, such as travel guide or audio-guides.

1.3 Requirements

The CitySDK Tourisms API strives to fulfill the needs of

tourists, developers and potential data providers. Tourist

need state of the art applications that provide access to

the tourist information they need, together with integra-

tion with popular applications such as social networks.

Data providers (such as business and municipalities) need

a standard way to provide tourist information, capable to

express their current data sets as well as those foreseen

in the near future. Furthermore, the API needs to be flex-

ible and expansible enough to evolve to support future,

unforeseen needs. Developers require an API that is easy

to use for application of any scale, local or global.

Furthermore, the API should fulfill the following

requirements: be based on standards in order to facilitate

acceptance; be distributed, so to limit the scope of each

participant; be scalable; provide for both static and fast

updating data; and enable offline use by caching the data.

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 3 of 13

The CitySDK project also was intent on creating the

conditions for a development ecosystem to emerge around

tourism information. The API should provide access to

quality data without hindering the business opportunities

for developers. Furthermore, data providers should not

be exposed to liability by being responsible for the com-

bination of their data with crowd sourced information, a

task left for developers as data providers will have limited

resources, preventing them from curating crowd-source

data.

1.4 Document structure

This document is organised into seven sections. In the

next section, an overview of other efforts for provid-

ing normalised access to city data is provided. Section 3

details the CitySDK Tourism API. The roll-out of the API

endpoints in the cities is presented in Section 4. Section 5

describes the efforts carried out for promoting and facil-

itating the adoption of the API. Opportunities and adop-

tion examples of the API are presented in Section 6,

which also describes the lessons learned. Finally, Section 7

presents the conclusions and describes future work.

2 Related work
The CitySDK Tourism API should be based on existing

standards, making use of best practices and the experi-

ence of others, in order to increase its chances of adoption.

The need for a common data representation or APIs for

tourism data has been present for some time. In this

section we present two major normalization efforts in this

field: EventsML-G2 and World Wide Web Consortium

(W3C) POIWorking Group (WG).We then analyze other

work aiming to provide access to touristic information.

2.1 EventsML-G2

EventsML-G2 is a standard for collecting and distribut-

ing structured event information. It is aimed at conveying

event information in a news industry environment [3].

This standard is a member of the family of the Inter-

national Press Telecommunications Council (IPTC) G2-

Standards, built on a structural and function framework

called the IPTC News Architecture (NAR), and shares

many of its components with the other standards of

this family. Additionally, the EventsML-G2 makes use of

well-known industry standards, since its syntax is built

on W3C’s XML Schema and fully complies with the

basic notion of the Semantic Web, the Resource Descrip-

tion Framework (RDF). One of the main features of the

EventsML-G2 standard is its ability to transmit informa-

tion (i.e. facts) about a specific event. Its comprehen-

siveness and extensibility makes the standard suitable for

covering a large magnitude of event types and cover mul-

tiple facts about a specific event either by literal text (i.e.

free text) or by codes from specified vocabularies.

Although EventsML-G2 can convey information about

a POI where an event takes place, that is not its focus.

Moreover, as it strives to represent all types of events,

EventsML-G2 is a complex standard, making it difficult to

implement and use.

2.2 W3C Point of Interest WG

TheW3C set up the POIWG with the mission to develop

technical specifications for the representation of POI

information on the web [4]. Its Core Recommendation

draft defines a generic, flexible, lightweight and extensi-

ble POI data model, and one normative syntax for the

datamodel based on ExtensibleMarkup Language (XML).

Although XML is the primary model for this specification,

other formats are also possible, such as JavaScript Object

Notation (JSON).

The data model is shown in Fig. 1. It comprises six

entities:

• POIBaseType is the common entity from which the

majority of POI entities are derived. It provides basic

properties related with its authorship, licensing,

modification dates and identification allowing each

element to carry distinct information;
• POITermType is an abstract entity derived from

POIBaseType and adds properties for the

management of categorical descriptions (such as the

ones seen in category), link, label, author, license and

time properties of POIType;
• POIType is an abstract entity derived from

POIBaseType and adds entities for describing,

labeling, categorizing and indicating the time span of

a POI or group of POI. This entity also includes

linking elements to other POIs, external web

resources or metadata;
• Location is an entity that inherits from POIBaseType

and provides a flexible description of the location of a

POI. A Location can be represented using geodetic

coordinates for the center of the POI, line, polygon,

civic address, undetermined (representing unresolved

locations) or bounding box (relationship element);
• POI inherits from POIType and adds the Location

entity for describing the location of the POI;
• Finally, POIS also derives from POIType and can

have one or more children entities of type POI.

This model is flexible and extensible enough to be used

within CitySDK Tourism API to model the various types

of data (POI, events and thematic itineraries) required. Its

use is described in Section 3.1.

2.3 Tourism open data efforts

Citadel on the Move was an EU funded project which

aimed to facilitate the creation of innovative mobile appli-

cation that use open data4. Citadel focused on the creation

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 4 of 13

Fig. 1W3C POI Core Data Model [4]

of templates for the creation ofmobile application, making

use of open data. In the tourism field, no API was defined

for accessing open data. Instead, a limited scope data rep-

resentation format for POIs was created for use with the

template based mobile applications.

The Open Cities project has collected 23 open data set

from different European cities [5], making them available

to developers in hackathons. However, the goal of Open

Cities was not to unify data access but to validate how to

approach Open and User Driven Innovation methodolo-

gies to the Public Sector5. Hackathons were successfully

used to engage developers.

Several efforts have used RDF to represent touristic

data, albeit using different ontologies. The Swiss Linked

Open Tourism Data uses RDF to represent tourism sta-

tistical data in Switzerland6. RDF has also been used to

create a metadata model for encoding semantic tourism

destination information [6]. We are not aware of the exis-

tence of any widely accepted ontology for the use of RDF

to express touristic information.

3 CitySDK Tourism API
In this section, we will describe some of the key features

of the CitySDK Tourism API. We will describe the mes-

sage format model, how the API is designed, the features

enabled by this design and how it meets the requirements

expressed in Section 1.3.

We decided to design an API, as it provides both a

method for providing access to the data and a data repre-

sentation format. An alternative would have been to only

provide a data format and have applications download the

entire database. This would not scale well, forcing applica-

tions to periodically download all the data even if they did

not need it. This would likely lead to applications using

stale data. Using an API, applications can be light-weight

and only access the information they need. Ubiquitous

Internet access makes API use possible, even thought it

is still possible to download the entire database if needed

for offline use. The use of an API allows data providers

to integrate multimedia content without having to worry

about the database size as data is only fetched on demand.

In order to address the broader goals of CitySDK (see

Section 1.2) a soundmethodology is of critical importance

to avoid the pitfalls of deploying an uncontrolled maze of

APIs [7, 8]. The well-adopted Service Oriented Architec-

ture Development Lifecycle (SDLC) [7] provides a solid

foundation for service enablement in an orderly fashion

so that services can be efficiently used in Service Ori-

ented Architecture (SOA)-based smart city applications.

SDLC relies on three fundamental SOA design principles:

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 5 of 13

coupling, cohesion and granularity. These design princi-

ples need to guarantee that services are self-contained

and come equipped with clearly defined boundaries and

interfaces to allow for service composability. Standards

and reference models (e.g. W3C POI) are crucial in cop-

ing with such design principles. Typically, these standards

improve SOA design by defining (sector-specific) busi-

ness concepts that have a high-degree of cohesion and

low-degree of coupling. The design of the tourism API

is fundamentally based on W3C POI (see Section 3.1).

By reusing existing standards, the chance for adoption is

substantially increased. Furthermore, it reduces coupling

because developers are not bound to use message formats

linked to a specific service implementation [7].

Before diving into a deeper description of the CitySDK

API there are three fundamental aspects that should be

mentioned: the API provides four types of data models;

methods to retrieve information concerning these same

data models; and also methods and description fields that

retrieve the relationships between each of them. Regard-

ing the data models we provide the following:

• POI describes various places in a given city, ranging

from monuments and museums to eating places and

cultural venues;
• Event describes cultural events that happened or are

about to happen in the city;
• Itineraries describe a group of POIs organized in

such a way that they form an itinerary of a given topic

(e.g. the life of a given person, the history of a given

region or even just specific sightseeing spots);
• Categories/Tags describe a list of available

categories and tagging terms for each of the

aforementioned models.

Each model can also be grouped into a list of its own

type. These four data models were judged as neces-

sary and sufficient to express the touristic information

made available by the several participating cities, one

of our requirements. Furthermore, they allow to express

the touristic information types gathered from interviews,

focus groups and brainstorming with both developers and

tourists, as well as those found by analyzing the most pop-

ular tourist applications. We purposely designed an API

which is to be presented to developers as read only, leav-

ing crowd-sourced information (such as reviews) as added

value services to be provided by the applications, thus

leaving space for new business opportunities and limiting

the liability of the data providers.

3.1 W3C POI model in the API

The four data models are mapped using the W3C POI

Model presented in Section 2.2. The Point of Interest

(POI) is the most easily modelled element of the API.

Since the W3C POI Model is specific to this type of data,

we used its already specified properties to map our data

model. The POIs are mapped and described by using the

POI entities directly. It should be mentioned that, since

the POI is somewhat detailed and verbose, we defined

two granularities for this element: a minimal description,

that only includes the key essential properties, and a com-

plete model. The minimal model is used to map each

element of a list of POIs. Such list is described by the POI

entity, but it does not use the descriptive properties of

POIType.

The Events are modelled the same way as POIs, but

instead of having a Location entity completly specified,

we used the relationship property of the same entity to

link a given Event to a POI and omitted the address and

undetermined properties. So, we have an Event completly

described using the POI entity and use the relationship

property to also specify and descibe the location of the

Event. An Events list is modeled using the POIS entity,

much like the POIs, but it does not have a different

granularity and the root name is event instead of poi.

The Itineraries data model is somewhat more com-

plex. It is defined by using the POIS entity and all of its

descriptive properties. So, we have the description of the

Itinerary itself by using the POIType descriptive proper-

ties and have the group of POIs by using the poi property

named as pois (so not to confuse with the mentioned

list of POIs). It should be mentioned that these POI are

not the original POIs, but are described in the context of

the Itinerary, though they include the relationship with

its original counterpart, so to fetch the actual descrip-

tion. Finally and like the previous two, the Itineraries has

a list associated with it. Much like the POI, it has a sec-

ond granularity - a minimal version - in which only the

description of each Itinerary is included and their POI are

omitted.

The Categories/Tags are equal in nature, but a Cate-

gory provides a recursive format that the Tags do not.

Both borrow from the W3C POI Data Model, but their

format is more specific to the needs of our API, rather

than following the mentioned model. So, a Category sim-

ply follows the POIType entity and allows recursiveness

and a Tag borrows its properties from the POIBaseType to

specify a language and value.

At last, most of the terms used in the POITermType are

those suggested by the WG itself. However, we’ve added

five more terms regarding price, waiting time, occupation

and accessibility information for handicapped people.

The presented models are transmitted using JSON. We

choose it as it is widely supported by popular program-

ming languages, in particular those user for web and

mobile development. Combined with the W3C POI stan-

dard, this also allows for easy expansion by including new

attributes.

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 6 of 13

3.2 API description

The API follows the Representational State Transfer

(REST) architectural design [9]. We designed a REST-

ful API over HTTP using JSON. Hence, for each of

the presented models we designed various methods to

obtain data by providing certain parameters. Many of the

parameters are common between the POIs, Events and

Itineraries, such as the ability to search for each one of

them using a category reference, a description or using

geographic boundaries(e.g. coordinates and radius or a

polygon). Also, we have provided limitation parameters to

allow applications to lazy load the data presented by the

API. Of course, there are some parameters that are spe-

cific to the datamodel (e.g. if we search using a description

of the POIs, one can ask for either the minimal or com-

plete version or in the case of the Events, we can search

using time spans). Furthermore, and for both POIs and

Events, one can also search for the relation of a single

POI/Event with other POIs/Events. E.g. a set of concerts

may be children of a music festival event, or a set of

parishesmay be children of a city POI. One final method is

the ability to search using a Quick Response (QR) Code or

an one-dimensional barcode. Using a single method and

providing the textual or code information, we retrieve any

POIs, Events or Itinerary that matches such information.

As for the categorization models, we have provided meth-

ods to retrieve the categorical information for each of the

aforementioned models.

Another feature of the API is complying to the Hyper-

media as the Engine of Application State (HATEOAS)

constraint of Fielding’s seminal work on REST APIs [10].

This constraint states that a client interacts with a net-

work application entirely through hypermedia provided

dynamically by the application servers. Therefore, it needs

no prior knowledge about how to interact with any par-

ticular application or server beyond a generic under-

standing of hypermedia. We made use of this constraint

in three ways: from the entry URL (the only URL the

client needs to know) we present the API version and the

resources made available by the visited server, including

the allowed search parameters using URI Templates [11];

each of the Data Models has an identification (specified

by a base URL and ID) that allows to fetch information

about that specific model; the POIs, Events and Itineraries

can be further described by using a described-by (in the

links property) which indicates an entry point to another

server, which can provide further data on that specific

entity.

The use of the HTTP protocol, allows the API to ben-

efit from all the well-known load balancing mechanisms

applied to common web servers to ensure its scalabil-

ity. Furthermore, HTTP’s cache control techniques will be

available for helping clients synchronize their caches with

the data on the servers.

3.3 Delegation

The use of hypermedia allows the use of delegation

between the various entities involved in the system.

Figure 2 shows a diagram of the possible interactions

between each entity. A world wide directory will allow

developers to use a single endpoint regardless of the user’s

location. This directory will contain a POI for each city,

linking to the adequate server. Within each city, further

details about a POI or event may be provided by other

servers. A global tourism database is thus distributed over

the servers of the several data providers. Delegation is

accomplished using the described-by property in the links

property. This delegation mechanism can be construed as

a Linked Data mechanism [12].

3.4 Interaction example

Consider a simple tourism application that only uses

data accessed through the CitySDK Tourism API. More

sophisticated application are expected to merge this data

with other sources. Building this application, making full

use of the API, requires the developers to write code to

access, interpret, use and display all the types of infor-

mation that can be provided by the servers. However,

it does not require the developer to know about which

servers are available or update his application as new

ones become available. An application will work, with-

out change, in every city that provides data using

the API.

Fig. 2 Delegation model

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 7 of 13

Data providers, such as municipalities, tourism bod-

ies and associations, private and public entities, need not

worry about the applications that will use the data they

choose to make available. They need not worry about

what is the most popular mobile platform for their data

or how to create the best application to reach the tourist.

Developers will take care of the applications, creating the

opportunity for each tourist to find the application that

best suits his needs. Data providers are free to focus on

procuring and curating high quality data, to bemade avail-

able to tourists. As long as data is made available using the

CitySDKTourismAPI, several application will be available

to make use of the data.

Consider a tourist visiting Lisbon for the first time. He

needs not install a Lisbon specific application, as the one

he used in other cities will also work there. Upon arriving

in Lisbon, the tourist searches for a hotel. The application

will use the Global Positioning System (GPS) to determine

its location. As it does not know a server for that location,

it will contact the world wide directory searching for POIs

in that location. The directory will return the POI for Lis-

bon, containing a description of the city and a pointer to

the municipality run server (at least, there could be more

than one service).

The application then uses the provided server, querying

it for hotels. It uses the “Hotel” category and the “bou-

tique” tag, searching for matching POIs within a radius of

5 Km of the current location, according to the users pref-

erences. The municipality server, which has more detailed

information on the city of Lisbon, will be able to respond

with a list of nearby hotels POIs, which the application

displays to the user (see Fig. 4b).

On the way to the hotel, the tourist can use an aug-

mented reality application to learn about the locations

he goes by (see Fig. 4a). The application will periodically

ask the municipality server for the list of POIs within

the vicinity of its current location, using their geodetic

coordinates to place display them.

The following day, the tourist decides to take a tour

of the city. The application proposes several itineraries

(obtained from the municipality server) and the user

selects to follow the Fado (a local type of music) itinerary.

The application queries the server for the itinerary details,

receiving a textual description, links to images and a

list of POIs to visit, each with its own description with

information relevant in the scope of the itinerary.

During the tour, the tourist visits a concert venue. The

application retrieves information about the concert venue

and learns that there is a server specific to it. This server

is updated daily by the venue owner. The application uses

this server to get detailed information about the shows

taking place there, in the form of events. Later the tourist

chooses to visit a museum. The POI for the museum also

indicates that there is a server providing more detailed

information. The museum curator used POIs to represent

the paintings on display. As GPS does not work inside,

QRs codes are used to identify each painting. The same

application is now able to provide information about each

painting, and even display multimedia content associated

to each one.

4 Implementation
The most important part in the specification of an API

is the specification itself, that must be explicit enough

to allow for distinct, compatible implementations. But to

bootstrap adoption, we developed a reference implemen-

tation (hence forward called platform) with two goals:

proving that the API was implementable and testing it;

lower the implementation costs for data providers by pro-

viding a reusable server implementation. Data providers

are free to use it or implement their own version.

4.1 Platform architecture

Figure 3 shows the architectural components of the imple-

mented CitySDK platform. This platform was developed

for use in the lead pilot, the city of Lisbon, and was later

adopted by the other participating cities. The architecture

was chosen to match the needs of the cities, that each had

several different data sources using different formats.

In the platform’s architecture, the city acts as a data

provider which offers one or more relevant touristic infor-

mation datasets. The CitySDK platform is capable of

incorporating several distinct data sources by using a

modular approach where each one of the data sources

provides its information through a Data Adapter mod-

ule. The Data Adapter module is a component developed

to retrieve raw data from a data source in its native for-

mat (XML, JSON, CSV or other) using the data source’s

native access form (web service, file, database or other)

and provide the touristic data (regarding POIs, Events and

Itineraries) to be stored in the platform in the data format

presented earlier. Each Data Adapter module interacts

with the CitySDK platform by invoking its Authenticated

data administration REST API.

Even though the CitySDK’s platform has a single API

endpoint, it can be divided into two distinct conceptual

APIs: the public API (used by clients) and the data admin-

istration API. The data administration API requires a

valid authentication to access it, as it is the interface to

be used for the purpose of manipulating data elements.

The CitySDK platformmaintains data retrieved in its own

database.

4.2 Implementation details

As shown in the architecture representation (Fig. 3), the

core of the CitySDK platform is based on a main com-

ponent, the application service denoted as “CitySDK Plat-

form API”. This provides the previously mentioned APIs

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 8 of 13

(public and data administration), and is aided by a plat-

form’s database.

In order to speed up the development effort and ensure

high performance, the application service was imple-

mented using a fast and lightweight open-source REST

Web Services framework named ServiceStack7. The Ser-

viceStack base framework is responsible for handling the

protocol part of the CitySDK’s platform interface, convert-

ing the received web requests into simple method calls

and converting back the method return values into a web

response.

For the CitySDK platform’s database, the open-source

high performance document database mongoDB8 was

used instead of a traditional relational SQL based

database. The choice of this database was mainly related

to the high performance required to handle the foreseen

database request load and its ability to process geograph-

ical queries (i.e. search for elements within a polygon or

within a distance from a specified geographical point), as

required by the CitySDK Tourism API. This document

database stores both the platform’s data models and some

minor administrative data (e.g. access credentials). The

datamodels are stored in an optimal format, taking advan-

tage of the characteristics inherited from the fact that the

database in use is a document database: minimal effort for

the platform’s engine to adapt the retrieved data elements

to the replies for the clients requests. Although the used

database is not a relational database, it also provides the

possibility to index any of the stored document’s attributes

to enable the possibility of performing quicker indexed

searches.

Although Data Adapter modules are not part of the

CitySDK platform’s itself, they are essential, as they per-

form the important task of populating it with valuable

data. These modules have to be CitySDK-compliant on

the data output side and datasource-compliant on the

Fig. 3 CitySDK platform architecture

data input side, transforming the datasource’s data from

its native format into the W3C POI format suitable for

insertion into the platform. For the case of the Lisbon

implementation, a single database containing aggregated

data from POIs and Events (including the relation of the

POI where Events occur whenever possible) was identi-

fied, so only a Data Adapter module was implemented for

the two types of data. The implemented module runs as

a service and, as the volatility of the data is very low (at

most a few records are updated each day), the data updat-

ing process runs once a day during the night. A different

Data Adapter populates the database with itineraries.

The reference server implementation was written in C#

for the .Net framework as this was the language of choice

of the available development team at the partner imple-

menting the server. It can be run using a Microsoft Server

environment or Linux using Mono framework 9. It was

deployed in Lisbon in early 2013, with Lamia, Rome and

Amsterdam following that same year. Helsinki launched

its endpoint in early 2014.

5 Promotion
In order for application developers to adopt an Open

Data API, data must be available in quantity and with

quality. Cities and other data owners are more likely to

adopt an API to provide their data in an Open Data for-

mat when there already exist application using that API.

They will also be more likely to invest in improving the

quality of their data, e.g. by providing translations to sev-

eral languages, detailed description, multimedia content

and a consistent level of detail. In order to overcome

this chicken and egg problem and bootstrap the API

adoption we developed a strategy whose corner stones

were: proving the effectiveness of the API through pilot

deployments and demo applications; lowering the cost of

development for application creators and data providers;

providing ample documentation and contact media; pres-

ence in several dissemination fora. The pilot deployments

in Amsterdam, Helsinki, Lamia, Lisbon and Rome proved

that the API could be deployed and made use of the refer-

ence server implementation, which is publicly available in

order to reduce adoption cost by data providers. The next

sections detail the other efforts.

5.1 Website

A website10 was created and promoted in order to con-

centrate information on the API. It is meant to be a

one stop source of information for application develop-

ers and data source owners interested in using the API.

The site contains a blog with news related to the CitySDK

Tourism API, documentation on the API, the reference

server implementation and its usage documentation, end-

points for existing deployments, demo applications and

known third-party applications and contacts. Besides the

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 9 of 13

API documentation and code examples, developer sup-

port is provided through amailing list and aGoogle group,

embedded into the website. The server reference imple-

mentation and the several demo applications and libraries

are open-source and available in GitHub11. The documen-

tation on the API includes links to the live APIs, providing

developers with real examples.

5.2 Client-side stubs

To facilitate the development cycle for potential devel-

opers, we provided four libraries which abstract the use

of the API and the parsing of the received data. These

libraries are very similar in usage, as they provide equal

naming conventions for the methods to perform requests

and to read the received data. The client libraries are avail-

able in Java, JavaScript/jQuery, PHP and Objective-C and

are available online, as is their corresponding documenta-

tion and usage examples.

5.3 Proof of concept applications

To further test our client libraries and API, we developed

a group of key applications in various programming lan-

guages and frameworks. This process also had the goal of

providing code examples to developers and supply appli-

cations to be used in demonstrations to potential data

providers, developers and even users.

The first application made use of the Java library. We

developed an Android application which displays POIs,

Events and Itineraries following an user’s criteria (e.g.

using categorical information and/or using coordinates).

It displays the retrieved data in both list and map for-

mats (in the case of the Itineraries, it draws the route

itself). Its main goal is to use the API to its fullest and

demonstrate the various possibilities for applications. The

Android platform enabled us to showcase our data using

the localization features available in mobile platforms.

Later, a second Android app was developed, that allows

the user to see POI and Event details including associated

media, such as pictures (Fig. 4c), and navigate through the

CitySDK Tourism data in a map (Fig. 4b), using the data

made available by the five different cities. This app has the

particularity of integrating functionality from another API

promoted by the CitySDK project: the participation API,

which is based on Open 311 [13]. Users can use this app to

submit reports about the data, e.g. request the translation

of a POI to a certain language. By providing this feature,

the data can now be incrementally improved.

A set of applications making use of the JavaScript/

jQuery library were also developed. This set is com-

posed by an Event’s calendar widget, which makes specific

use of Events and time/categories related searches, and

a Map widget displaying all data types. The Map wid-

get makes use of geometric figures (circles and polygons)

drawn by the user, to restrict the searched area. These

applications, which run on a browser, allow everybody

visiting the website to observe the API in operation

and have access to the open data. They also provide a

debug mode, where developers can see and tweak the

requests being made to the servers and the replies pro-

vided. This way, developers can see and test the data

and all the information offered by the different city

partners.

At last, an Augmented Reality application using the

Layar framework12 was also created by developing a

PHP web-server, thus using the PHP library. This server

enables Layar to access CitySDK Tourism data. Layar

makes use of the position, camera and sensors of the

user’s device to display information about the surround-

ings and/or the building being displayed in the screen.

POI information from CitySDK is overlayed on the

image. It can be used with the Android (Fig. 4a) or IOS

Layar App or with Google Glasses. With this applica-

tion, we accomplished the goal of reaching the major

mobile platforms as well as being as interactive as

possible.

A basic IOS app accompanies the Objective-C library.

5.4 Collaboration with other projects

During the CitySDK project there was another EU funded

project: Citadel On The Move. This project provided

application templates with the goal of facilitating the

development process and allowing entities to easily pro-

vide their users with applications to access their data.

One of the applications was an HTML 5 based mobile

application for accessing POI data. The used data model

was simpler than the one we adopted, but enabled a sub-

set of our data to be provided. With this similarity, we

decided to build an API converter and, by doing that,

we automatically enabled the possibility to build mobile

applications using Citadel On The Move with CitySDK

data. This enabled us to use Citadel On The Move to

increase the reach of the CitySDK Tourism API and

data.

5.5 Dissemination activities

Our dissemination activities mainly targeted developers

and data owners. Tourists were not our target audience,

as they were a much wider audience, requiring a larger

budget and greater men-power, even though user driven

demand could be a motivation for data owners to publish.

Promotion to public decision makers was performed

through the presence in tens of conferences and events,

populated by decision makers, namely some promoted by

theWorld Bank. Promotion with developers was achieved

through Facebook, Twitter and the presence in confer-

ences, developer events and Hackathons. In particular, the

CitySDK Tourism API was highlighted in the Lisbon Big

Apps challenge, in 2014.

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 10 of 13

Fig. 4 Demonstration applications

6 Adoption, opportunities and lessons
In this section we present the current state of the API

adoption and discuss the possible business and value

opportunities that justify the use of the API by the several

stakeholders. We also discuss the lessons learned.

6.1 Adoption

Currently, following the work done on the CitySDK

project, the API is available in five European cities:

Amsterdam, Helsinki, Lamia, Lisbon and Rome. General

touristic data is available as POIs and Events, including

data such as Museums, statues, monuments and concerts.

Lisbon in the only city to currently provide itineraries.

Rome also provides access to the location of public WiFi

access points. The amount and quality of the data varies

from city to city. Also, the categorization of data is not uni-

form among cities, as the published data already existed

and continues to be made available using the previously

used, proprietary formats.

We have been approached by several city officials, from

the USA and Europe, regarding the adoption of the API.

So far, these have not been made available.

Besides the demo applications made available by the

core team behind the API creation, several other appli-

cations have been made available by the participating

cities. These are in use and made available to the citi-

zens or tourists visiting those cities. These applications are

presented in our website.

From the various events and Hackathons, several third-

party applications have emerged that combine tourism

data with other data sources or use if for particular pur-

poses. One such example is an application that allows

tourists who can play amusic instrument to discover other

musicians they can play with while visiting another city.

The first application we became aware of was the Spot in

series, that was initially available for Helsinki, but today

features versions for Amsterdam, Helsinki, Lamia and

Lisbon, thanks to the CitySDK Tourism API. We currently

know of about half-a-dozen applications and have been

contacted by developers interested in creating new apps

and students and professors interested in using the API in

their projects or courses. The applications we are aware of

are show-cased in our website, but there is no requirement

for developers to notify us that they are using the API.

6.2 New opportunities

Asmentioned, this API was developed under the CitySDK

project which involved 29 partners from 9 countries. Ide-

ally this API could be extended to the rest of Europe and

the world, making it a very powerful tool to enable tourism

related businesses and applications. CitySDK Tourism

API provides business opportunities for application devel-

opers, cities, service providers and venue owners.

Application developers are the most obvious beneficia-

ries of the API. Since each city is integrated with the same

API and data models, it is much easier and less costly to

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 11 of 13

create new applications and, as a result of our delegation

model, integrating new cities has much less overhead and

complexity. Competition will drive new uses for the data

as well as integration with other data sources. Application

development may be financed by advertisement on appli-

cations, paid applications or sponsoring. Tourists will also

benefit from the broader availability of the applications

and the quality of the data.

Cities, especially early adopters, will benefit from a com-

petitive advantage that will provide some differentiation,

by providing tourists with information for their visit and

having that information made available through the appli-

cations created by developers. This may help promote the

city as a touristic destination. When cities provide their

own endpoints, they may also use API access information

to help determine the most popular POIs, analyze usage

trends and predict tourist activity.

The same can be said about venue owners, that may

wish to provide their own CitySDK Tourism API end-

points, where detailed information about the venue (i.e.

POI) and events may be provided. Thanks to the delega-

tion model, applications will find these specific endpoints

through the city’s server. For instance, a museum can

provide more detail information by providing informa-

tion regarding pricing, the number of people that can be

accommodated, queue’s length and waiting time or even

information on accessibility for persons with disability.

This type of highly detailed data or data with a small

timespan would be difficult to be managed by a munici-

pality. The Amsterdam partners have demonstrated such

a use case by integrating real-time queue length data for

the Rijksmuseum, obtained from a sensor network, into

Amsterdam’s endpoint [14].

Also, our API provides opportunities to create new busi-

nesses that either provide more detailed information or

provide services to the other players. A company could

provide high quality data on a city or area through a paid

API, accessible only to paying developers. An alternative

approach would be to offer a two-tier level of service,

with a paid service offering higher throughput or other

differentiating service.

Other companies could run CitySDK Tourism API end-

points of behalf of others, lessening the investments

required to publish data in this format. For instance, a bar

might be interested in publishing its live music events,

but be unable to run its own server. It would hire a

CitySDK Tourism API hosting provider that would make

the endpoint available while providing the bar owner with

a simple web page for updating the events information.

Tourism is an activity that is highly related to mobility.

Integration of tourism data with mobility information can

help tourists make the most of their time and even save

money on transportation. Some will be willing to pay for

applications that provide them these benefits.

Today, crowd-sourcing is an important way to obtain

information on POIs and events. In particular, a tourist

may resort to comments, opinions and ratings provided

by others when choosing what to visit. In the design of

the API, crowd-sourced information was explicitly left out

in order not to expose the participating municipalities

to potential liability, by publishing negative data about a

venue. However, this is an interesting business area to be

explored by private enterprises.

High performance servers, or ones that better integrate

with a city’s particular ICT infrastructure, will be required

where the reference server implementation does not fit

the bill. Hosting and consulting opportunities will also

be available, as specialised companies can provide a bet-

ter value proposition for cities wishing to open their data

using this API.

6.3 Lessons learned

During the Lisbon pilot, by supporting the creation of the

other endpoints and from interaction with developers and

users, several lessons have been learned. Here we present

the main ones.

Multi-language support is very important for a tourism

API. Support for multiple languages was included from

the onset. However, not all cities were capable of provid-

ing translations for all their data in multiple languages but

only on their native one. For instance, in Lisbon, thousand

of POIs are available in Portuguese, but not all of them are

available also in English, and none are available in other

languages. It is up to the data providers to make data avail-

able in several languages, even though this process can be

facilitated by machine translations.

As data made available from the several cities already

existed, different ontologies were in use to classify it. A

single ontology for classification would facilitate users’

searches and would facilitate data presentation by the

application developers. The process of defining such

ontology, agreed upon by all cities, was left outside the

scope of the CitySDK project but could in the future be

promoted in the scope of the CitySDK association.

When evaluating an API to use, the likelihood that it

will be supported in the future is an important criteria. As

the API was created in the context of a EU funded project,

concerns about what would happen once funding run out

were expressed. The project participants addressed this

issue with the creation of an association that will carry

on the work after the project ends. However, the creation

of this association was a late answer to the problem, that

should have been planned from the beginning in order

to provide potential users with an assurance about the

continuity of the APIs.

We have learned about the importance of engaging the

developer community in such a project. Feedback from

developers is important from the requirement gathering,

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 12 of 13

through the API design, all the way to the deployment and

testing of the endpoints. Relations with developers should

be nourished throughout the development cycle as these

were important disseminators of the API. We propose

that projects with similar goals should setup the figure of

community manager, as many open-source projects do.

In our case, we saw significant adoption of the API

through hackathons. Although these events can be expen-

sive to organize, especially if sponsors are not found, the

allure of prizes and the visibility provided to the winners

helps attract talented developers and startups which often

came up with innovative out-of-the-box ideas for using

the API. These were then able to gain their own notoriety

on which our API was able to piggyback in the media.

7 Conclusions
This paper presents the CitySDK Tourism API, which

is based on the data model defined by the W3C POI

WG. This API provides access to information about POIs,

Events and Itineraries, enablingmunicipalities, regional or

national governments as well as other public or private

entities to publish touristic information for developers to

incorporate into their applications. This open-data model

is expected to increase themarket for tourism applications

while lowering the cost of entry. The increased competi-

tion should drive down application costs while increasing

their quality, benefiting tourists. Data publishers also ben-

efit from increased exposure, increasing the appeal and

visibility of their attractions.

This paper provides an account of the API creation and

promotion effort, providing a snapshot of its current usage

and motivating the business case and opportunities for its

adoption by the several stake holders.

The team behind the creation of the API continues

to provide assistance to the developers and data owners

interested in adopting or evaluating the API. The CitySDK

partners, as a whole, are in the process of setting up an

association that will carry forward the development and

maintenance of the APIs now that the EU funding has

ended. In particular, the cities running the endpoints have

committed to continue to do so in the future.

Currently, a worldwide directory for CitySDK Tourism

API endpoints is run by the municipality of Lisbon,

enabling new cities to easily join this service. A single end-

point is crucial for enabling existing applications to take

advantage of new CitySDK Tourism API deployments as

they become available. However, centralized management

is not scalable. In the future, we plan on designing a peer-

to-peer, trust based, federation system, that enables each

city endpoint to act as an entry point to all the cities and

allows for new cities to join without having the contact a

single central entity.

Developer keys are often used to identify developers,

providing a way for server owners to throttle API usage in

order to deter heavy-hitters and providing an incentive for

programmers to produce efficient code. These can also be

used to ban misbehaving applications from using an API.

Aworldwide directory would onlymake sense if developer

keys are portable among different endpoints. In the future,

we plan to propose a model for distributed developer keys

issuing which does not compromise these goals.

Endnotes
1 http://www2.unwto.org/content/why-tourism
2 http://www.lisboaparticipa.pt/pages/newApps.php
3 http://www.hri.fi/en/
4 http://www.citadelonthemove.eu/en-us/about/aims.

aspx
5 http://www.opencities.net/content/project
6 http://make.opendata.ch/wiki/project:lotd
7 http://www.servicestack.net/
8 http://www.mongodb.org/
9 http://www.mono-project.com/
10 http://tourism.citysdk.eu/
11 https://github.com/CitySDK
12 http://www.layar.com/

Competing interests

The authors declare that they have no competing interests.

Authors’ contributions

All authors contributed to the writing of the manuscript. All authors read and

approved the final manuscript.

Acknowledgements

The authors would like to thank all the members of the CitySDK project, in

particular the teams responsible for the deployment of the replication city

endpoints: Stichting Hogeschool Van Amsterdam, Forum Virium, Municipality

of Lamia, Provincia di Roma. A special recognition is due to the Municipality of

Lisbon, for providing the data used in the lead pilot, and Alfamicro for the

diligent dissemination efforts.

The CitySDK project was financed by the European Commission under the

Information and Communication Technologies Policy Support Programme

(ICT PSP) as part of the Competitiveness and Innovation framework

Programme (CIP), through grant number 297220.

This work was partially supported by national funds through Fundação para a

Ciência e a Tecnologia (FCT) with reference UID/CEC/50021/2013.

Author details
1 Instituto Superior Técnico, Universidade de Lisboa, Avenida Professor Cavaco

Silva, 2744-016 Porto Salvo, Portugal. 2 INESC-ID, Avenida Professor Cavaco

Silva, Edifício IST, 2744-016 Porto Salvo, Portugal. 3 ISA Energy, Rua D. Manuel I,

30, 3030-320 Coimbra, Portugal. 4ERISS - European Research Institute in Service

Science, Tilburg University, Warandelaan 2, 5037AB Tilburg, The Netherlands.

Received: 29 May 2015 Accepted: 5 November 2015

References

1. United Nations World Tourism Organization UNWTO Tourism Highlights,

2015 Edition. Booklet (2015). http://mkt.unwto.org/publication/unwto-

tourism-highlights-2015-edition. Accessed 12 Nov 2015

2. Vilajosana I, Llosa J, Martinez B, Domingo-Prieto M, Angles A, Vilajosana X

(2013) Bootstrapping smart cities through a self-sustainable model based

on big data flows. Commun Mag IEEE 51(6):128–134

3. Holland K (2012) NewsML-G2 Implementation Guide, revision 5.0. IPTC

Standards. http://www.iptc.org/site/News_Exchange_Formats/

EventsML-G2/Specification/. Accessed 12 Nov 2015

http://www2.unwto.org/content/why-tourism
http://www.lisboaparticipa.pt/pages/newApps.php
http://www.hri.fi/en/
http://www.citadelonthemove.eu/en-us/about/aims.aspx
http://www.citadelonthemove.eu/en-us/about/aims.aspx
http://www.opencities.net/content/project
http://make.opendata.ch/wiki/project:lotd
http://www.servicestack.net/
http://www.mongodb.org/
http://www.mono-project.com/
http://tourism.citysdk.eu/
https://github.com/CitySDK
http://www.layar.com/
http://mkt.unwto.org/publication/unwto-tourism-highlights-2015-edition
http://mkt.unwto.org/publication/unwto-tourism-highlights-2015-edition
http://www.iptc.org/site/News_Exchange_Formats/EventsML-G2/Specification/
http://www.iptc.org/site/News_Exchange_Formats/EventsML-G2/Specification/

Pereira et al. Journal of Internet Services and Applications (2015) 6:24 Page 13 of 13

4. Hill A, Womer M (2012) W3C Points of Interest Core. W3C Editor’s Draft.

Online, accessed 11 Jun 2013. http://www.w3.org/2010/POI/documents/

Core/core-20111216.html

5. Sfairopoulou A Open Data and Open Sensor Network Challenges.

Deliverable D4.4.54-D6.6.44, Open Cities Project (October 2013). http://

opencities.net/sites/opencities.net/files/content-files/repository/D4.4.54

%20-%20D6.6.44%20Open%20Data%20and%20Open%20Sensor

%20Network%20Challenges%20-%20b.pdf

6. Kanellopoulos DN, Panagopoulos AA (2008) Exploiting tourism

destinations’ knowledge in an RDF-based P2P network. J Netw Comput

Appl 31(2):179–200

7. Papazoglou MP, Van den Heuvel W-J (2007) Service oriented

architectures: approaches, technologies and research issues. VLDB J - Int J

Very Large Data Bases 16(3):415

8. Monsieur G, Snoeck M, Lemahieu W (2012) Managing data dependencies

in service compositions. J Syst Softw 85(11):2604–28

9. Fielding RT, Taylor RN Principled design of the modern web architecture.

ACM Trans Internet Technol 2(2):115–50

10. Fielding RT Architectural Styles and the Design of Network-based

Software Architectures. PhD thesis, University of California: Ervine; 2000

11. Gregorio J, Fielding R, Hadley M, Nottingham M, Orchard D URI Template.

IETF RFC 6570 2012. https://tools.ietf.org/html/rfc6570

12. Berners-Lee T Linked Data. W3C Design Issues, Last accessed May 10th,

2015. http://www.w3.org/DesignIssues/LinkedData.html

13. (2011) GeoReport v2. Open311 Stable Specification. Online, last accessed

20 May 2013. http://wiki.open311.org/GeoReport_v2

14. Groen M, Meys W, Veenstra M (2013) Creating smart information services

for tourists by means of dynamic open data. In: Proceedings of the 2013

ACM Conference on Pervasive and Ubiquitous Computing Adjunct

Publication. UbiComp ’13 Adjunct. ACM, New York, NY, USA. pp 1329–30

Submit your manuscript to a
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

 Submit your next manuscript at 7 springeropen.com

http://www.w3.org/2010/POI/documents/Core/core-20111216.html
http://www.w3.org/2010/POI/documents/Core/core-20111216.html
http://opencities.net/sites/opencities.net/files/content-files/repository/D4.4.54%20- %20D6.6.44%20Open%20Data%20and%20Open%20Sensor%20Network%20Challenges%20-%20b.pdf
http://opencities.net/sites/opencities.net/files/content-files/repository/D4.4.54%20- %20D6.6.44%20Open%20Data%20and%20Open%20Sensor%20Network%20Challenges%20-%20b.pdf
http://opencities.net/sites/opencities.net/files/content-files/repository/D4.4.54%20- %20D6.6.44%20Open%20Data%20and%20Open%20Sensor%20Network%20Challenges%20-%20b.pdf
http://opencities.net/sites/opencities.net/files/content-files/repository/D4.4.54%20- %20D6.6.44%20Open%20Data%20and%20Open%20Sensor%20Network%20Challenges%20-%20b.pdf
https://tools.ietf.org/html/rfc6570
http://www.w3.org/DesignIssues/LinkedData.html
http://wiki.open311.org/GeoReport_{v}2

	Abstract
	Keywords

	1 Introduction
	1.1 Motivation
	1.2 CitySDK
	1.3 Requirements
	1.4 Document structure

	2 Related work
	2.1 EventsML-G2
	2.2 W3C Point of Interest WG
	2.3 Tourism open data efforts

	3 CitySDK Tourism API
	3.1 W3C POI model in the API
	3.2 API description
	3.3 Delegation
	3.4 Interaction example

	4 Implementation
	4.1 Platform architecture
	4.2 Implementation details

	5 Promotion
	5.1 Website
	5.2 Client-side stubs
	5.3 Proof of concept applications
	5.4 Collaboration with other projects
	5.5 Dissemination activities

	6 Adoption, opportunities and lessons
	6.1 Adoption
	6.2 New opportunities
	6.3 Lessons learned

	7 Conclusions
	Endnotes
	Competing interests
	Authors' contributions
	Acknowledgements
	Author details
	References

