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Abstract

Civitas is the first implementation of a coercion-resistant, universally verifiable,

remote voting scheme. This paper describes the design of Civitas, details the cryp-

tographic protocols used in its construction, and illustrates how language-enforced

information-flow security policies yield assurance in the implementation. The perfor-

mance of Civitas scales well in the number of voters and offers reasonable tradeoffs

between time, cost, and security. These results suggest that secure electronic voting is

achievable.

1 Introduction

Electronic voting is now a reality—and so are the many errors and vulnerabilities in com-

mercial voting systems [50, 3, 10]. Voting systems are hard to make trustworthy because

they have strong, conflicting security requirements. Confidentiality of votes must be main-

tained to protect voters’ privacy, to prevent selling of votes, and to defend voters against

coercion. Integrity of election results must be assured so that all voters are convinced that

votes are counted correctly. And, if an election authority attempts to corrupt the integrity

of an election, the attempt must be detected and attributed correctly. The goals of confiden-

tiality and integrity are in tension: a public show of hands guarantees integrity but destroys

confidentiality, whereas secret ballots typically guarantee confidentiality but fail (due to

possible miscounts, ballot stuffing, etc.) to assure integrity. Availability of the voting sys-

tem during elections is also crucial to prevent disenfranchisement of voters. Given the civic

importance of elections, the consequences of violating these requirements can be dramatic.

∗The original name of this voting system was CIVS. This update changes the name to Civitas.
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Attention on electronic voting has focused on the problem of supervised voting, in

which voters interact with a computing device under the supervision of election authori-

ties. However, we argue that the right problem to solve is the more general problem of

remote voting, in which there is no supervision of voters as they cast their votes. Internet

voting, an instance of remote voting, is increasingly used by diverse and important groups,

such as open-source software communities, e.g., Debian [24]; the Association for Comput-

ing Machinery [2]; and, though it ultimately canceled the project, the U.S. military [44].

Even U.S. government elections appear to be reducing the supervision of voting. Voters

in the state of Oregon vote by mail, not at polling places, and all states receive a substan-

tial fraction—enough to change the outcome of many elections—of their ballots by mail as

absentee ballots.

Many security experts have been skeptical about electronic voting [64, 26, 29, 45, 56],

arguing that the risks of deploying electronic voting are too great and that it is too hard to

convince voters of the security of election mechanisms. Yet as hard as secure supervised

voting may be, secure remote voting is even harder. Electronic voting systems are often

designed for trusted polling places with human supervision and certified hardware and soft-

ware. But when voters can vote from any Internet host, election servers can be controlled

by many parties, and communications can be tapped and modified, every component of a

remote system is potentially malicious.

Despite existing pessimism about secure voting, this paper argues that it is possible

today to build a secure, practical, remote voting system. Civitas is our prototype. It is con-

structed using principled techniques. First, the design is a refinement of a cryptographic

voting scheme proven secure by Juels, Catalano, and Jakobsson [47]. No previously imple-

mented voting system has implemented this voting scheme or any other voting scheme that

offers comparable security. Second, to increase assurance in the voting software, the imple-

mentation was carried out in Jif [57, 59], a language whose compiler and run-time system

enforce information-flow security policies. Civitas also implements sophisticated prefer-

ential voting methods in which voters may rank candidates. Such methods are resistant to

strategic voting, yet care must be taken to ensure they do not create a covert channel that

violates confidentiality. Note the distinction between voting systems, which are software

implementations, voting schemes, which are cryptographic protocols, and voting methods,

which are algorithms for choosing between candidates.

Previous work on secure voting systems falls roughly into two categories: theoretical

voting schemes that have not been implemented and have not been shown to scale to large

elections, and voting system implementations that do appear to scale to large elections but

offer insufficient assurance of important confidentiality and integrity requirements. Prior

work therefore illustrates a conflict between security and practicality. Civitas resolves this

conflict by demonstrating for the first time that strong security properties can be offered by

a practical remote voting system.

The development of Civitas has led to several contributions:

• The first voting system which implements a voting scheme that provably satisfies

strong security properties.
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• A provably secure voter registration protocol, which distributes trust over a collection

of registration authorities.

• A scalable design for vote storage that ensures election integrity without expensive

fault tolerance mechanisms.

• A performance study demonstrating the practicality of secure remote voting.

• A concrete, publicly available specification of the cryptographic protocols required

for a remote voting scheme.

This paper describes and evaluates Civitas. Section 2 explains the security requirements

and threat model for a coercion-resistant, universally verifiable, remote voting system. The

following sections present Civitas: its architecture and voting scheme (Section 3), the trust

assumptions on which the scheme is based (Section 4), the implementation of cryptographic

components (Section 5), techniques used to achieve scalability (Section 6), the use of Jif to

increase assurance in the system (Section 7), and finally enhancements such as preferential

voting methods (Section 8). The performance study in Section 9 demonstrates that Civitas

is practical for real-world elections, scaling with reasonable tradeoffs between time, cost,

and security. Section 10 discusses possible attacks on Civitas and corresponding defenses.

Related work is reviewed in Section 11, and Section 12 concludes.

2 Security Model

A secure remote voting system must satisfy two strong requirements. The first, a confiden-

tiality requirement, is that no adversary can learn any more about votes than is revealed by

the final tally. The second, an integrity requirement, is that no adversary can change the

final tally to be different than if all votes were publicly announced and tallied in the pres-

ence of all voters. (These intuitive requirements are instances of the privacy and correctness

requirements of secure multi-party computation [35].)

Previous work has proposed several security properties to satisfy these requirements.

For confidentiality, a common, simple property is anonymity: the adversary cannot learn

the map from voters to votes. This property is accompanied by the strong assumption that

voters will not act to violate their own anonymity. In remote voting, this assumption is

unreasonable: vote buying, a well-known phenomenon in real-world supervised elections,

could have a large impact by inducing voters to reveal their votes. Moreover, in remote

voting, adversaries may be able to coerce voters with virtual, or even physical, threats.

Against such adversaries, it is necessary to ensure that voters can convincingly lie to the

adversary about the votes they submit. The adversary then cannot trust any claims that

voters makes about their votes, guaranteeing that confidentiality is maintained even when

voters collude with the adversary. This is a strong property that Civitas is required to satisfy:

Coercion Resistance. Voters cannot prove whether or how they voted, even if they can

interact with the adversary while voting.
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Removing the ability to interact with the adversary results in a weaker property known as

receipt-freeness, originally defined by Benaloh [6].

“Coercion resistance” is a term used throughout the voting literature, though rarely with

a precise, consistent meaning. Recently, Juels et al. [47] and Delaune et al. [25] gave rigor-

ous formal definitions in the computational and symbolic models, respectively, of cryptog-

raphy. Although the informal definition given above is consistent with both, the rest of this

paper uses the term in the same formal sense as Juels et al.

Civitas is also required to satisfy a strong integrity property, originally stated by Sako

and Kilian [66]:

Universal Verifiability. All voters are convinced the final tally is correct. This entails that

all votes that were cast are counted, only authorized votes are counted, and no votes are

changed during the tabulation of votes.

It is realistic to assume that the adversary may control some of the voting system, includ-

ing the network, the machines used to collect and tabulate votes, and the agents providing

this infrastructure. Therefore, to offer strong security assurance, we assume that trust can

be distributed over a set of election authorities, agents who provide the various system com-

ponents. The system should remain secure as long as a set of election authorities remains

uncompromised by the adversary. Section 4 identifies a set that is sufficient to guarantee

security of Civitas.

Completing our characterization of the adversary, voting systems should be secure with

respect to the following threat model, essentially due to Juels et al. [47]:

Strong Adversary. The adversary may:

1. Corrupt a threshold of the election authorities.

2. Coerce voters, demand their secrets, and demand any behavior of them. This may be

done remotely or in the physical presence of the voter.

3. Control the network by reading, sending, delaying, or dropping any messages sent on

public channels.

4. Perform any polynomial-time computation.

The third point in this definition suggests the existence of non-public channels. In fact,

we assume the existence of some anonymous channels, on which the adversary cannot

identify the sender, and some untappable channels, which the adversary cannot use at all.

An untappable channel must provide perfect secrecy, either by being physically untappable

or implementing information-theoretic encryption, e.g., a one-time pad. We argue that these

assumptions are reasonable and necessary in Section 4.
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Figure 1: Civitas architecture

3 Architecture

Civitas comprises five (groups of) agents: a supervisor, a registrar, voters, registration

tellers, and tabulation tellers. Some of these are depicted in Figure 1. The agents other

voters are the election authorities.

• The supervisor administers an election. This includes creating the election by spec-

ifying the ballot design, the registrar, and the tellers; and starting and stopping the

election.

• The registrar authorizes voters for an election by posting each voter’s identifier (an

arbitrary string, perhaps a name or email address) and public key.

• Registration tellers are responsible for generating the credentials that voters use to

cast their votes.

• Tabulation tellers tally votes in a way that is both coercion-resistant and universally

verifiable.

These agents carry out the election using two underlying storage services: a publicly

readable, insert-only bulletin board to which election authorities post messages (which must

be signed), and a set of ballot boxes that accept votes from voters.

The Civitas voting scheme refines a voting scheme developed by Juels, Catalano, and

Jakobsson (JCJ) [47]. Similar to a JCJ election, a Civitas election has three phases: setup,

voting, and tabulation. Each election phase involves cryptographic protocols; for simplicity,

the discussion of these is deferred to Section 5.
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3.1 Setup phase

First, the supervisor creates the election by posting the registrar’s public key and the ballot

design on an empty bulletin board. The supervisor also identifies the tellers by posting their

individual public keys. The agreement of the registrar and the tellers to participate in the

election is obtained out-of-band. The registrar posts identifiers for all authorized voters

along with their public keys.

Second, the tabulation tellers collectively generate a public key for a distributed public-

key cryptosystem, and post it on the bulletin board. Decryption of messages encrypted

under the public key requires the participation of all tabulation tellers.

Finally, the registration tellers generate credentials, which are used to authenticate votes

anonymously. Each credential is associated with a single voter. Like keys in a public-

key cryptosystem, credentials are pairs of a public value and a private value: the public

credential and the private credential. All public credentials are posted on the bulletin board.

Credentials are generated in a distributed fashion, much like the tabulation teller’s public

key, such that each registration teller holds a share of the private credentials. Thus, valid

private credentials can be forged or leaked only if all registration tellers collude.

3.2 Voting phase

Voters register to acquire their private credential. Each registration teller authenticates a

voter using the voter’s public key, then releases the registration teller’s stored share of the

private credential to the voter. The voter combines all of these shares to construct the full

private credential.

To vote, the voter submits a private credential and a choice of a candidate (both en-

crypted), along with a proof that the vote is well-formed, to some or all of the ballot boxes.

This replication of the vote is used to guarantee availability of the vote for tabulation.

3.3 Tabulation phase

The tabulation tellers collectively tally the election. The operations performed during tab-

ulation are made publicly auditable by posting proofs of correctness. All the tabulation

tellers verify these proofs as tabulation proceeds through several subphases.

Retrieve data. All tabulation tellers retrieve the votes from each ballot box and the public

credentials from the bulletin board.

Verify proofs. Each vote is checked to verify the proof that the vote is well-formed. Any

vote with an invalid proof is discarded.

Eliminate duplicates. Only one submitted vote is retained for each credential. Any dupli-

cates are eliminated according to a revoting policy (see Section 8.2).

Anonymize. Both the list of submitted votes and the list of authorized credentials are

anonymized by applying a random permutation, implemented with a verifiable reen-

cryption mix. In the mix, each tabulation teller in turn applies its own random per-

mutation.
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Eliminate unauthorized votes. The credentials in the anonymized votes are compared

against the anonymized authorized credentials. Any votes with invalid credentials

are discarded.

Decrypt. The remaining choices, but not credentials, are decrypted. The final tally of the

election is publicly computable.

3.4 Lying to an adversary

To lie about a private credential, the voter locally runs an algorithm to produce a fake

private credential. This generates fake private credential shares that, to an adversary, are

indistinguishable from valid shares. The voter can substitute the fake private credential for

his real private credential and behave however the adversary demands. For example, the

voter might abstain from voting with the fake credential, submit an adversary-supplied vote

with the fake credential, or surrender the fake credential to the adversary.

4 Trust Assumptions

The security of the Civitas voting scheme rests on a number of assumptions.

Trust Assumption 1. The adversary cannot simulate a voter during registration.

This assumption helps to guarantee the confidentiality and integrity of the voter’s vote.

If the adversary could simulate the voter for the entire election, it would be impossible to

achieve a secure election. So there must be some period of time during which the adversary

cannot simulate the voter. Registration is a good time for this because it requires authenti-

cation. Civitas currently accomplishes authentication with something the voter knows: the

voter’s private key. Although the adversary is allowed to demand voters’ secrets, additional

mechanisms, such as tamper-resistant hardware, could enforce non-transferability of the

voter’s private key.

Trust Assumption 2. Each voter trusts at least one registration teller, and the channel from

the voter to the voter’s trusted registration teller is untappable.

This assumption guarantees that the voter can successfully lie about a credential share

and construct a convincing fake credential. Faking a credential requires modifying at least

one of the shares received by a voter during registration, so at least one registration teller is

able to distinguish a fake credential. Moreover, any agent who observed the original share

in transit on the network can detect that it was modified, even if the share was encrypted.

So an untappable channel is required for distribution of this one share. Other messages in

the system can still use public channels that the adversary controls.

While an untappable channel may be a strong trust assumption, it is actually the weakest

known assumption for a coercion-resistant voting system [66, 21, 38, 4, 47]. Eliminating

this assumption requires a distributed, incoercible construction of credentials. While results

on incoercible multi-party computation [13] might help, no practical construction is yet

known. This has been an open problem for at least a decade [22].
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Trust Assumption 3. The channels on which voters cast their votes are anonymous.

This assumption guarantees that the adversary cannot trivially violate coercion resis-

tance by observing network traffic and learning which voters have voted. Even if this

assumption fails, an adversary cannot learn the voter’s vote or credential. Anonymizing

networks [27] could be used to implement an anonymous channel. (Timing attacks on the

anonymizing network are unlikely to be effective because a vote typically fits into just three

packets.)

Trust Assumption 4. Voters trust that at least one of the ballot boxes to which they submit

their votes is correct.

A correct ballot box returns all the votes that it accepted to all the tabulation tellers.

This assumption guarantees that all submitted votes are included in the tabulation process.

If instead no ballot boxes were assumed to be correct, voters would need to be able to com-

plain anonymously to the supervisor when their votes are not included in tabulation. But it

is simpler and reasonable to assume that at least one ballot box is correct. This is weaker

than standard assumptions such as Byzantine fault tolerance [14] (which would require that

no more than f ballot boxes fail, for some number f ) and multi-party computation [35]

(which would require a majority of honest ballot boxes).

Trust Assumption 5. There exists at least one honest tabulation teller.

This assumption guarantees confidentiality of votes by ensuring that at least one tabula-

tion teller performs a random permutation during mixing, and that at least one share of the

distributed private key is not revealed to the adversary. Without this, the adversary could

trivially decrypt all credentials and votes. Additional fault tolerance techniques [31, 18, 67]

could make it more difficult for the adversary to corrupt all of the tellers. Note that this

assumption is not necessary for integrity, which is enforced through auditing.

Trust Assumption 6. The Decision Diffie-Hellman (DDH) assumption, the RSA assump-

tion, and that SHA-512 implements a random oracle.

DDH and RSA are standard cryptographic assumptions. A violation of these yields

attacks against many systems—not just Civitas. The more fundamental assumption for

Civitas is DDH, as the JCJ security proof is a reduction from it. SHA-512 is discussed in

the next section.

5 Cryptographic Components

Implementation of Civitas requires a number of cryptographic components, including a

distributed encryption scheme, a mix network, a registration protocol, and a ballot box sys-

tem. This section gives an overview of how these components are used during an election;

Appendix B contains a fuller description of the protocols involved.
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Several of the components described below instantiate oracles assumed by the JCJ vot-

ing scheme. The security of Civitas follows from the JCJ security proof [47] and the indi-

vidual security proofs of each component, cited below. For the registration oracle, which

we constructed ourselves, we give a security proof in Appendix A.

Many of the components below require posting messages to the bulletin board. All such

posts must be signed by the principal who makes the post. Also, a variety of zero-knowledge

proofs are used to enforce the honest execution of protocols. These zero-knowledge proofs

are all made non-interactive via the Fiat-Shamir heuristic [30], so their security is in the

random oracle model [5]. Civitas implements a random oracle with SHA-512.

5.1 Setup phase

Keys. During setup, the supervisor and the registrar both post public keys representing

various principals. All election authorities are represented by RSA public keys, whereas

voters are represented by El Gamal public keys. The RSA keys are a convenience, since

many real-world organizations already have RSA keys, but could be easily replaced by an-

other cryptosystem. The El Gamal keys, however, are necessary for the protocols described

below.

Civitas assumes that the supervisor (or registrar) is trusted to certify this binding be-

tween public keys and principals, or else that there is some external mechanism to certify

the binding. For example, public keys might be certified by a public-key infrastructure, or

they might be compiled into the voting software.

Encryption Scheme. Civitas implements a distributed El Gamal scheme as described by

Brandt [9]. The supervisor posts a message (p, q, g) describing the cryptosystem parame-

ters: a safe prime p = 2q + 1, where q is also prime, and a generator g of the group of

quadratic residues QRp = {x2 mod p | x ∈ Z∗

p}. The message space M for the cryp-

tosystem is the group QRp. The tabulation tellers run a protocol to generate a public key

KTT for which each teller holds a share of the corresponding private key. Encryption of

message m ∈ M under key K is denoted Enc(m;K), or simply Enc(m). Decryption of

ciphertext c, denoted (with an implicit private key) as Dec(c), requires the participation of

all tabulation tellers.

El Gamal encryption is homomorphic with respect to multiplication. That is, Enc(m) ·
Enc(n) = Enc(m · n). Encryption is also probabilistic, and it permits a reencryption op-

eration, denoted Reenc(c) for a ciphertext c. Reencryption (which is also probabilistic)

produces a new encryption of the same plaintext such that c /∈ Reenc(c). Encryption can

also be made non-malleable, preventing the use of homomorphisms and reencryption, by

the use of Schnorr signatures [69]. Civitas uses non-malleable encryption until the tabula-

tion phase, where malleability is required.

Civitas uses two zero-knowledge proofs to ensure the honesty of tellers during key

generation and during decryption. The first is a proof of knowledge of a discrete logarithm

due to Schnorr [68]. Given a message v and generator g, this proof shows knowledge of an

x such that v ≡ gx (mod p). The second is a proof of equality of discrete logarithms due
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to Chaum and Pedersen [16]. Given messages v and w and generators g and h, this proof

shows there exists an x such that v ≡ gx (mod p) and w ≡ hx (mod p).

Credential generation. Civitas uses a novel, distributed construction for credential gen-

eration and distribution. (Some of the ideas behind this construction are present in earlier

work [22, 38, 47].) The security of this construction is proved in Appendix A.

For each voter, each registration teller individually generates a share of a credential,

then posts to the bulletin board the public part of the credential share, and stores the private

part. The voter’s public credential is publicly computable from the posted shares.

More concretely, for each voter, registration teller i, denoted RTi, chooses a random

element si ∈ M. This is the private credential share. RTi also posts Si = Enc(si;KTT)
on the bulletin board as the public credential share. The resulting public credential S for

the voter is S ,
∏

i Enc(si;KTT) = Enc(
∏

i si; KTT), where the equality follows from the

homomorphic property of El Gamal.

5.2 Voting phase

Registration. To acquire a private credential, a voter contacts each registration teller

and authenticates using the El Gamal public key posted by the registrar. Civitas uses the

Needham-Schroeder-Lowe [53] protocol to authenticate and establish a shared AES ses-

sion key. The voter requests the registration teller’s share si of the private credential. The

registration teller responds with this share, accompanied by a designated-verifier reencryp-

tion proof (DVRP) due to Hirt and Sako [38]. This proof convinces the voter—and only

the voter—that the private share is correct with respect to the public share posted on the

bulletin board, i.e., that Si is an encryption of si. After retrieving all the shares, the voter

constructs the private credential s, where s ,
∏

i si.

Voting. To cast a vote, the voter posts an unsigned message

Enc(s;KTT), Enc(v; KTT), P

to the ballot boxes, where s is the voter’s private credential, v is the voter’s desired choice,

and P is a zero-knowledge proof. Proof P shows that the vote is well-formed with respect

to the ballot design of the election with a 1-out-of-L reencryption proof due to Hirt and

Sako [38], which given C = {ci | 1 ≤ i ≤ L} and c, shows there exists an i such that

ci = Reenc(c). Proof P also shows that the submitter knows the plaintext credential and

vote, which makes votes non-malleable. This defends against an adversary who attempts to

post functions of previously cast votes. Civitas implements this part of P with an adaptation

of a proof due to Camenisch and Stadler [11].

Lying to the adversary. To construct a fake credential, the voter chooses at least one

registration teller RTi and lies about the share si that registration teller sent to the voter by

substituting a new, random group element s′i ∈ M. The voter is able to construct a DVRP
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for this fake share that causes the share to look valid to the adversary, unless the adversary

has corrupted the registration teller the voter chose (in which case the adversary already

knows the real share), or the adversary observed the channel used by the registration teller

and voter during registration (in which case the adversary has seen the real proof). But by

Trust Assumption 2, there exists some teller and channel that the adversary does not control,

so it is always possible for the voter to lie.

5.3 Tabulation phase

Ballot boxes. When the supervisor closes the election, each ballot box cryptographically

commits to its contents and posts a signature of this commitment on the bulletin board. The

supervisor then posts his own signature on all these received commitments. This defines the

set of votes to be tabulated. Thus, if a voter posts his vote to at least one correct ballot box,

then his vote will be included in tabulation. (A malicious supervisor could violate this by

excluding a correct ballot box. This trust in the supervisor could be eliminated by running

a more expensive agreement protocol.)

An important security property emerges from this construction: the system achieves

just enough availability to guarantee universal verifiability, which requires that all votes are

available for tabulation. By Trust Assumption 4, at least one ballot box is correct, so this

construction achieves availability of votes. The construction does not achieve the comple-

mentary property of availability of election results, but see Section 10 for discussion on

how to do so. The benefit of this construction is scalability: no heavyweight fault tolerance

protocols are needed.

Mix network. A mix network is used to anonymize the submitted votes and authorized

credentials. Civitas implements a reencryption mix network made verifiable by randomized

partial checking [42]. Each teller in the network performs two permutations, as in Prêt à

Voter [17]. Thus, anonymity depends on at least one teller being honest. The probability

that an adversary, who controls all but one teller, can violate the anonymity of the mix (by

identifying the output corresponding to a given input) is 2/N , where N is the number of

votes in the mix. This gives the adversary an advantage of 1/N over simply guessing the

correct output. A mix network based on zero-knowledge proofs [33, 60] would offer greater

anonymity at the cost of more expensive verification.

Duplicate and invalid vote elimination. It would be easy to eliminate votes containing

duplicate or invalid credentials if credentials could be compared by decrypting them. How-

ever, this would fail to be coercion-resistant: all valid private credentials would be revealed,

so voters could never lie about credentials. Instead, a zero-knowledge protocol called a

plaintext equivalence test (PET) is used to compare ciphertexts. Given c and c′, a PET re-

veals whether Dec(c) = Dec(c′), but nothing more about the plaintexts of c and c′. Civitas

implements a PET protocol due to Jakobsson and Juels [41].

For duplicate elimination, each anonymized submitted vote must be compared against

all others, and for invalid credential elimination, each submitted vote’s credential must be
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Table 1: Election parameters

V Number of voters

A Number of authorities

C Number of choices on ballot

N Number of submitted votes

K Min. number of voters per block

M Max. number of submitted votes per block

compared against all the anonymized authorized credentials. Because this quadratic time

performance would limit scalability, Civitas partitions the set of submitted votes into blocks,

as discussed in the next section.

6 Scalability

A practical voting system should scale to a large number of voters, using computing re-

sources proportional to the number of voters. There are two main challenges for scalability

in Civitas. First, elimination of duplicate and invalid votes takes quadratic time. Second,

tabulation requires each teller to perform computation for each vote.

The solution to both challenges is to assign voters into blocks. Voters are guaranteed

anonymity within their own block, and the tally for each block can be computed indepen-

dently from all other blocks. The implementation of blocking is straightforward, requiring

that the registrar assigns each voter to a block; each submitted vote identifies, in plaintext,

the block in which its (purported) credential resides; and that the vote proof is extended to

make this block identifier non-malleable.

The anonymity provided by blocks is similar to that obtained in real-world voting

precincts, where a voter is anonymous within their precinct, but precinct results are public.

However, assignment into blocks need not be made based on physical location, as precinct

assignments are. Registrars can implement any policy on block assignment, but enforce-

ment of this is outside the scope of Civitas. One potential policy is to assign voters to

blocks in a way that is verifiably pseudorandom; this may reduce the risk of reprisal by the

adversary against an entire block of voters.

To understand the impact of blocking, Table 1 identifies the parameters in which an

election scales. Parameter A describes the number of election authorities of each type. For

example, if A = 4, then there are four registration tellers, four tabulation tellers, and four

ballot boxes. Regardless of the value of A, there is a single bulletin board. In terms of these

parameters, blocking reduces duplicate elimination from O(N2) plaintext equivalence tests

to O(BM2), where B = ⌊ V
K
⌋ is the number of blocks. Invalid credential elimination is

reduced from O(V N) to O(BKM).
The critical scalability gain from blocking is that the B factor in each of these terms is
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Table 2: Modular exponentiations

Agent Action Protocol BB

RT Gen. all creds. 4K K
Dist. all creds. 14K –

Voter Retrieve a cred. 12A A
Vote 4C + 7 –

TT Retrieve – AK + A + 1
Check proofs 4M(C + 1) –

Dup. elim.
(

M
2

)

(8A− 1) 3A
Mixes 2(A + 1)(M + K) 2A
Invalid elim. KM(8A− 1) 3A
Decrypt K(4A− 1) A

easily parallelizable: a different set of machines can be used to implement the tabulation

tellers for each block. Given this parallelization, the tabulation time does not depend on the

number of voters, since M and K are independent of V . This allows the performance of

Civitas to scale independently of the number of voters.

Tabulation time is dominated by the time required to perform modular exponentiations.

Table 2 gives the number of modular exponentiations performed by individual agents (each

registration teller (RT), tabulation teller (TT), and voter), per block. The table distinguishes

protocol exponentiations, which are required by the Civitas voting scheme regardless of the

implementation of the bulletin board, from bulletin board (BB) exponentiations, which are

required by the particular implementation used in our prototype. These BB exponentia-

tions result from RSA signatures and verifications. Exponentiations are counted under the

conservative assumption that there are no duplicate votes and that no voters abstain.

7 Assurance from Jif

The prototype of Civitas is implemented in an extended version of the Jif 3.0 programming

language [57, 59]. Jif is a security-typed language [74] in which program variables are

annotated with security policies. The Jif compiler verifies that the program uses information

in accordance with these policies. This specification and automatic enforcement of security

policies provides assurance that our implementation satisfies the security requirements of

Civitas.

In Jif, security policies are expressed with decentralized security labels [58], which

allow specification of confidentiality and integrity requirements of principals. For ex-

ample, the confidentiality label {RT1 � alice} means that principal RT1 owns the la-

beled information but permits principal alice to read it. Similarly, the integrity label

{RT1 � supervisor}means that RT1 permits principal supervisor to change the labeled

information. Because labels express security requirements explicitly in terms of principals,
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they are useful for systems, like Civitas, where principals need to cooperate yet are mutually

distrusting.

The Jif extension in which Civitas is implemented adds declassification until and era-

sure confidentiality policies [19]. These allow principals to state when the set of readers of

information may be expanded, thus declassifying information, and when the set of readers

must become more restrictive, thus ensuring erasure of information. These kinds of policies

are useful in expressing security requirements in the implementation of Civitas.

For example, in the implementation of the mix networks, each tabulation teller must

commit to random bits. After all tabulation tellers have committed, the random bits are

revealed, combined, and used to audit the mix. The security of auditing relies on the ran-

dom bits not being revealed until all tabulation tellers have committed. The confidentiality

label for the random bits of TTi indicates that the information is readable only by TTi until

a condition allCommitted is satisfied, whereupon the information may be declassified to

be readable by all principals. The condition allCommitted is set programmatically at the

program point where all commitments from other tellers have been received.

Erasure policies are used during the registration of voters with the registration tellers.

Each registration teller creates a private credential share for each voter, and must store this

share until the voter requests it. After the voter receives this share from the registration

teller, the teller should erase it. This ensures that even if the teller is subsequently compro-

mised, the voter’s private credential will not be revealed. The erasure policy for the teller’s

copy of the share indicates that when the share has been delivered to the voter, the creden-

tial becomes unreadable by any principal. The Jif compiler inserts code to overwrite the

information when the condition delivered becomes satisfied.

The Civitas prototype implementation totals about 14,000 lines of Jif code. An addi-

tional 8,000 lines of Java code are used to perform socket and file input and output, and to

implement cryptographic operations (i.e., El Gamal and zero-knowledge proofs). Cryptog-

raphy was implemented in Java rather than Jif because accurate modeling of cryptography

in the decentralized label model is an open problem [37, 1].

8 Enhancements

8.1 Preferential voting methods

In a preferential election method, each voter submits a (partial or total) ordering of the

candidates according to his preference. Examples of such methods include the widely used

Single Transferable Vote (aka Instant-Runoff Voting) method, the Condorcet method, and

the Borda count [8]. Such methods are attractive because they allow voters to express

detailed information about their preferences and because they are resistant to manipulation

by strategic voting.

No electronic voting systems of which we are aware have considered coercion-resistant

implementation of a preferential method. A difficulty with preferential methods is that

they introduce a covert channel: voters can encode information into their vote by changing

lower-order preferences. For example, if there are twenty candidates, a voter’s lowest ten
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preferences probably will not influence the outcome of the election, so at least 10! distinct

values can be covertly encoded into the vote. Since Civitas publicly posts votes, voters can

be coerced into encoding their identity into their votes.

Civitas implements a Condorcet method, in addition to more traditional ballots. Con-

dorcet methods enforce (when possible) the fundamental democratic principle of majority

rule: a candidate who would defeat every other candidate in a one-on-one election is de-

clared the Condorcet winner. Civitas eliminates the potential covert channel in a Condorcet

ballot by encoding it into
(

C
2

)

ballots, where C is the number of candidates. Each ballot

is a three-way choice between (yes, no, indifferent) regarding two candidates i and j; for

example, a “yes” choice means the voter prefers candidate i to candidate j. The voter is

given a set of
(

C
2

)

credentials, one for each possible 〈i, j〉 pair. The voter submits the
(

C
2

)

credentials, along with the corresponding choices, with a cleartext label indicating the 〈i, j〉
pair. Any submission that is incomplete (i.e., missing an 〈i, j〉 pair) is eliminated during the

first phase of tabulation. Subsequently,
(

C
2

)

elections are effectively tabulated in parallel.

When votes are finally decrypted, each of the
(

C
2

)

choices for each voter can be summed

to obtain a matrix of preferences that can be used to decide the winner. Because individ-

ual choices have been anonymized, the adversary is unable to learn more about a voter’s

low-order preferences than can be learned from the tally of the individual blocks.

8.2 Revoting

Voters may submit more than one vote per credential. The supervisor has the flexibility to

specify a policy on how to tally such revotes. If revotes are not allowed, all votes submitted

under duplicate credentials are eliminated during tabulation. If revotes are allowed, then the

voter is responsible for including a zero-knowledge proof in later votes to indicate which

earlier votes they replace. This proof requires knowledge of the secret credential and the

choice used in both votes, so an adversary cannot revote on behalf of a voter using only

information on the bulletin board.

8.3 Early returns

The Civitas blocking mechanism enables the production of early returns. A fraction of the

blocks, randomly chosen, may be tabulated and used to predict the outcome of the entire

election. Under appropriate assumptions, such as random assignment of voters to blocks by

the registrar, this predictor may be correct with high probability.

9 Performance

A voting system is practical only if tabulation of the results can be completed in reasonable

time, with reasonable cost and security. Civitas offers a tradeoff between these three fac-

tors, because tabulation can be completed more quickly by accepting higher cost or lower

security. The goal of the performance study presented here is to show that practical trade-

offs exist between these factors, and that performance scales as predicted by the analysis in

Section 6.
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Notions of reasonable time, cost, and security may differ depending on the election

or the observer. In current American elections, accurate predictions of election results are

available within a few hours. Therefore, we choose a target tabulation time of five hours.

Currently, government elections in stable western democracies have a cost of $1–$3

per voter per election [39]. Changing from current methods to a voting system like Civitas

would increase the cost of computing equipment, but could eliminate other costs, such as

maintaining secure polling places and printing ballots. Section 9.3 considers the cost of

running a Civitas election.

There are two important security parameters: the number of tabulation tellers (A) and

the minimum number of voters within each block (K). As reasonable values for these

parameters, we choose K = 100 and A = 4. Anonymity within 100 voters is comparable

to what is available in current real-world elections, where results are tabulated at a precinct

level and precinct workers may correlate voters with ballots. If voters are assigned randomly

into blocks, as described in Section 6, then this level of anonymity may be even stronger

than in real-world elections. Similarly, four (mutually distrusting) authorities offer better

oversight than in many real-world elections.

9.1 Experiment design

We used Emulab [76] as an experiment testbed. The experiments ran on machines contain-

ing 3.0 GHz Xeon processors and 1 GB of RAM, networked on a 100 Mb LAN, and running

Red Hat Linux 9.0 and Java 1.5.0 11. For RSA, AES, and SHA-512 implementations, we

used the Bouncy Castle JCE provider 1.33. For the remaining cryptographic functionality,

including El Gamal and various zero-knowledge proofs, we implemented our own cryp-

tographic library, using GMP 4.2.1 for native modular exponentiation and multiplication

implementations. The average time to perform a modular exponentiation was 4.7ms.

Each experiment simulated a complete election, including voter registration, voters cast-

ing votes to ballot boxes, and tabulation of the results. All the cryptographic protocols and

operations described in Section 5 were carried out in full. Therefore, the behavior of the

system should be representative of that of a real deployment.

All experiments used ballots with three choices (C = 3). Key lengths were constant:

1024-bit El Gamal keys, 2048-bit RSA keys, and 256-bit AES keys. No voters abstain, so

N ≥ V and M ≥ K.

Experiments were repeated three times, and the sample mean is reported in the graphs

below. Error bars are not shown because the sample standard deviation is always less than

2.1% of the mean.

9.2 Time

The setup and voting phases of an election are not computationally intensive. Generation

of keys and credentials in the setup phase scales linearly in the number of authorities and

voters respectively, and can be conducted offline. During the voting phase, voters retrieve

credential shares from registration tellers, and submit votes to ballot boxes. Experiments

indicate that voting time is reasonable: about 350ms for a voter to acquire a credential
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Figure 2: Tabulation time vs. voters (K = 100, A = 4)

share from a registration teller, and about 25ms to submit a vote to a ballot box. Thus, for

four authorities, it takes a voter less than 1.5 seconds to retrieve credentials and submit a

vote. From the registration teller’s perspective, it takes approximately 230ms of CPU time

to distribute a single voter’s credential share. Thus, a registration teller could process more

than 15,000 voters per hour.

The tabulation phase of an election, however, is computationally intensive. Therefore,

the rest of this performance study focuses on tabulation.

Tabulation of each block is independent of other blocks, and combining the block tallies

is a negligible part of the total tabulation time. This is demonstrated in Figure 2, where the

tabulation tellers process blocks sequentially, and the number of voters V is a multiple of the

block size K = 100. Civitas can tabulate ballots from 500 voters, on one set of machines,

in the target tabulation time of five hours.

The independence of block tabulation can be exploited to decrease tabulation time in at

least two ways. First, blocks can be tabulated in parallel, as discussed in Section 6. Given a

set of tabulation teller machines for each block, the data in Figure 2 predict that tabulation

could be completed in about 70 minutes, independent of V . Second, by computing early

returns (as suggested in Section 8.3), a good predictor of election results can be obtained

more quickly than the full tabulation. Because of the linear tradeoff between time and

machines at the granularity of blocks, the remaining measurements in this study are for

tabulation of a single block.

Security parameters A and K also affect tabulation time. Figure 3 shows that increasing

the number of tellers increases tabulation time. Time increases nonlinearly because total

communication increases quadratically in A. Changing anonymity parameter K affects

tabulation time dramatically, because the plaintext equivalent tests take time proportional

to K2. Figure 4 shows this effect.

Chaff. In Civitas, voters can invent fake (i.e., invalid) credentials and submit ballots under

those credentials to convince an adversary that they are voting as demanded. Voters can

also submit extra, duplicate ballots under the same credential (see Section 8.2). We refer to

invalid and duplicate ballots as chaff because they are eliminated during tabulation. Because
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Figure 3: Tabulation time vs. authorities (K = V = 100)
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Figure 4: Tabulation time vs. anonymity (V = K, A = 4)

chaff increases the block size M , it increases the tabulation time, similarly to increasing

anonymity parameter K. Figure 5 shows how tabulation time varies as a function of the

percentage of chaff ballots in each block; with fraction c chaff (split between invalid and

duplicate ballots) there are M = V
1−c

ballots in a block. All the other graphs in this study

assume c = .01. The percentage of chaff ballots submitted by voters should be small, since

coercion resistance discourages coercive attacks.

Memory usage. The memory footprint of Civitas is very small. With M = 100, the active

set is no more than 7MB at any time during tabulation. The size of the active set scales

linearly in M , so modern machines could easily fit tabulation in memory for substantially

larger values of M and of K (since K ≤M ).

9.3 Cost

A conservative way to estimate the cost of running an election would be to assume that

the hardware is used for just one election and then discarded. Figure 2 shows that a secure

election with 500 voters can be fully tabulated in about 5 hours. A dual-core version of our

experiment machines is currently available for about $1,500, so the machine cost for this

election is no more than $6,000, or $12 per voter. However, voting equipment is commonly
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Figure 5: Tabulation time vs. chaff (K = V = 100, A = 4)
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Figure 6: CPU utilization vs. voters (K = 100, A = 4)

reused for many elections, so this cost could be amortized.

If trust requirements permit leasing compute time from a provider, then costs can be

reduced dramatically. One current provider offers computing time, at a rate of $1 per CPU

per hour, on processors similar in performance to our experiment machines [73]. At this

rate, tabulation for 500 voters would cost about $20, or $0.04 per voter—clearly in the realm

of practicality.

Another way to reduce the cost of tabulation would be to use multiple cores on a mul-

ticore CPU. Multicore architectures (and multiprocessor systems more generally) offer sig-

nificant speedup for applications that are CPU-bound, have a small memory footprint, and

can be split into parallel threads that interact frequently. Tabulation has all of these charac-

teristics. The CPU utilization data of Figure 6 show that tabulation is CPU-bound.

Adjusting the security parameters of an election can also reduce cost. For example,

Figure 4 demonstrates that halving K approximately quarters tabulation time. Thus, for a

10-hour tabulation time, with K = 50 and A = 3, the cost per voter should be about 10

times smaller than a 5-hour, K = 100, A = 4 election.

Based on this performance study, Civitas offers cost, time, and security that is practical

for many real-world elections.
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10 Discussion

All systems can be attacked. This section discusses possible attacks against Civitas, and

corresponding defenses.

Attacks on the voter client. Much of the concern about the security of electronic vot-

ing has focused on vulnerabilities arising from direct-recording electronic (DRE) voting

terminals [50, 48]. The analogous component of Civitas is the machine and software that

implements the voter client. A key difference between the two kinds of systems is that in

Civitas, the voter client is under the control of the voter. This has advantages and disadvan-

tages with respect to security.

With DRE voting, the voter must use a voting machine that is provided by a local elec-

tion authority, with little recourse against untrustworthy authorities. In contrast, with Civi-

tas, voters are responsible for finding a voter client that they trust. Clearly, the voter client

could be compromised at various levels. The machine, including the network connection,

could potentially be controlled by the adversary. Further, any level of the software stack,

including the Civitas software itself, could contain vulnerabilities that enable the adversary

to compromise security.

It is reasonable to be concerned that voters’ own machines are not secure enough to

serve as a trustworthy voting client [64] and that voters will not scrutinize the voting soft-

ware they use. However, with Civitas, voters are not constrained to use their own machine

and software; they can use a machine provided by any organization that they trust, such as

their political party, university, or other social organization. These organizations can also

perform their own accreditation or even reimplementation of client hardware and software.

This ability to transfer trust mitigates concerns about client security.

Furthermore, because the Civitas source code is publicly available, and is written in Jif,

a type-safe programming language that controls information flows, it is easier to establish

trust in the Civitas voter client software than in proprietary voting systems.

Attacks on registration. Voters may attempt to sell their identity so an adversary can

register on their behalf. Or, an adversary may try to coerce a voter into revealing the voter’s

private key, which the adversary could then use to register as the voter.

Defending against these attacks seems to require authentication mechanisms that pre-

vent the adversary from masquerading as the voter. For example, registration may need

to be performed in person or by mail. This is a plausible solution, since registration may

be done far in advance of the actual election. Moreover, if Trust Assumptions 2 and 5 are

strengthened to honesty of tellers across multiple elections, credentials can be reused.

Attacks on the network. Civitas is secure in the presence of an adversary that has con-

siderable control over the network. The adversary is assumed to be able to read and modify

network traffic, except for the limitations expressed by Trust Assumption 2 (untappable

channels) and Trust Assumption 3 (anonymous channels, justified in Section 4). Civitas

secures all other channels with encryption, signing, and authentication protocols.
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The untappable channel is used to prevent the following attack. Suppose the adversary

can tap all channels to registration tellers and record the encrypted traffic between the voter

and the registration tellers. Further suppose that the adversary can compromise the regis-

tration client so that it records all credential shares received from tellers. The adversary can

then ask the client to reveal the plaintext credential shares corresponding to the encrypted

network messages. The voter can no longer lie about any credential shares without being

detected.

This attack assumes an adversary who has compromised the network and also can in-

duce voters to register using a compromised client. So a possible defense is to employ better

authentication mechanisms during registration, as discussed above.

The Civitas implementation of the registration client employs another defense: erasure

of all credential shares once the voter’s credential is constructed. This prevents the voter

from reporting them to the adversary. The erasure of the share information is enforced

within the code using erasure policies, as discussed in Section 7.

Attacks on election authorities. Trust Assumptions 2, 4, and 5 allow all but one of each

of the types of election authorities to be compromised, while still guaranteeing coercion

resistance and verifiability. Certain attacks may still be mounted by corrupting some small

sets of authorities.

• A corrupt registration teller may fail to issue a valid credential share to a voter, and the

voter necessarily cannot prove the (in)validity of a share to a third party. Defending

against this could involve the voter and another election authority, perhaps an external

auditor, jointly attempting to re-register the voter. The auditor could then attest to the

misbehavior of a registration teller.

• The bulletin board may fail. Because bulletin board messages are signed, altered

messages are detectable. Deletion of messages is an attack on availability, discussed

below.

• A corrupt registrar may add bogus voters or remove legitimate voters from the elec-

toral roll. Each tabulation teller can defend against this by refusing to tabulate unless

the electoral roll is correct, according to some external policy.

• A corrupt supervisor could post an incorrect ballot design, stop an election early,

or even attempt to simulate an election with only one real voter. All these can be

defended against if the voters and tabulation tellers cease to participate in the election

once the supervisor exhibits such behavior.

Attacks on availability. Civitas does not guarantee availability of either election author-

ities or the results of an election. However, the design of Civitas accommodates comple-

mentary techniques for achieving high availability.
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To improve the availability of authorities (tellers, ballot boxes, and the bulletin board),

they could be implemented as Byzantine fault-tolerant services [14, 63]. Also, the encryp-

tion scheme used by Civitas could be generalized from the current distributed scheme to

a threshold scheme. This would enable election results to be computed even if some tab-

ulation tellers permanently fail. However, an adversary would need to corrupt a smaller

percentage of tellers to compromise the security of the election.

To defend against application-level denial-of-service attacks, standard techniques such

as rate-limiting and puzzles could be employed. These will not, however, prevent the adver-

sary from injecting a large number of invalid ballots, which would inflate tabulation time.

A possible defense against this it to introduce a block capability that must be submitted

with each vote. The registrar could issue each voter a unique, unforgeable capability for the

voter’s assigned block. The tabulation tellers could check this capability before performing

the expensive plaintext equivalence tests. With this defense, the adversary must compro-

mise a voter and learn the block capability to successfully inflate tabulation time for that

block, and must repeat this attack for each block. If most blocks are not attacked and the

margin of victory is sufficiently large, it would be possible (similar to the production of

early returns in Section 8.3) to determine the result of the election by tabulating only the

unattacked blocks. However, this mechanism is left for future work.

11 Related Work

Cryptographic voting schemes can be divided into three categories, depending on the tech-

nique used to anonymize votes: homomorphic encryption, blind signatures, and mix net-

works. Here we cite a few examples of each type.

In schemes based on homomorphic encryption, voters submit encrypted votes that are

never decrypted [6, 22, 65, 38]. Rather, the set of submitted ciphertexts is combined (using

some operation that commutes with the encryption function) to produce a single ciphertext

containing the tally of the election, which is then decrypted. Blind signature schemes [32,

62, 61] split the election authority into an authenticator and tallier. The voter authenticates

to the authenticator, presents a blinded vote, and obtains the authenticator’s signature on

the blinded vote. The voter unblinds the signed vote and submits it via an anonymized

channel to the tallier. In mix network schemes, voters authenticate and submit encrypted

votes [15, 66, 4, 54]. The votes are sent through a mix network to anonymize them, then

the anonymized votes are decrypted.

Despite a plethora of voting schemes, few voting systems have actually been imple-

mented, and none of these offers confidentiality guarantees as strong as in Civitas. Nor

are any of these accompanied by security proofs. Sensus [23], based on a blind signature

scheme known as FOO92 [32], offers no defense against coercion. Neither does EVOX

[36], also based on FOO92. Both systems allow a single malicious election authority to

vote on behalf of voters who abstain. EVOX-MA [28] addressed this by distributing the

authority functionality. REVS [46, 52] extends EVOX-MA to tolerate failure of distributed

components, but it does not address coercion. ElectMe [71] uses a scheme based on ideas

from blind signature schemes, i.e., acquiring a signature of a part on a disguised vote to
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make the vote valid. Although ElectMe claims to provide coercion resistance, its coercion

model is weaker than that of Civitas. In particular, its model does not allow the adversary

to corrupt any election authorities. Further, if the adversary learns even the ciphertext of a

voter’s “ticket”, the scheme fails to be receipt-free. ElectMe also fails to be universally ver-

ifiable: although voters can verify their ballots are recorded correctly, the computation of

the tally is not publicly verifiable. Adder [49] implements a homomorphic scheme in which

voters authenticate to a trusted “gatekeeper”. If an adversary were to corrupt this gate-

keeper, Adder would fail to be coercion-resistant. Four voting systems are currently listed

as in development as part of the VoComp [70] competition, but it is not yet clear what secu-

rity properties these systems will satisfy. Earlier work on one of these systems [51] claims

to be coercion-free, but requires voters to sign votes, which appears susceptible to attacks in

which coercers insist either that the voter abstain or submit a ballot prepared by the coercer.

Kiayias [49] surveys several voting systems from the commercial world, including Vote-

Here [75]. These proprietary systems do not generally make their implementations publicly

or freely available, nor do they appear to offer coercion resistance.

As an optimization of the JCJ scheme, Smith [72] proposes replacing plaintext equiva-

lence tests with reencryption into a deterministic, distributed cryptosystem. Unfortunately,

the construction proposed in that work is insecure. The proposed encryption function is

Enc(m; z) = mz , where z is a secret key distributed among the tellers. However, this

scheme is malleable: given Enc(m), an adversary can easily construct Enc(mk) for any k.

This leads to an attack on coercion resistance. To test whether s is a valid private creden-

tial, the adversary can inject a vote using s2 as the private credential. After the proposed

encryption function is applied during invalid credential elimination, the adversary can test

whether any submitted credential is the square of any authorized credential; if so, then s is

valid with high probability.

12 Conclusion

This paper describes a complete design, implementation, and evaluation of a secure remote

voting system. To our knowledge, this has not been done before. Civitas satisfies stronger

security properties than previously implemented voting systems and is secure against a

stronger adversary, which is capable of corrupting most of the system. Although based on

a previously known voting scheme, creating Civitas, and making its performance scale, led

to the development of a secure registration protocol and a scalable ballot storage system.

Civitas thus contributes to both the theory and practice of electronic voting systems.

The many cryptographic protocols required to implement Civitas (and other secure vot-

ing systems) are distributed throughout the literature, where they are described at various

levels of abstraction. This paper (in Appendix B) makes a modest contribution by collect-

ing these and presenting them in a concrete form that other system builders could use to

reimplement Civitas.

Perhaps the most important contribution of this work is strong evidence that secure

electronic voting is possible and even feasible, contrary to conventional wisdom. We are

optimistic that voting systems constructed using principled techniques, like Civitas, will
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facilitate scientific and societal progress.
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[46] Rui Joaquim, André Zúquete and Paulo Ferreira. REVS—A Robust Electronic Voting

System. In IADIS International Conference on e-Society, Lisbon, Portugal, June 2003.

[47] Ari Juels, Dario Catalano and Markus Jakobsson. Coercion-Resistant Electronic Elec-

tions. In Workshop on Privacy in the Electronic Society, pages 61–70, Alexandria,

Virginia, November 2005.

[48] Chris Karlof, Naveen Sastry and David Wagner. Cryptographic Voting Protocols: A

Systems Perspective. In USENIX Security Symposium, 2005.

[49] Aggelos Kiayias, Michael Korman and David Walluck. An Internet Voting System

Supporting User Privacy. In Annual Computer Security Applications Conference,

pages 165–174, Miami Beach, Florida, December 2006.

[50] Tadayoshi Kohno, Adam Stubblefield, Aviel D. Rubin and Dan S. Wallach. Analysis

of an Electronic Voting System. In IEEE Symposium on Security and Privacy, pages

27–42, Berkeley, California, May 2004.
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A Security of Registration

The JCJ scheme assumed a registrar R, which was trusted to generate and to maintain the

confidentiality of private credentials. Civitas distributes this functionality and trust over

a set REG of registration tellers. We must show that REG securely implements R. In

particular, the Civitas registration scheme is coercion-resistant if:

1. The private credentials generated by REG are uniformly distributed, and

2. Fake credentials are indistinguishable from valid credentials.

(These requirements were extracted from steps 2 and 5 of the JCJ simulation proof of coer-

cion resistance.)

Assume that REG consists of only two tellers, RTH and RTC . Teller RTH is an honest

teller, whereas RTC is corrupted by the adversary. This is without loss of generality, since

Trust Assumption 2 assumes a single honest teller, and the actions of multiple corrupted

tellers can be simulated by a single corrupt teller.

Let sC be the private credential share generated for a voter by RTC , and similarly for

sH . Then the voter’s private credential is s = sH · sC . Also, recall that shares are chosen

from space M = QRp. The following lemma states that REG does generate uniformly

distributed private credentials.

Lemma 1. ∀sC . {sH ←M : sH · sC} = {s←M : s}

Proof. Since (M, ·) is a group, there is a unique sH = s · s−1
C .

Toward proving the indistinguishability of fake and valid credentials, let (Gen, Enc,
Dec) be an indistinguishable public-key encryption scheme. Let Enc(m;K; r) denote the

encryption of message m with public key K using random coins r. As before, letM be

the message space of the scheme. Let O be the space of random coins, and let ≈ denote

computational indistinguishability.

Let (DVRP, D̃VRP) be a designated-verifier reencryption proof (DVRP) [38]. This is a

proof that either the prover knows the private key k corresponding to the public key K of

the verifier, or that two ciphertexts c and c′ decrypt to the same plaintext. A valid DVRP,

constructed as DVRP(K, c, c′;w), is produced by a prover using a witness w to prove c′

is a reencryption of c. A fake DVRP, constructed as D̃VRP(K, c, c′; k), is produced by a

verifier, and proves knowledge of k. Intuitively, the key security property is that a valid

proof is indistinguishable from a fake proof; formal definitions can be found in Jakobsson

et al. [43].

To distribute a credential share s to voter V , an honest registration teller sends

(s, r′,DVRP(KV , S, S′;w))

to the voter, where S = Enc(s;KTT; r) is the public share posted on the bulletin board,

S′ = Enc(s;KTT; r′), and witness w is a function of r and r′. This establishes to the voter
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that S′ is an encryption of s, and S′ is a reencryption of S. The security of this registration

scheme is fundamentally based on the ability, resulting from the DVRP, of voters to lie

about the credential share. This is described by the following experiment:

RegExp(n, b) =
KTT, kTT ← Gen(1n);
KV , kV ← Gen(1n);
s←M; r ← O; r′ ← O;
S ← Enc(s;KTT; r); S′ ← Enc(s;KTT; r′);
P ← DVRP(KV , S, S′;w);
s̃←M; r̃ ← O;

S̃ ← Enc(s̃; KTT; r̃);

P̃ ← D̃VRP(KV , S, S̃; kV );
if b then

output (KTT,KV , S, s, r′, P )
else

output (KTT,KV , S, s̃, r̃, P̃ ).

If b = 1, the voter tells the truth about his share, otherwise he lies and fakes a DVRP.

The following lemma says that, to an adversary, these two cases are indistinguishable.

Lemma 2. {RegExp(n, 0)}n∈N ≈ {RegExp(n, 1)}n∈N

Proof. (A sketch of a simple hybrid argument.) Define three hybrids:

H0 = {KTT,KV , S, s, r′, P} = RegExp(n, 0)

H1 = {KTT,KV , S, s, r′, P̃ ′}

H2 = {KTT,KV , S, s̃, r̃, P̃} = RegExp(n, 1),

where P̃ ′ = D̃VRP(KV , S, S′; kV ). By the definition of a designated-verifier proof, H0 ≈
H1.

To show that H1 ≈ H2, assume for contradiction that there exists a distinguisher D
that has some non-negligible advantage in distinguishing H1 and H2. Using D, we can

construct a machine A that breaks the indistinguishability of the encryption scheme, as

follows. Machine A is given KTT, challenges m0 and m1, and a ciphertext c that encrypts

one of the challenges. It then constructs instances of H1 and H2, where S = c, s = s̃ = m0,

and other values are sampled randomly, and asks D to distinguish them. Note that A can

construct a fake DVRP because it generates the key pair (KV , kV ).
By the polynomial transitivity of indistinguishability, we conclude H0 ≈ H2.

Let Cred be the information obtained by the adversary when the voter presents a valid

credential and FakeCred be the information from a fake credential, where

Cred = {KTT,KV , SH , sH , r′H , PH , SC , sC , r′C , PC}

FakeCred = {KTT,KV , SH , s̃H , r̃H , P̃H , SC , sC , r′C , PC}.
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Indistinguishability of valid and fake credentials, and the security of REG, then follows, as

the voter can lie about share sH .

Corollary 1. Cred ≈ FakeCred

Proof. Immediate from Lemma 2.

Theorem 1. Registration is coercion-resistant.

Proof. Immediate from Lemma 1 and Corollary 1.
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B Protocol Specification

In the following protocols, El Gamal cryptosystem parameters (p, q, g) are implicitly used

as input to all protocols (except parameter generation itself). A hash function, denoted

hash , is used in some protocols. In zero-knowledge proofs, hash is assumed to implement

a random oracle; elsewhere, it must be collision-resistant and one-way. LetO be a space of

random bits of appropriate length in each context that it is used.

B.1 Encryption scheme

Civitas implements an El Gamal encryption scheme over message space QRp, although it

is convenient to consider this message space to be the isomorphic group Zq. Further, the

zero element of the group is excluded because it has a degenerate encryption. Mapping

from Zq to QRp is necessary because El Gamal encryption leaks the Legendre symbol of

the plaintext [7].

The algorithms below describe standard, non-malleable, and distributed constructions

of El Gamal encryption. An algorithm for distributed encryption is omitted because it is

identical to the standard algorithm. The standard construction is due to El Gamal [34];

non-malleable, Schnorr and Jakobsson [69]; and distributed, Brandt [9].

ALGORITHM: El Gamal Parameter Generation

Due to: Handbook of Applied Cryptography [55]

Input: Security parameter k
Output: Parameters (p, q, g)

1. Select a random k-bit prime q; compute p = 2q + 1; repeat until p is prime

2. h← [2..p− 2]; repeat until h2 6≡ 1 (mod p) and hq 6≡ 1 (mod p); g = h2 mod p

3. Output (p, q, g)

ALGORITHM: El Gamal Key Generation

Input: El Gamal parameters (p, q, g)
Output: Public key y, private key x

1. x← Z∗

q

2. y = gx mod p

3. Output (y, x)

34



ALGORITHM: EncodeQR

Input: m ∈ Z∗

q

Output: M ∈ QRp

1. M =

{

m : mq ≡ 1 (mod p)
p−m : mq ≡ −1 (mod p)

ALGORITHM: DecodeQR

Input: M ∈ QRp

Output: m ∈ Z∗

q

1. m =

{

M : M < q
p−M : M > q

ALGORITHM: El Gamal Encryption

Input: Public key y, message m ∈ Z∗

q

Output: Enc(m; y)

1. M = EncodeQR(m)

2. r ← Z∗

q

3. Output (gr mod p, Myr mod p)

ALGORITHM: El Gamal Reencryption

Input: Public key y, ciphertext c = (a, b)
Output: Reenc(c)

1. r ← Z∗

q

2. Output (agr mod p, byr mod p)
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ALGORITHM: El Gamal Decryption

Input: Private key x, ciphertext c = (a, b)
Output: Dec(c;x)

1. M = b
ax mod p

2. Output DecodeQR(M)

ALGORITHM: Non-Malleable El Gamal Encryption

Input: Public key y, message m ∈ Z∗

q

Output: NMEnc(m; y)

1. r, s← Z∗

q

2. (a, b) = Enc(m; y; r)

3. c = hash(gs mod p, a, b) mod q

4. d = (s + cr) mod q

5. Output (a, b, c, d)

ALGORITHM: Non-Malleable El Gamal Decryption

Input: Private key x, ciphertext e = (a, b, c, d)
Output: NMDec(e;x)

1. V = hash(gda−c mod p, a, b) mod q

2. Abort if V 6= c

3. Output Dec((a, b);x)

ALGORITHM: Commitment

Input: Message m
Output: Commit(m)

1. Output hash(m)
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PROTOCOL: Distributed El Gamal Key Generation

Public input: Parameters (p, q, g)
Output: Public key Y , public key shares yi, private key shares xi

1. Si: xi ← Z∗

q ; yi = gxi mod p

2. Si: Publish Commit(yi)

3. Si: Barrier: wait until all commitments are available

4. Si: Publish yi and proof KnowDlog(g, yi)

5. Si: Verify all commitments and proofs

6. Y =
∏

i yi mod p is the distributed public key

7. X =
∑

i xi mod q is the distributed private key

PROTOCOL: Distributed El Gamal Decryption

Public input: Ciphertext c = (a, b), public key shares yi

Private input (Si): Private key share xi

Output: DistDec(c;X)

1. Si: Publish decryption share ai = axi mod p and proof EqDlogs(g, a, yi, ai)

2. Si: Verify all proofs

3. A =
∏

i ai mod p

4. M = b
A

mod p

5. Output DecodeQR(M)
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B.2 Zero-knowledge proofs

PROTOCOL: KnowDlog

Due to: Schnorr [68]

Principals: Prover P and Verifier V
Public input: h, v
Private input (P ): x s.t. v ≡ hx (mod p)

1. P : Compute:

• z ← Zq

• a = hz mod p

• c = hash(v, a) mod q

• r = (z + cx) mod q

2. P → V : a, c, r

3. V : Verify hr ≡ avc (mod p).

PROTOCOL: EqDlogs

Due to: Chaum and Pedersen [16]

Principals: Prover P and Verifier V
Public input: f, h, v, w
Private input (P ): x s.t. v ≡ fx (mod p) and w ≡ hx (mod p)

1. P : Compute:

• z ← Zq

• a = fz mod p

• b = hz mod p

• c = hash(v, w, a, b) mod q

• r = (z + cx) mod q

2. P → V : a, b, c, r

3. V : Verify f r ≡ avc (mod p) and hr ≡ bwc (mod p).
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PROTOCOL: DVRP

Due to: Hirt and Sako [38]

Principals: Prover P and Verifier V
Public input: Public key hV of V

El Gamal ciphertexts e = (x, y) and e′ = (x′, y′)
Public key h under which e and e′ are encrypted

Let E = (e, e′)
Private input (P ): ζ s.t. x′ ≡ xgζ (mod p) and y′ ≡ yhζ (mod p)
Output: DVRP(hV , e, e′; ζ)

1. P : Compute:

• d, w, r ← Zq

• a = gd mod p

• b = hd mod p

• s = gw(hV )r mod p

• c = hash(E, a, b, s) mod q

• u = (d + ζ(c + w)) mod q

2. P → V : c, w, r, u

3. V : Compute:

• a′ = gu/(x′/x)c+w mod p

• b′ = hu/(y′/y)c+w mod p

• s′ = gw(hV )r mod p

• c′ = hash(E, a′, b′, s′) mod q

4. V : Verify c = c′
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PROTOCOL: FakeDVRP

Due to: Hirt and Sako [38]

Principals: Prover P
Public input: Public key hP of P

El Gamal ciphertexts e = (x, y) and ẽ = (x̃, ỹ)
Public key h under which e and ẽ are encrypted

Let Ẽ = (e, ẽ)
Private input (P ): Private key zP of P

Output: D̃VRP(hP , e, ẽ; zP )

1. P : Compute:

• α, β, ũ← Zq

• ã = gũ/(x̃/x)α mod p

• b̃ = hũ/(ỹ/y)α mod p

• s̃ = gβ mod p

• c̃ = hash(Ẽ, ã, b̃, s̃) mod q

• w̃ = (α− c̃) mod q

• r̃ = (β − w̃)/(zP ) mod q

2. P → V : c̃, w̃, r̃, ũ

3. V : c̃, w̃, r̃, ũ will verify as a DVRP, as above.
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PROTOCOL: ReencPf

Due to: Hirt and Sako [38]

Principals: Prover P and Verifier V
Public input: L ∈ N

C = {(ui, vi) | 1 ≤ i ≤ L}
c = (u, v)

Private input (P ): t ∈ [1..L] and r ∈ Zq s.t. (u, v) = (grut mod p, yrvt mod p)

1. P : Compute:

• di, ri ← Zq, i ∈ [1..L]

• {(ai, bi) | i ∈ [1..L]}, where:

ai = (ui

u
)digri mod p

bi = (vi

v
)diyri mod p

• E = u, v, u1, . . . , uL, v1, . . . , vL

• c = hash(E, a1, . . . , aL, b1, . . . , bL) mod q

• w = (−rdt + rt) mod q

• D = c− (
∑

i∈[1..t−1,t+1..L] di) mod q

• R = (w + rd′t) mod q

• dv
i =

{

di : i 6= t
D : i = t

• rv
i =

{

ri : i 6= t
R : i = t

2. P → V : (dv
1, . . . , d

v
L, rv

1 , . . . , r
v
L)

3. V : Compute:

• {(av
i , b

v
i ) | i ∈ [1..L]}, where:

av
i = (ui

u
)dv

i grv

i mod p

bv
i = (vi

v
)dv

i yrv

i mod p

• c′ = hash(E, av
1, . . . , a

v
L, bv

1, . . . , b
v
L) mod q

• D′ =
∑

i∈[1..L] d
v
i mod q

4. V : Verify c′ = D′
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PROTOCOL: VotePf

Due to: Camenisch and Stadler [11]

Principals: Prover P and Verifier V
Public input: Encrypted credential (a1, b1)

Encrypted choice (a2, b2)
Vote context ctx (election identifier, etc.)

Let E = (g, a1, b1, a2, b2, ctx )
Private input (P ): α1, α2 s.t. ai ≡ gαi (mod p)

1. P : Compute:

• r1, r2 ← Zq

• c = hash(E, gr1 mod p, gr2 mod p) mod q

• s1 = (r1 − cα1) mod q

• s2 = (r2 − cα2) mod q

2. P → V : c, s1, s2

3. V : Compute c′ = hash(E, gs1ac
1, g

s2ac
2) mod q

4. V : Verify c = c′
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B.3 Main protocols

PROTOCOL: Plaintext Equivalence Test (PET)

Due to: Jakobsson and Juels [41]

Principals: Tabulation tellers TTi

Public input: cj = Enc(mj ;KTT) = (aj , bj) for j ∈ {1, 2}
Private input (TTi): Private key share xi

Let R = (d, e) = (a1/a2, b1/b2)
Output: If m1 = m2 then 1 else 0

1. TTi: zi ← Z∗

q ; (di, ei) = (dzi , ezi)

2. TTi: Publish Commit(di, ei)

3. TTi: Barrier: wait until all commitments are available

4. TTi: Publish (di, ei) and proof EqDlogs(d, e, di, ei)

5. TTi: Verify all commitments and proofs

6. Let c′ = (
∏

i di,
∏

i ei)

7. All TT: Compute m′ = DistDec(c′) using private key shares

8. If m′ = 1 then output 1 else output 0

ALGORITHM: Mix

Due to: Jakobsson, Juels, and Rivest [42]

Input: List L of ciphertexts [c1, . . . , cm],
verification direction dir ∈ {in, out}

Output: RPC reencryption mix of L

1. π ← Space of permutations over m elements

2. If dir = in then p = π else p = π−1

3. r1 ← Z∗

q . . . ; rm ← Z∗

q ; w1 ← O; . . . ; wm ← O

4. LR = [Reenc(cπ(1); r1), . . . ,Reenc(cπ(m); rm)]

5. LC = [Commit(w1, p(1)), . . . ,Commit(wm, p(m))]

6. Output LR, LC
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PROTOCOL: MixNet

Due to: Jakobsson, Juels, and Rivest [42]

Principals: Tabulation tellers TT1, . . . , TTn

Public input: List L of ciphertexts [c1, . . . , cm]
Output: Anonymization of L

1. For i = 1 to n, sequentially:

(a) Let Mixi,j denote the jth mix performed by the ith teller.

Define Mix0,2.LR = L.

(b) Let L1 = Mixi−1,2.LR

(c) TTi : Publish Mixi,1 = Mix(L1, out)

(d) Let L2 = Mixi,1.LR

(e) TTi : Publish Mixi,2 = Mix(L2, in)

(f) TTi : qi ← O; publish Commit(qi)

2. All TTi: Publish qi; verify all other tellers’ commitments

3. Let Q = hash(q1, . . . , qn)

4. All TTi:

(a) Let Qi = hash(Q, i)

(b) For j in [1..m], publish rj , wj , and p(j) from Mixi,1+Qi[j]

(c) Verify all commitments (w and p) and reencryptions (r) from all other tellers,

i.e.:

i. Verify wj and p(j) against Mixi,1+Qi[j].LC [j]

ii. If Qi[j] = 0 then verify Reenc(Mixi−1,2.LR[p(j)]; rj) = Mixi,1.LR[j],
else if Qi[j] = 1 then verify Reenc(Mixi,1.LR[j]; rj) = Mixi,2.LR[p(j)]

5. Output Mixn,2.LR
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PROTOCOL: Register

Due to: Needham-Schroeder-Lowe [53] (steps 1–8)

Our own adaptation of ideas from [22, 38, 47] (steps 9–11)

Principals: Registration teller RTi and Voter V
Public input: KTT,KRTi

,KV ,

election identifier eid , voter identifier vid , teller identifier rid ,

public credential Si = EncEG(si;KTT; r)
Private input (RTi): Private credential si and encryption factor r ∈ Z∗

q

Private input (V ): kV

1. V : NV ← N

2. V → RTi: EncRSA(eid , vid , NV ;KRTi
)

3. RTi: Verify that vid is a voter in eid and lookup credential si

4. RTi: NR ← N ; k ← GenAES(1
l)

5. RTi → V : EncEG(rid , NR, NV , k;KV )

6. V : Verify rid and NV

7. V → RTi: NR

8. RTi: Verify NR

9. RTi: r′ ← Z∗

q ; w = r′ − r; S′

i = EncEG(si;KTT; r′)

10. RTi → V : EncAES(si, r
′,DVRP(KV , Si, S

′

i;w)); k)

11. V : Verify DVRP against Si from bulletin board

To register, voter V completes protocol Register with each registration teller RTi. After

constructing a complete private credential s =
∏

i si, the voter may erase all shares si,

DVRPs, and session key k.

In protocol Register, N is the space of nonces and l is the security parameter for AES.

As discussed in Section 5, the use of RSA could be replaced by another cryptosystem, but

the voter’s El Gamal key is necessary for the DVRP. The use of AES could similarly be re-

placed by another cryptosystem, perhaps El Gamal in a block mode, or even a construction

of deniable encryption [12].

The authentication protocol used in steps 1–8 of Register is not strictly an implemen-

tation of Needham-Schroeder-Lowe because step 7 is not encrypted under KRTi
. This is

admissible because nonce NR is not used to construct the session key k. In this respect, the

authentication protocol is similar to ISO/IEC 11770-3 Key Transport Mechanism 6 [40].
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PROTOCOL: Vote

Due to: Juels, Catalano, and Jakobsson [47]

Principals: Voter V , ballot boxes

Public input: KTT, vote context ctx ,

well-known candidate ciphertext list C = (c1, . . . , cL)
Private input (V ): Private credential s and candidate choice ct for some t

1. V : rs ← Z∗

q ; es = Enc(s;KTT; rs)

2. V : rv ← Z∗

q ; ev = Reenc(ct; KTT; rv)

3. V : vote = (es, ev ,VotePf(es, et , ctx , rs, rv),ReencPf(C, ev , t, rv))

4. V → ballot boxes: vote
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PROTOCOL: Tabulate

Due to: Juels, Catalano, and Jakobsson [47]

Principals: Tabulation tellers TT1, . . . , TTn, Bulletin board ABB

Ballot boxes VBB1, . . . ,VBBm, Supervisor Sup

Public input: KTT, contents of ABB

Private input (TTi): Private key share xi of KTT

Output: Election tally

1. All VBB i: Post Commit(received votes) on ABB

2. Sup: Post endorsement of all received VBB commitments

3. All TTi: Proceed sequentially through the following phases. Each phase has a list

(e.g., A, B, etc.) as output. In each phase that uses such a list as input, verify that

all other tellers are using the same list. Use ABB as a public broadcast channel

for any subprotocol that requires publication of a value; all posts to ABB must (as

usual) be signed, and all messages retrieved from it should have their signatures

verified.

Retrieve Votes. Retrieve all votes from all endorsed VBBs. Verify the VBB

commitments. Let the list of votes be A.

Check Proofs. Verify all VotePfs and ReencPfs in retrieved votes. Eliminate any

votes with an invalid proof. Let the resulting list be B.

Duplicate Elimination. Run PET(si, sj) for all 1 ≤ i < j ≤ |B|, where sx is

the encrypted credential in vote B[x]. Eliminate any votes for which the PET

returns 1 according to a revoting policy; let the remaining votes be C.

Mix Votes. Run MixNet(C) and let the anonymized vote list be D.

Mix Credentials. Retrieve all credentials from ABB and let this list be E. Run

MixNet(E) and let the anonymized credential list be F .

Invalid Elimination. Run PET(si, tj) for all 1 ≤ i ≤ |F | and 1 ≤ j ≤ |D|,
where si = F [i] and tj = D[j]. Eliminate any votes (from D) for which the

PET returns 0. Let the remaining votes be G.

Decrypt. Run DistDec on all encrypted choices in G. Output the decryptions as

H , the votes to be tallied.

Tally. Compute tally of H using an election method specified on ABB by Sup.

Verify tally from all other tellers.

4. Sup: Endorse tally
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