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ABSTRACT

We propose CL-PRE, a certificateless proxy re-encryption
scheme for secure data sharing with public cloud. In CL-
PRE, a data owner encrypts shared data in cloud with an en-
cryption key, which is further encrypted and transformed by
cloud, and then distributed to legitimate recipients in accor-
dance with access control. Uniquely, the cloud-based trans-
formation leverages re-encryption keys derived from private
key of data owner and public keys of receipts, and eliminates
the key escrow problem in identity based cryptography and
the need of certificate. While preserving data and key pri-
vacy from semi-trusted cloud, CL-PRE leverages maximal
cloud resources to reduce the computing and communica-
tion cost for data owner. Towards running proxy in public
cloud environment, we further propose multi-proxy CL-PRE
and randomized CL-PRE, which enhance the security and
robustness of CL-PRE. We implement all CL-PRE schemes
and evaluate their security and performance.

Categories and Subject Descriptors

E.3 [Data Encryption]: Public key cryptosystems; D.4.6
[Security and Protection]: Cryptographic controls

General Terms
Security, Algorithms

Keywords

Cloud computing, cloud storage, certificateless public key
cryptography, proxy re-encryption, access control

1. INTRODUCTION

Security has been considered as one of the critical con-
cerns that hinder public cloud to be widely used. With the
separation of data ownership and storage, a data owner has
strong motivation to preserve its control of access and usage
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of shared data while leverage storage, computation, and dis-
tribution functions provided by cloud, and desire that a pub-
lic cloud should not learn any clear data. It has been widely
recognized that data confidentiality should be mainly relied
on cloud customers instead of cloud service providers [1, 31].

A typical approach for data confidentiality protection is to
encrypt a data with a (usually symmetric) key before stor-
ing it to cloud. However, encryption makes it difficult for
flexibly sharing data between different users. On one side,
sharing the data encryption key to all users easily enables a
user to access all data that stored in cloud of a data owner,
which violates the least privilege principle. On the other
side, any change of access control policy either demands de-
cryption and re-encryption of the data in cloud, which ex-
poses clear data in cloud, or the data owner has to re-encrypt
the data and re-upload to cloud, which brings computation
and bandwidth cost to the owner. Furthermore, collusion
between a legitimate user and the cloud easily allows unau-
thorized data sharing and distribution.

Key management is another burdensome task for encryp-
tion based access control. A data owner may manage keys
by itself, e.g., through sending the data encryption key to
individual recipients with the assumption that each user is
equipped with a private/public key pair and the data en-
cryption key is encrypted with a recipient’s public key. This
introduces heavy computing load at data owner side, and
relies on trust and key management systems such as PKI
which may not be scale and flexible well. Broadcast encryp-
tion and group key management can be used for sharing
data in group manner. However, managing group is compli-
cated in particular for today’s pervasive data sharing such
as cloud-based collaborations and social networks, where the
number of groups of interests for an individual user is large.
In addition, the size of a group can also be large, and the
membership usually changes frequently, which makes group
key management very tedious for a common user.

Since cloud is a resource pool for computation, storage,
and networking, and provides elastic and pay-as-you-go re-
source consumption model, our motivation is to leverage
cloud for encryption-based access control and key manage-
ment. Towards end-to-end data confidentiality, we consider
the cloud is semi-trusted, that is, clear data and encryption
keys should never be exposed in cloud. Such a cloud based
approach should be able to deliver data encryption keys with
respect to pre-defined access control policies from the data
owner, and introduce minor overhead on cloud users by elim-
inating any direct interaction between a data owner and its
recipients.



To achieve these goals, we develop CL-PRE, a new proxy-
based re-encryption scheme augmented with certificateless
public key cryptography, which leverages cloud not only for
data storage but also for secure key distribution for data
sharing. With CL-PRE, a data is first encrypted with a
symmetric data encryption key (DEK) before stored in cloud
by its owner. The data owner then generates proxy re-
encryption keys with all of its potential recipients and sends
to a cloud resident proxy service, along with the encrypted
DEK with its public key. Using the re-encryption keys, the
cloud is then able to transform the encrypted DEK to one
that can be decrypted using an individual recipient’ private
key. In this way, the cloud works only as a proxy for key
management. CL-PRE ensures that the cloud cannot get
the clear DEK during the transformation.

An important novelty of CL-PRE is using certificateless
public key cryptography [2] for proxy re-encryption, which is
the first attempt to our best knowledge. Uniquely, CL-PRE
leverages the identity of a recipient as an ingredient of its
public key, while eliminates the key escrow problem in tra-
ditional identity-based encryption (IBE) [8], and does not
require the use of certificates to guarantee the authenticity
of public keys. Furthermore, a recipient generates its pub-
lic key without interacting with PKG. In the process of pri-
vate key generation, the recipient only needs to interact with
PKG for one time. In order to update the public/private key
pair later, it does not need to contact PKG. So the burden
of PKG is reduced greatly.

The novel properties of CL-PRE satisfy security require-
ments for many cloud-based information sharing applica-
tions such as social network service (SNS), where traditional
PKI-like key management mechanism is not suitable because
of lack of flexibility and scalability. In SNS, people often
share pictures, videos, and personal comments with friends.
Since these contents usually contain privacy related informa-
tion, it is desirable to protect them from the service provider
and unauthorized users. Specifically, each user can generate
her own public key and publish it on her homepage of SNS.
Users who want to share data with others establish relation-
ships by generating re-encryption keys. With re-encryption
provided by SNS or other web services, individual users can
share personal contents securely and conveniently.

Towards a public cloud-based solution, the proxy in CL-
PRE runs in potentially malicious execution environment,
where any vulnerability in cloud platform (e.g., in virtual-
ization layer of a cloud node) can compromise the proxy
and enable an attacker to perform data re-encryption for
any unauthorized user. To address this, we propose two ex-
tensions for CL-PRE. First, we introduce multi-prozy CL-
PRE, where multiple proxies are deployed in different cloud
providers. An attacker has to compromise partial or all of
them in order to achieve the attacking goal, therefore the
security is significantly enhanced. Second, we introduce ran-
domized CL-PRE, which further reduces the trust on a proxy
by randomizing re-encryption key for each request, such that
a proxy cannot perform re-encryption without obtaining a
new re-encryption key from the data owner, therefore cannot
abuse the data sharing capability.

We have implemented all CL-PRE schemes and evaluated
their performance for data owner, proxy in cloud, and data
recipient. Our results confirm that CL-PRE is a practical
solution towards flexible and large-scale data sharing with
cloud.

In summary, our contribution is 3-fold in this paper.

1. We propose a new certificateless proxy re-encryption
scheme called CL-PRE for flexible data sharing with
public cloud, which preserves final access control for
data owner without completely trusting cloud infras-
tructure. CL-PRE uniquely leverages identity as par-
tial of a user’s public key and eliminates key escrow
problem. We prove that CL-PRE is CPA-secure in
random oracle model.

2. We extend CL-PRE to support multiple proxies de-
ployed on different cloud providers, and randomized
re-encryption keys for different data sharing sessions.
Our extensions further enhance security and reduce
trust for proxy running in public cloud.

3. We propose a method to accelerate re-encryption oper-
ations in cloud. We conduct communication and per-
formance evaluation for data owner, proxy, and data
recipient. Our results confirm that our schemes can
satisfy performance requirement for large scale data
sharing.

The remainder of this paper is organized as follows. In
Section 2 we describe the trust model and overall architec-
ture for cloud based data sharing. Section 3 presents the
basic CL-PRE scheme with security analysis, and Section 4
presents two security enhanced extensions for CL-PRE. We
give performance evaluations in Section 5 and summarize
related work in Section 6. Section 7 concludes this paper.

2. OVERVIEW

In this section we describe security assumptions and the
overall architecture of CL-PRE for cloud based data sharing.

2.1 Trust Model and Assumptions

We assume cloud is semi-trusted. This means that cloud
works fairly by following pre-defined protocols and policies
between end users and cloud services, e.g., upon client agree-
ment. Yet with the high complexity of public cloud environ-
ment, cloud is not able to guarantee data confidentiality.
The corruption of data security may be caused by social at-
tacks towards cloud administrators, or by attacks that take
advantage of security vulnerabilities of cloud infrastructure.
However, we assume that cloud is able to achieve security
over critical data, which includes the integrity and availabil-
ity of public keys and access control policies.

We further assume that there exists a private key gen-
erator (PKG) that is able to generate part of private keys
based on users’ identities and securely deliver these keys to
cloud users. We also assume a cloud client has basic capa-
bilities on generating and managing different types of keys.
In addition, a client is able to make its own data secure. We
do not consider data re-dissemination after a legitimate user
successfully decrypts a protected data.

2.2 Overall Architecture

As Figure 1 shows, a cloud user, named data owner, shares
data to a number of other cloud users called recipients. A
data is first encrypted with a symmetric data encryption key
(DEK) by its owner, and then stored in the cloud, along with
an access control list (ACL) indicating the recipient group.
The data owner also encrypts the DEK using its public key,
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Figure 1: Overview of CL-PRE for data sharing.

and sends the encrypted DEK to the cloud as well. Upon
access request from a recipient, based on the ACL, a prozy
server in the cloud takes a re-encryption key sent from the
data owner, and uses a re-encryption algorithm to transfer
the encrypted DEK into the format that can be decrypted by
the recipient’s private key. The recipient then can download
the encrypted data from the cloud and use the DEK for
decryption.

A data owner may share different files with different re-
cipient groups. For each of these groups, it uses a unique
DEK. Therefore, a recipient cannot read data for a group
it does not belong to. The cloud, on the other hand, acts
as an intermediate proxy making data understood among
cloud users. It cannot read the data as it cannot get DEKs.

A re-encryption key is generated from the data owner’s
private key and a recipient’s public key. Since the number
of cloud users participating in file sharing may be large, tra-
ditional PKI based approach has the public key management
issue, and IBE based approach has the private key escrow
problem. Uniquely, we adopt certificateless based encryp-
tion [2] in our re-encryption scheme.

3. CL-PRE SCHEME

This section first presents the basic CL-PRE scheme, then
proves that this scheme is CPA-secure, and then analyzes its
security properties and key update issue.

3.1 Main Algorithm

We denote user A the data owner, user B a data recipient,
and proxy a cloud-resident service.

PKG Setup. Let G1,G2 be two cyclic groups of prime
order p, and e : G1 X G1 — G2 be a bilinear map. The
message space is G2. Hi is a hash function from {0,1}* to
G1, and Hs is a hash function from G2 to Gi. A random
generator g € GGp is chosen. The PKG randomly picks an
integer s € Z;, as the master key, and publishes g°.

Partial Private Key Extraction. User A with identity
ID4 asks the PKG for partial private key extraction. The
PKG calculates ga = H1(IDa),Da = g3 and sends Da to
user A. The same operation with user B.

Secret Value Generation. User A randomly chooses an
integer x4 € Zf,. The same with user B.

Private Key Generation. User A computes private key:
ska =D =g5"™. (1)

The same operation is performed by user B. To achieve de-
cryption delegation (to allow others to decrypt data that is
originally encrypted with A’s public key), A also chooses a
random integer ¢t. ska and t are kept secret.

Public Key Generation. User A computes her public key:

pka = (ga,g°"*), (2)

where ga = Hi(IDa). pka is published and anyone who
wants to send A a message can use this for encryption. Note
that ga can be calculated by everyone from user A’s identity.
For decryption delegation, user A also publishes g' as part
of her public key. The same operation is performed by B.

Note that a public key can be derived by user indepen-
dently, i.e., the user does not need to contact PKG for public
key generation.

Encryption. To encrypt a message m € G2 that can only
be decrypted by herself, user A randomly chooses integer r
and calculates

c=Ca(m) = (g",m-e(ga,g""*)).

For decryption delegation, user A also randomly chooses
integers r and calculates

d=Ch(m)=(g",9",m-e(gh,g>"*)).

In our data sharing architecture illustrated in Section 2,
m is the DEK (or DEK can be derived from m) for a sharing
group generated by user A.

Decryption. To decrypt Ca(m) = (u,v) under ska, user
A calculates

ST A

v/e(ska,u) =m-e(ga,g""*)" [e(g3"*,9") =m.

Proxy Re-encryption Key Generation. To delegate
decryption right to user B, user A randomly chooses = € Ga,
and computes a proxy re-encryption key:

TkA—)B - (QES‘ZA : Hé(x%CB(x))a (3)

which is then sent to the proxy by user A.

Proxy Re-encryption. To re-encrypt a ciphertext C’y (m)
under re-encryption key rka_, g, the proxy computes

/)

¢"=m-e(ga,g"") -e(gy” " Hi(2),9")
=m-e(H;(x),9"),

and then sends (¢*", ¢, Cp(x)) to user B.

Re-encryption Decryption. After receiving (¢'", ¢, Cp(x)),

user B decrypts Cp(x) to get =, and then gets the message
by computing

¢ fe(Ha(x),g"") = m.

Hash Functions H; and H;. The CL-PRE scheme in this
section uses a hash function H; : {0,1}* — G1 and a hash
function Hy : G2 — G1. For a concrete system, G is usually
a subgroup of points on elliptic curve and G2 a finite field.
In order to construct H; and Hz, we introduce the concept
of Admissible Encoding [8]. A concrete admissible encoding
function MapToPoint for elliptic curve y* = x4 1 over F,
was given in [8], which maps an element of F,, to G.



For hash function H; in our scheme, we choose a hash (d) When A submits the query

function with appropriate output length (for example, if (extractReEncryptionKey, ID:, ID2), B3 evalu-
|p| = 512, we choose SHA-512) and make the ID as input, ates H1(ID:1) and H;(ID2) to get two tuples

and reduce the output by p to get an element of F,. We
then use MapToPoint to map to GG1. For hash function Has,
we first map element of G2 to {0,1}" by representing ele-
ment of G2 in binary form and then use above method to
map to Gi1. As described in [8], these techniques do not

(ID1, h1,x1, 21,t1, 1), (ID2, ha, T2, 22, t2, t2).

B also picks r & Ly, Jad G1 and X £ Go. If
a1 = 0, B returns the re-encryption key

affect the security property of the scheme. rkm, -1, = (T, (gb)r, X - TT%272)

3.2 Security Analysis of CL-PRE to A . If oy =1, B returns the re-encryption key
The security of CL-PRE is based on the assumed in- Tk, s, = ((¢%) 771" - Ha(X)", Cp, (X))

tractability of the Decisional Bilinear Diffie-Hellman prob-

lem (DBDH), which is defined as follows: Let (G1,G2) be to A

a pair of bilinear groups of prime order p and with an effi-
ciently computable bilinear pairing e : G1 xG1 — G2, and let
g be arandom generator of G1. The DBDH problem is to de-
cide, when given a tuple of values (g, ¢%, ¢°, ¢, T) € G} X G2
(where a,b,c €gr Zy), whether T = e(g,¢)** or T is a ran-
dom element of Gs.

For CL-PRE, we assume an adversary can extract partial

3. Challenge Phase. .A chooses (ID*, mg,m1) where ID*
should not be trivial. We say ID* is trivial if in Query
Phase I, A has extracted private key for ID’ and a
re-encryption key from ID* to ID’. Then B evaluates
H,(ID*) and gets (ID*,h,z,z,t,c). B chooses i €r
{0,1} and returns (g°,m; - T%%) to A .

private key or private key of a recipient, or both, for identi- 4. Query Phase II. A makes queries as in the Query

ties of their choice. As a proxy re-encryption scheme, the ad- Phase I, but A is not allowed to make any query that

versary has access to re-encryption oracle and re-encryption will make the challenge trivial.

key generation oracle. If an adversary can break our scheme,

it can solve the DBDH problem. This also implies that CL- 5. Guess Phase. .A guesses which message is correspond-

PRE is collusion resistant, i.e., collusion between a recipient ing to the cipher, and outputs its guess i’ € {0,1}.

and the proxy cannot recover the private key of a data owner. Let a; be the value of o generated by Hi(ID;). Prior
We adopt the security proof techniques from [21] and [8]. to outputting a value, B verifies following conditions:

Let A be an p.p.t algorithm that has non-negligible advan-

tage € in attacking the scheme. We use A to construct an (a) The value a corresponding to ID* is 0.

algorithm B to solve DBDH problem. Algorithm B accepts a

) - ! . (b) For each of A ’s queries (extractPrivateKey,
tuple (9%, 9°, 9%, T) as input and outputs 1 if T' = e(g, g)*"°.

ID;) and (extractPublicKey, ID;), a; = 1.

(c) For each of A ’s queries (extractReEncryption-
Key, ID;, ID;), where ID; — ID; lies along a
path leading from ID*, a;; = 0.

Oracle Queries.

B simulates the random oracle Hy : {0,1}* — G as fol-
lows: For a query ID which does not have been queried,
(d) For each of A ’s queries (extractReEncryption-

Key, ID;, ID;), where ID; — ID; does not lie
along a path leading from ID*, «a; = 1.

B picks z, z,t £ Z,, and randomly flips a weighted coin to
set a < 1 with probability v, and o < 0 otherwise. If
a =0, set h < (¢°)?, else compute h < g*. B records the
tuple (ID, h,x, z,t, ) and returns h as the result.

B simulates the random oracle Hs : G2 — (1 by returning
a random element of G1 as a respond to a query.

If any of the above conditions are false, B aborts the
simulation. If B does not abort, then B outputs 1 if
i’ =1, or else outputs 0.

Simulation Process. THEOREM 1. If B does not abort during the simulation

game, B can solve DBDH problem with non-negligible advan-

1. Setup. B generates parameters (G1, G2, H1, H2,g,9%) tage. Therefore CL-PRE is CPA-secure in random oracle
and gives this tuple to A . Here a is corresponding to model.

the master secret of PKG. . .
ProoF. First we analyze the probability that B does not

abort during the simulation game. Suppose A makes ney

2. Query Phase I. . ; A
public/private key queries in Query Phase I and Query Phase

(a) When A submits the query II, then the probability that B does not abort during this
(extractPartialPrivateKey, ID), B evaluates process is y"#ev. The probability that B does not abort dur-
H,(ID) to obtain (ID, h, z, 2, t, @), and returns ing the Challenge Phase is 1 — . Also suppose A makes
((g%)?) to A . nyi re-encryption key queries that the re-encryption keys do

not lie along path leading from ID* and n}, re-encryption
key queries that the re-encryption keys lie along path lead-
ing from ID*. During these processes, the probability that

(b) When A submits the query (extractPrivateKey,
ID), B evaluates H;(ID) to obtain (ID, h, z, z, ¢, @),

and returns ((g)%)* to A . B does not abort is (1—~)"r*y"rk. So finally the probability
(c) When A submits the query (extractPublicKey, that B does not abort in the whole process is y™ev "k (1 —
ID), B evaluates Hi(ID) to obtain (ID, h, x, z, t, @), R Let e = Max{Ngey, Nrk, Nk}, because 0 <

and returns (h, (¢%)%) to A . v < 1, it is easy to see that the probability that B does



not abort is greater than y?"me= (1 — )T "mae=  When v =
(2nmaz)/(3Nmas + 1), the probability that B does not abort
achieves the maxim value.

Next we show that A ’s view is identical to the real at-
tack. If B does not abort in the simulation above, every
public/private key and re-encryption key that does not lie
along a path from ID" is correctly formed, and only the
re-encryption keys that lie along a path from ID* are incor-
rectly formed. However, the adversary A cannot distinguish
our simulation from a real world interaction in which the
re-encryption keys have correct form. The heuristic argu-
ment for this is simple. Note that each correctly-formed re-
encryption key rkip, 1, consists a value (SkID1)71H2 (X)t,
where X €gr G2, and a ciphertext of X under IDy’s pub-
lic key. An incorrectly formed re-encryption key replaces
(skml)*ng(X)t with some value z €r G1. This x can
be expressed as (skm,) ' -y for some unknown y € Gj.
So an adversary who can distinguish incorrectly formed re-
encryption keys can be used to solve DBDH problem.

In conclusion, if B does not abort during the game, then
A ’s view is identical to the real attack. Hence, when the
input to B is a DBDH tuple, the challenge ciphertext C*
is a correct encryption of m; under ID* and hence |Pr[i =
i'] —1/2| > €. So the CL-PRE scheme is CPA-secure. []

3.3 Properties of CL-PRE

CL-PRE possesses several properties that satisfy security
requirements for cloud based data sharing scenario.

1. Unidirectionality. This means a re-encryption key rka—n

from user A to user B cannot be used to re-encrypt a
message encrypted under user B’s public key. For CL-
PRE, the result of re-encrypting C'z(m) under rka_, g
is in the form of m-e(gp, g>*B)" -e(g," 4 - Hs(z),g"),
which cannot be decrypted using A’s private key.

In cloud based data sharing scenario, this is a na-
ture requirement because sharing is also unidirectional.
That is, if user A wants to obtain data of B, she must
ask B for a re-encryption key rather than generate an
re-encryption key by herself.

2. Non-interactivity. This means in order to generate a
re-encryption key from A to B, user A does not need
to interact with B. For CL-PRE, it is easy to see that
user A can generate a re-encryption key for user B with
only B’s public key. So the re-encryption keys can be
generated while the recipients are off-line.

This property is also very useful in data sharing sce-
nario because it is not practical to require users are
always on-line for re-encryption key generation.

3. Nontransitive. This means it is infeasible to construct
rka_c from rka_,p and rkp_c. In CL-PRE, an ad-
versary (proxy or ordinary users) can generate the sec-
ond part of an re-encryption key at will, but cannot
generate the first part and make the two parts match.

This property is desirable in our scenario because the
proxy manages all existing re-encryption keys, and if
the algorithm is transitive, the proxy can create re-
encryption keys without the permission of legitimate
users.

4. Single-use. This means that an re-encrypted message
cannot be further re-encrypted. Due to the structure

of the re-encrypted message in CL-PRE, it cannot be
further re-encrypted.

This property is useful because if the scheme is not
single-use, an adversary who holds proper re-encryption
key and re-encrypted message can first re-encrypt and
then decrypt to recover the original message without
permission of data owner.

3.4 Key Update

Key update is an essential part for data sharing applica-
tions. Occasionally, users may update their public/private
key pairs. Key update also offers a way for revocation of
existing re-encryption keys. Because the identity of a user
rarely changes, in most cases key update means the update
of the Secret Value.

Public/private key update results in related re-encryption
key update. If many re-encryption keys have been generated
using old keys, re-encryption key update is a big burden for
users. In this section we give a method to shift this burden
to cloud.

Note that the second part of a re-encryption key is in fact
an encryption of a random element from G2 under a recip-
ient’s public key, and this part does not participate the re-
encryption operation. Furthermore, this part can be cached
by the recipient after the first time it receives a re-encrypted
message. So we do not consider the update of this part.

If user A wants to update her public/private key pair, she

s-z%

picks z/y €r Zj, sets new private key sk/y = D* = g
and new public key pk/y = (ga, g*%4, g"¥a/4),

In order to utilize the cloud to update related re-encryption
keys, user A calculates a number r4//4 = @'y /x4 mod p and
sends to the proxy.

After receiving 7 47, 4, the proxy updates related re-encryption

key rka_p as follows:
rkasp = (937" - Ha(x))""4/4, Cp(x))
= (93"« Ha(w)"™4/"2, Cp(w)),

User A should keep a list of her Secret Values and when
she receives ciphertexts encrypted under her old public keys,
she can still decrypt them correctly.

Note that no matter how many re-encryption keys user
A has established, she only needs to compute and send one
value 74/,4. The remainder update work is done by the
cloud.

Next we show the correctness of the updated re-encryption
key. Consider one encrypted message under the new public
key of user A in the form

troz’y /T a

(g 97 m - e(gh, g°74)).

For re-encryption, proxy computes
(m - e(gh,g™*)) - e(gn ™™ - Ha(w)" *4/*4, g")
=m- e(Hy(x)" "4/, g").
Then the recipient B can decrypt it by computing

m - e(Ha(x)""a/74 g") Je(Ha(x), g "4/"4) = m.

4. EXTENSIONS OF CL-PRE

In this section, we propose two variants of CL-PRE that
offer enhanced security and better computation performance



of re-encryption at cloud. We then give a method to accel-
erate the re-encryption operation at cloud proxy side.

4.1 Multi-Proxy CL-PRE

As residing in public cloud, the proxy in CL-PRE runs in
untrusted environment, e.g., it may be exposed to attacks
due to misconfiguration of cloud system administrators, or
compromised by external attacker with virtualization vul-
nerability in cloud computing platforms. Towards a secu-
rity enhanced solution, we propose multi-proxy CL-PRE, an
extension of CL-PRE to support multiple proxies deployed
on different clouds, such that exploiting the system requires
compromising multiple proxies.

Assume there are n proxies in the system. User A (data
owner) can choose a parameter k (1 < k < n) s.t., when
more than k£ proxies do the re-encryption correctly, the re-
cipient can get a valid message. In other words, user A can
achieve higher security level by choosing larger k. We use
techniques in [32] to construct multi-proxy CL-PRE. Note
that in our scheme, what we want to split are elements of
abelian group other than finite field, so we cannot adopt the
method of [32] directly. There are also some secret sharing
schemes that can work on abelian group [14, 15], but these
methods can neither be adopted directly because we have to
execute bilinear pairing on the split elements.

We use Lagrange polynomial interpolation method for
constructing multi-proxy CL-PRE. Suppose we have a uni-
variate polynomial f(z) of degree k, and k + 1 points
(zo,y0), (z1,y1), - -y (T, yi) s.t. ys = f(z:) and z; # x; for
it # j. Then f(z) = Zf:o yiL;(z), where

Liz)= ] =%

0<m<k,m#i

For the multi-proxy CL-PRE, the algorithms for Setup,
Private Key Ezxtraction, Secret Value Generation, Private
Key Generation, Public Key Generation, Encryption, De-
cryption are the same as that in CL-PRE. The others are as
follows.

Ti — Tm

Proxy Re-encryption Key Generation. If user A wants
to delegate decryption right to user B, user A chooses x €r
G2 and two random polynomials f(z), h(z). f(z) and h(z)
satisfy that deg(f) = deg(h) = k and f(0) = —sza, h(0) = t.
A also generates n random number n; # 0(1 < i < n).
These numbers are public information. Then A evaluates
f(x) and h(x) at these numbers to gain two sets of points
(ni, f(ni)), (ns, h(n;)). For the ith proxy the re-encryption
key is

kY, 5 = (g4 Ha(2)"™), C ().

Proxy Re-encryption. To re-encrypt a ciphertext C’; (m)
under re-encryption key rkij 5, the ith proxy computes

C; = e(g{;(nl)HQ(x)h(nl)7 gT)7

and sends to user B.

Re-encryption Decryption. After receiving k + 1 re-
encrypted message (without lose of generality, suppose re-
ceived messages are c1,ca, ..., ckr+1) and the original cipher
C’y(m), user B decrypts as follows:

1. Computes

L= J] — - 1<i<k+lL

ni—mn
0<m<k+1,m#i ° m

Note that L;(0) is independent of concrete polynomial.

2. Computes
k+1 k+1
_ L;(0) _ fng) h(n;) _r\L;(0)
Cpart = H C; = H e(gA Ha(x) ,9")
i=1 i=1
k+1

= H e(ga,g)" IO e(Hy (2), g) i@
=1

=e(ga,9) """ - e(Ha(x), 9)"".

The last equation holds because with Lagrange polyno-
mial interpolation, we have "' f(n;)L;(0) = £(0) =
—sza and Zf;l h(n;)L;(0) = h(0) = t.

3. Finally, B computes

m-e(ga,g" ") - cpart/e(Ha(2),g")
=m-e(Ha(2)',g")/e(Ha(x),g") = m.

Optimization. If user A needs to generate re-encryption
keys for many recipients, she can use the same f(z),h(z)
and the same set of the n random numbers for all of them.
In this case, A needs to compute gfx("i) and h(n;) only once.

The proxies can also save time by computing L;(0)s once.

Other Advantages. Besides offering improved security,
multi-proxy CL-PRE has other advantages. First, it makes
the whole system more robust, as data sharing can be ac-
complished if more than k proxies work properly. Secondly,
recipients can choose the proxies to fetch re-encrypted data
according to physical location or working load. This in-
creases system deployment flexibility and content delivery
efficiency.

4.2 Randomized CL-PRE

Multi-proxy CL-PRE does not solve the semi-trust prob-
lem completely. If the number of compromised proxies is big
enough, the system can be compromised. Instead of build-
ing complete secure running environment for proxy, our next
extension of CL-PRE takes a different approach.

We note that the fundamental reason that we have to put
some trust on proxy is that the proxy has full control of all
re-encryption keys after receiving them from a data owner,
and the data owner is lack of capabilities to restrict the
usage of re-encryption keys. If the data owner manages re-
encryption keys by herself and does not expose them to the
proxy, we can further reduce trust on proxy. Towards this,
our idea is similar to the pairing computation delegation [33].

Specifically, after generating a re-encryption key, user A
does not send it to proxy. Instead, every time A wants
to share data to a recipient, she generates a one-time re-
encryption key for this session. The one-time key is a ran-
domization of the original re-encryption key, and the cost
of generating one-time re-encryption key is lower than that
of generating the original re-encryption key. Then A sends
the randomized key along with the data to the proxy. The
randomized key can only be used to re-encrypt shared data
in the same session. So it is useless for the proxy to control
randomized re-encryption keys. We call this scheme ran-
domized CL-PRE. The algorithms are explained as follows.

Encryption. User A picks 71,72 €r Zp and computes

/

c =g

trire

7grl7m . 6(921’951A)).



Proxy Re-encryption. User A uses r2 to randomize the
re-encryption key. For original re-encryption key

rkasp = (9,""* - H(z)",Cp()),
user A randomizes it to
rkasp = (9,77 - H(z)'"™,Cp(z)), (4)

and sends rk’y_, 5 to proxy.
Proxy re-encrypts ¢’ using rk’y_, 5 in the following way:

¢ = m-e(g), o) o9 Hx)" ")
= m- e(Ha(2)",g™).

Decryption. User B decrypts ¢’ by computing
¢’ Je(Ha(z),g"™"?) = m.

Using above method, proxy does not possess any “long
term” re-encryption key but a one-time randomized one.
The proxy cannot complete a re-encryption of any new mes-
sage with previous re-encryption keys. Suppose the proxy
receives a ciphertext ¢’ = (¢""1"2, g™, m-e(g’}, g°*4)), where
r1,72 are random numbers different from previous encryp-
tion, but only has an older re-encryption key rky ,p =

(g7 - H(az)t'rgld, Cp(z)). The re-encryption result is

¢ =m-e(gil, g ) e(gy A - Hw)'"8" g™)

old
=m-e(Ha(x)""? ", g™).
The recipient cannot decrypt because it does not possess
old
g

trirg

A data owner can choose this method and does not need
to worry about abusing of re-encryption keys by the proxy.
However, this security enhancement is not free. Each time
the data owner shares data with m users, besides the encryp-
tion of one message, she has to randomize m re-encryption
keys and sends these re-encryption keys to the proxy. We
include the communication and performance analysis in Sec-
tion 5. Some methods can be applied to reduce the com-
putation cost for the data owner. For example, if user A
shares with a fixed group of users for a period of time, she
does not need to generate new randomized re-encryption
key every time. Instead, she generates a new randomized
re-encryption key only when the group of recipients changes.

4.3 Acceleration of Proxy Re-encryption

In CL-PRE, for one re-encryption operation, a bilinear
pairing e(rk;,¢g") has to be performed by the cloud proxy,
where rk; is part of the re-encryption key from the data
owner to user ¢, and g is part of the encrypted message
to be re-encrypted. When the data owner shares with m
users, m bilinear pairings e(rk;,g"),i = 1,2,...,m have to
be computed, where the second input of the bilinear pairing
is fixed, and the first input varies for different users. We
can also fix the first input using property of bilinear pairing,
specifically, e(rk:,g") = e(g”, 7k:) " .

No matter which type of pairing is chosen, Miller’s algo-
rithm [28] or its variants such as [18] can be used to compute
the pairing value. Miller’s algorithm is an iterative algo-
rithm, and the first input is used to construct linear func-
tions £, s(-) and £;(-) (in some situations the computation
of 4¢(-) may be eliminated [4]), where ¢, is a line passing
through r, s, ¢; is a vertical line passing through ¢, and r, s, ¢
only depend on g". Then the algorithm evaluates these two
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Figure 2: Performance overhead for data owner.

functions on rk;. So for our scheme, as the first input of the
bilinear pairing is the same for all m re-encryptions, £, s(+)
and ¢:(-) has to be computed only once and evaluated at
different points. We also includes some experimental results
in Section 5.

5. PERFORMANCE EVALUATION

In this section, we evaluate the performance of data owner,
cloud proxy, and recipient in CL-PRE and its variants, which
are implemented on an elliptic curve defined on 512 bits
prime field with a generator of order 160 bits. The embedded
degree of the curve is 2. We also implement the basic version
of certificateless public key encryption scheme [2], which is
referred as certificateless cryptography in the reminder of this
section. Our experiments are carried out on one-core, 1GB
RAM Linux virtual machine residing on a PC with Intel i5
3.4GHz processor and 4GB RAM.

5.1 Re-encryption Performance of CL-PRE

We accelerate the re-encryption process using accelera-
tion techniques in Section 4.3, which makes each of the re-
encryption 20% faster. Table 1 summarize the cost of the
basic CL-PRE scheme. Our experimental result shows that
with 3k bits of both re-encryption key size and ciphertext
size, the proxy re-encryption time is about 7-8 ms. With
elastic computing resources in cloud, we believe the proxy is
not a performance bottle neck.

Table 1: Re-encryption performance summary
Re-encryption | Re-encryption | Ciphertext
time key size size
7 to 8 ms 3K bits 3K bits

5.2 Performance of Data Owner

Figure 2 shows the computation overhead of data owner
in variant schemes with different numbers of data recipients.
As shown, the computation overhead of the data owner does
not increase with the number of recipients for basic CL-PRE
and multi-proxy CL-PRE, as it only does one encryption in
these two cases.
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With certificateless cryptography and randomized CL-PRE,
the data owner has to do operations for each recipient. So
the cost increases linearly with the number of recipients.
However, as the encryption needs one bilinear pairing while
the randomization needs only one scalar multiplication, en-
crypting a message is more complex and costly than ran-
domizing one re-encryption key, as indicated in Figure 2.
We note that the cost of randomizing re-encryption keys in
our experiment is the worst case since we choose the largest
number (160 bits long) as scalar. In practical, random num-
ber should be used and the average cost should be 50% lower.

Next we analyze communication and storage overhead of
data owner in different cases. For the basic CL-PRE and
multi-proxy CL-PRE, the communication overhead is con-
stant and is not relevant to the number of recipients, and the
data owner only has to keep its own public/private key pair.
For randomized CL-PRE, the data owner has to transport
one encrypted message and one randomized re-encryption
key for each recipient. Note that the second part of random-
ized re-encryption key in randomized CL-PRE (cf. Equation
4) is not changed and not sent to the proxy every time. In
addition, the data owner has to store all the generated re-
encryption keys.

5.3 Performance of Proxy

Figure 3 shows the computation overhead of the proxy
server in different schemes. We omit the case of certificate-
less cryptography as in this case the cloud does not need
to do any computation. In all three cases, the overhead in-
creases linearly with the number of recipients. The basic CL-
PRE and randomized CL-PRE have the same overhead in
proxy re-encryption, so the curves coincide. For multi-proxy
CL-PRE, the computation cost increases not only accompa-
nied by the number of recipients but also the parameter k
(cf. Section 4.1). However, the re-encryption process can be
parallelized in this scheme. If there are k 4+ 1 computation
units, the computation time is only related to the number
of recipients. Figure 3 reflects the situation that only one
computation unit is available.

Next we analyze the communication and storage overhead
of cloud proxy in different cases. For the basic CL-PRE,
the cloud stores O(m?) re-encryption keys, where m is the
number of users in the system. For one data sharing opera-

tion, the proxy transports one re-encrypted message for one
recipient, i.e., the communication overhead is proportional
to the number of recipients. For randomized CL-PRE, if
the proxy does not cache randomized re-encryption keys,
there is no need of re-encryption storage, and the commu-
nication overhead is the same as that of basic CL-PRE. For
multi-proxy CL-PRE, the proxy stores about O(n - m?) re-
encryption keys (n is the number of proxies in the system).
This is because for one sharing relationship between two
users, the proxy needs to store m re-encryption keys and
there are totally O(m?) relationships. The communication
overhead depends on parameter k. If there are m recipients,
(k + 1)m re-encrypted messages are transported. We sum-
marize communication and transportation cost of proxy for
one recipient in Table 2 *.

Table 2: Communication and transportation cost for
proxy in cloud

Basic Multi-proxy Randomized
CL-PRE CL-PRE CL-PRE
2K bits | 6K bits (3 x 2K ) 2K bits

5.4 Performance of Recipient

In case of the basic CL-PRE and randomized CL-PRE,
there is no difference for a recipient — it obtains re-encrypted
messages from the proxy and decrypts in the same way. For
multi-proxy CL-PRE, the overhead increases with the pa-
rameter k. The extra overhead includes the computation
of L;(0) (this can be cached if the recipient always uses the
same set of proxies), k+1 exponentiations (scalar multiplica-
tion for elliptic curve), and k multiplications (point addition
for elliptic curve). As a recipient has to do one decryption
only, we believe this cost is not significant.

6. RELATED WORK

The research of proxy re-encryption has been started in [26]
and [7] and the original aim is to find a method to transform
ciphertext with one encryption key to another without de-
cryption. In [23] the authors propose a formal modeling of
proxy cryptography, which generalizes, simplifies, and clar-
ifies the model of “atomic proxy” in [7]. In [3] the authors
give criteria for proxy re-encryption scheme and propose a
unidirectional, noninteractive, proxy invisibility, and origi-
nal access proxy re-encryption scheme. But this scheme has
a defect that malicious user can derive weak secret of a data
owner from re-encryption keys and its private key. CL-PRE
is similar to [3], yet considers more specifically the security
for flexible data sharing with cloud. In addition, CL-PRE
does not have the weak secret problem in [3].

Many other proxy re-encryption schemes with different
security properties are constructed, such as identity based
re-encryption scheme without random oracles [13], chosen-
ciphertext secure proxy re-encryption [10], and unidirectional
chosen-ciphertext secure proxy re-encryption [25].

Another line of related research is secure file system. The
original work in this area is the Cryptographic File System

!'Note that the third part of a re-encrypted message is not
transported every time, and no compression method of el-
liptic curve point is used. We also suppose k = 2 for multi-
proxy CL-PRE.



(CFS) [6], which uses a single key to encrypt an entire direc-
tory of files and relies on the underlying file system for au-
thorization of writes. Later variants includes Cepheus [16],
SNAD [27], SiRiUS [19], and Plutus [24].

Attribute based cryptography also offers a way for secure
data sharing when attributes can be used to identify users.
The original work of this area is fuzzy identity based encryp-
tion [30], which generalizes previous identity based encryp-
tion [8]. Later variants includes attribute-based encryption
(ABE) schemes, such as KP-ABE (binding access policy to
keys [20]), CP-ABE (binding access policy to ciphertext [5]),
and distributed ABE [29]. Chase [11] provides a construc-
tion for a multi-authority ABE system, where each author-
ity administers a domain of attributes. Chase and Chow [12]
provide a more practice-oriented multi-authority ABE sys-
tem, which removes the trusted central authority while pre-
serving user privacy. There are other practices taking ad-
vantage of ABE [34]. But these techniques are unsuitable
for scenarios with very decentralized trust relationships such
as SNS.

Broadcast encryption is another way for secure data shar-
ing. Fiat and Naor[17] first introduce the concept of broad-
cast encryption. Later many research efforts have been car-
ried out on this topic. But the efficiency of the best known
schemes such as [22] and [9], is not only dependent on the
size of authorized user set, but also requires the broadcaster
to refer to its database of user authorizations. Therefore
broadcast encryption is more suitable for situation where
the set of revoked users is small, which contradicts our sce-
nario.

7. CONCLUSION

This paper proposes CL-PRE, a certificateless proxy re-
encryption scheme for cloud-based data sharing. CL-PRE
uniquely integrates identity-based public key into proxy re-
encryption, eliminates the key escrow problem in traditional
identity-based encryption, and does not require the use of
certificates to guarantee the authenticity of public keys. CL-
PRE satisfies security requirements for large-scale and flexi-
ble information sharing with cloud such as online social net-
works. Consider a proxy running in public cloud to leverage
elastic cloud storage and computing resources, we further
propose multi-proxy CL-PRE to deploy intermediate prox-
ies in multiple cloud service providers in order to improve
the robustness of the system, and randomized CL-PRE to
randomize the re-encryption key each time of data sharing
in order to reduce the trust on the proxy. Our performance
evaluations confirm that our proposed schemes are practical
for cloud-based applications.
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