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Abstract: In the paper based on surface plasmon resonance (SPR) in a tilted fiber Bragg grating
(TFBG), a novel algorithm is proposed, which facilitates demodulation of surrounding refractive
index (SRI) via cladding mode interrogation and accelerates calibration and measurement of SRI.
Refractive indices with a tiny index step of 2.2× 10−5 are prepared by the dilution of glucose aqueous
solution for the test and the calibration of this fiber sensor probe. To accelerate the calibration
process, automatic selection of the most sensitive cladding mode is demonstrated. First, peaks of
transmitted spectrum are identified and numbered. Then, sensitivities of several potentially sensitive
cladding modes in amplitude adjacent to the left of the SPR area are calculated and compared. After
that, we focus on the amplitudes of the cladding modes as a function of a SRI, and the highest
sensitivity of −6887 dB/RIU (refractive index unit) is obtained with a scanning time of 15.77 s
in the range from 1520 nm to 1620 nm. To accelerate the scanning speed of the optical spectrum
analyzer (OSA), the wavelength resolution is reduced from 0.028 nm to 0.07 nm, 0.14 nm, and
0.28 nm, and consequently the scanning time is shortened to 6.31 s, 3.15 s, and 1.58 s, respectively.
However, compared to 0.028 nm, the SRI sensitivity for 0.07 nm, 0.14 nm, and 0.28 nm is reduced to
−5685 dB/RIU (17.5% less),−5415 dB/RIU (21.4% less), and−4359 dB/RIU (36.7% less), respectively.
Thanks to the calculation of parabolic equation and weighted Gauss fitting based on the original data,
the sensitivity is improved to −6332 dB/RIU and −6721 dB/RIU, respectively, for 0.07 nm, and the
sensitivity is increased to −5850 dB/RIU and −6228 dB/RIU, respectively, for 0.14 nm.

Keywords: tilted fiber Bragg grating; surface plasmon resonance; surrounding refractive index;
cladding mode; automation

1. Introduction

Refractive index measurements are required for a variety of applications, such as
food/beverage quality control, oil production monitoring, cosmetic and pharmaceutic
industries, etc., which normally need minimally invasive and remote interrogation devices.
In recent decades, fiber-optic refractive index sensors have been widely used in both
academic and industrial fields. To measure refractive indices surrounding a fiber probe,
evanescent field of fiber-guided modes typically has to penetrate into the analytes [1]. This
mechanism is demonstrated in grating-based fiber devices [2]. Among them, TFBGs are
generally short period (pitch: ~500 nm) gratings with refractive index modulations angled
(θ < 45◦) with respect to the fiber transverse plane with both core mode coupling and
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core-cladding mode couplings. For the latter, the amplitude and the central wavelength
of the cladding mode resonance vary as a function of SRI due to their influences on the
phase velocities or the effective refractive indices of the cladding modes [3]. When the
SRI reaches the effective refractive index of a cladding mode, the latter becomes no longer
reflected but radiated at the fiber-surrounding medium interface. Thus, with increasing
SRI, the cladding mode resonances could disappear from the left to the right part of a
transmitted spectrum.

Based on these properties, Hu et al. computed the area delimited by the upper and
lower envelopes of the cladding modes in the TFBG transmitted amplitude spectrum in
different SRI conditions from 1.42 to 1.49. However, this method is not accurate for SRI
measurement [4]. A simpler demodulation method was reported by Chan et al. to record the
evolution of the central wavelengths of the cladding modes with a measurement accuracy
~10−4 in the SRI range from 1.25 to 1.43 [5]. Zhou et al. presented a method to calculate the
SRI at the exact wavelength positions in the near infrared frequency with an accuracy of
±5 × 10−5 by the calibration of the absolute core index dispersion of the TFBG based on
multiple cladding mode resonances. However, the method is very complex and requires a
semi-analytic simulation tool [6]. In addition, cut-off wavelength where the cladding mode
resonance suddenly declines can serve as an indication for SRI measurement. Pham et al.
reported a demodulation method based on cut-off wavelength which was identified by
calculating the relative transmission spectra and using the threshold value. As the cut-off
wavelength shifts from one to another cladding mode resonance when the SRI changes,
this method is suitable for large range SRI monitoring, but the accuracy is only ~10−3 [7].
Tomyshev et al. applied Fourier filtering to get rid of spectral noise, and then plotted
smooth curves through the array of points represented by peak vertices. Following that,
the zero of the second derivative of the arctangent was regarded as the cut-off wavelength
corresponding to a SRI. The resolution was estimated to 3.7 × 10−5 [8].

To further improve the accuracy of the refractometer, a nanoscale gold layer is usually
deposited on the surface of a TFBG. Assuming that light propagating in the fiber cladding
is radially polarized (so-called P-polarization), SPR is generated at the gold-medium in-
terface, which enhances the sensitivity of the cladding modes adjacent to the SPR area
or signature [9]. It was demonstrated that for a 10◦ TFBG, the narrowband resonance is
just below the SPR signature presented wavelength shifts with a resolution better than
10−5 RIU and a quality factor of ~105 [9]. Compared to wavelength-based approaches,
amplitude-based methods are more advantageous, as changes are much easier to mea-
sure by commercial near infrared optical spectrum analyzers (OSAs). Caucheteur et al.
demonstrated that the amplitude evolution of the most sensitive cladding mode showed a
sensitivity of −3600 dB/RIU for a 6◦ TFBG-SPR [10]. In 2020, based on the same methodol-
ogy, Loyez et al. used a functionalized gold film deposited on a 8◦ TFBG to successfully
detect breast cancer cells with a low concentration of 10 cells/mL in vitro by monitoring
the sensitive modes closest to the SPR region [11]. In 2016, Caucheteur et al. demonstrated
the most sensitive cladding mode resonance in the transmitted amplitude spectrum of a
16-mm-long 37◦ TFBG by varying the atmospheric pressure with an air refractive index
sensitivity of 204 nm/RIU and 5515 dB/RIU. Furthermore, with the acoustic wave and a
tunable laser, whose wavelength was positioned on the edge of the most sensitive cladding
mode resonance, a limit of detection (LOD) very close to 10−8 was obtained [12].

In addition to the monitoring of the single selective cladding mode beside the SPR
signature, other demodulation methods based on envelopes are discussed in the following
text. Caucheteur et al. reported that the polarization dependent on loss upper envelope
was computed to retrieve the minimum value as the SPR wavelength, showing a high SRI
sensitivity of 673 nm/RIU and a resolution of slightly better than 10−5 [9]. Lobry et al.
monitored the fit of the lower envelope of the SPR signature to sense the presence of the
breast cancer biomarker of HER2 [13]. Leitão et al. proposed a demodulation method based
on tracking the local maximum of the SPR signature of the lower envelope of the TFBG
spectrum with a cortisol detection sensitivity of 0.275 nm/ng.mL−1 [14]. Similar to Ref. [8],
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after filtering, Manuylovich et al. calculated the minimum of the fitted upper envelope of
the SPR signature. The method allowed refractive index measurements with a resolution of
3 × 10−6 RIU [15]. Though single cladding mode and envelope demodulation method are
promising for SRI measurements, automatic calibration and SRI measurement have not
been investigated before. Additionally, in previous works, the amplitude and the central
wavelength of a cladding mode were generally selected artificially, and the wavelength
interval (resolution) of the sampling points in the OSA was not discussed, which could
bring extra errors for both amplitude and wavelength of a cladding mode.

In the paper, we propose a novel algorithm to demodulate SRI variations automatically
by selection and calibration of the most sensitive cladding modes adjacent to the SPR area
in a TFBG-SPR sensor probe. The demodulation algorithm contains three steps: (1) peak
identification with serial numbers and cladding mode selection, (2) the most sensitive
cladding mode selection, and (3) improvement of both the efficiency and the sensitivity
for SRI measurement using cladding mode fitting technique. The key novelty lies in
(1) dramatic reduce of spectral scanning time (lower wavelength resolution) by cladding
mode fitting technique with similar SRI sensitivity, and (2) improvement of SRI sensitivity
by weighted Gauss fitting method.

2. Experiment
2.1. Fabrication of TFBG-SPR Sensor Probe

The fiber used in this work is a single-mode silica fiber (Corning Incorporated), which
was hydrogen-loaded with a pressure of 1500 psi at a temperature of 50 ◦C for one week to
improve the core photosensitivity before grating inscription. Afterwards, the TFBG was
photo-inscribed using the ultraviolet laser phase mask technique [16]. A cylindrical lens
was positioned in front of the phase mask to enhance the pulse power density focused
on the fiber core. With a rotation of the phase mask, a ~2-cm-long TFBG with a tilt angle
of 18◦ was obtained by spatially scanning the beam along the fiber axis [17]. Then, the
TFBG was gold-coated using a sputtering technique and double deposition technique [18].
The average thickness of the gold layer was ~40 nm, estimated by the growth rate of a
reference film thickness. Although the spectral evolution of the TFBG-based sensor is
usually recorded in transmission with both ends of the TFBG connected to a broadband
source (BBS) and a OSA, respectively, it is difficult for the sensor probe to be functionalized
for in-situ detection. Thus, in this work, an additional gold coating with a thickness of
~500 nm was deposited on the end-face of the fiber located several mm from the TFBG as a
highly reflective broadband mirror, which allows interrogating the optical spectra of the
sensor probe in reflection [19].

2.2. SRI Measurement in Glucose Aqueous Solutions

The experimental setup for SRI measurement is composed of a BBS (Golight, ASE C+L
LIGHT SOURCE, Shenzhen, China), a polarizer, a polarization controller, a circulator, a
fiber sensor probe, and a OSA (Anritsu, MS9740A, Atsugi, Japan), as shown in Figure 1a.
The input state of polarization was adjusted to generate a P-polarized spectrum with a
SPR signature. The SRI measurement was conducted by immersing the probe in glucose
aqueous solutions (refractive index ~1.3573) with small refractive index changes of the
order of ~10−5. The reflected spectrum of the TFBG in P-polarization to investigate in the
range from 1520 nm to 1620 nm is shown in Figure 1b with a SPR signature situated at
~1557 nm. The peak situated rightmost in this figure is pertinent to the core mode, which
could be used for temperature compensation, while the comb-like spectral fluctuations
situated to the left of the core-mode reflection peak is due to the couplings between the
core mode and the cladding modes. The real experimental set-up is displayed in Figure 2.
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aqueous solutions, and 1, 2 and 3 represent the port number of the circulator; (b) P-polarized reflected
spectrum of the TFBG-SPR sensor probe in the glucose aqueous solution with a SRI of ~1.3573.

Sensors 2022, 22, x FOR PEER REVIEW 4 of 13 
 

 

the core mode and the cladding modes. The real experimental set-up is displayed in Fig-
ure 2. 

 
Figure 1. (a) Schematic set-up of the TFBG-SPR sensor probe for the SRI measurement in glucose 
aqueous solutions, and 1, 2 and 3 represent the port number of the circulator; (b) P-polarized re-
flected spectrum of the TFBG-SPR sensor probe in the glucose aqueous solution with a SRI of 
~1.3573. 

 
Figure 2. Real experimental set-up for SRI sensing. 

It is worth mentioning that the refractive index change ~10−5 in the experiment is an 
estimated value, as the Abbe refractometer used in this work has a resolution of 1 × 10−4. 
This solution refractive index estimation was conducted in the following steps. First, 20 g 
glucose was added into 100 mL deionized water at room temperature, and the refractive 
index was measured to be 1.3574. Second, a couple of drops of 10 μL deionized water were 
added into the glucose aqueous solution prepared in the first step until the measured re-
fractive index was reduced to 1.3573. Then, 10 mL of the solution obtained in step two 
was transferred into a test tube. Afterwards, four drops of 10 μL of deionized water were 
successively added to the solution without refractive index change measured by the Abbe 
refractometer. However, with one more drop, the refractive index decreased to 1.3572. 
Thus, five solutions with different refractive index ~1.3573 were prepared, and the refrac-
tive index difference induced by one drop was estimated to be (2.2 ± 0.3) × 10−5. In the 
following text, the glucose aqueous solution diluted by four drops is regarded as the initial 
solution with the lowest refractive index ~1.3573. The linearity of the refractive index 
changes, as a function of drop of 10 μL deionized water was confirmed by another exper-
iment covering a larger refractive range of 1.3570–1.3578. 

Figure 2. Real experimental set-up for SRI sensing.

It is worth mentioning that the refractive index change ~10−5 in the experiment
is an estimated value, as the Abbe refractometer used in this work has a resolution of
1 × 10−4. This solution refractive index estimation was conducted in the following steps.
First, 20 g glucose was added into 100 mL deionized water at room temperature, and the
refractive index was measured to be 1.3574. Second, a couple of drops of 10 µL deionized
water were added into the glucose aqueous solution prepared in the first step until the
measured refractive index was reduced to 1.3573. Then, 10 mL of the solution obtained in
step two was transferred into a test tube. Afterwards, four drops of 10 µL of deionized
water were successively added to the solution without refractive index change measured
by the Abbe refractometer. However, with one more drop, the refractive index decreased
to 1.3572. Thus, five solutions with different refractive index ~1.3573 were prepared, and
the refractive index difference induced by one drop was estimated to be (2.2 ± 0.3) × 10−5.
In the following text, the glucose aqueous solution diluted by four drops is regarded as
the initial solution with the lowest refractive index ~1.3573. The linearity of the refractive
index changes, as a function of drop of 10 µL deionized water was confirmed by another
experiment covering a larger refractive range of 1.3570–1.3578.

3. SRI Demodulation Method

A schematic of SRI demodulation algorithm is demonstrated in Figure 3.
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3.1. Peak Identification and Cladding Mode Selection

The peak identification was conducted in the wavelength range from 1539.5 nm to
1566 nm with a wavelength resolution of 0.028 nm, including 20 cladding mode resonances
adjacent to the SPR signature. Due to the small refractive index change, the SPR signature
almost remained during this experiment. Driven by the wish to calibrate this sensor probe
automatically, first of all, the peak detection was conducted by comparing transmitted
power of 11 continuous wavelength sampling points from 1539.5 nm, which looped to
1566 nm in turn [20–23]. The amount 11 of the wavelengths in one sequence is optimized
to better filter out the spectral noise. Figure 4 presents an example of three loops around
the peak ~1540.6 nm. If the power of the 6th wavelength in the middle of this sequence
is the maximum or the minimum, the 6th wavelength is regarded as the peak, so-called
max-peak or min-peak. Therefore, the 6th wavelength in loop 3 is regarded as the central
wavelength of the min-peak (cladding mode resonance). Using the same methodology,
each peak was issued a serial number in order, as shown in Figure 5.
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After peak ordination, the SPR signature is located by the following two steps. First,
power differences between max-peaks and min-peaks with the same serial numbers were
calculated. Second, by comparison the minimal power difference was obtained, which
belongs to the SPR mode with serial number 13. The area around the SPR mode is defined
as the SPR signature [8,15]. Meanwhile, the cut-off mode located to the blue side of the SPR
mode was identified by searching the lowest amplitude of the cladding mode, which has a
serial number of 6. Thus, the cladding modes of most interest (No. 7–No. 12), sandwiched
between the cut-off mode and the SPR signature, were adopted for the SRI measurement,
as illustrated in Figure 5.

3.2. Selection of the Most Sensitive Cladding Mode

Figure 6 shows the spectra adjacent to the SPR signature in different glucose aque-
ous solutions (refractive index ~1.3573) with a SRI change of 8.8 × 10−5. Due to small
refractive index variation, only amplitudes of the cladding modes were investigated. The
linear regressions of the amplitudes of the sensitive cladding modes (No. 7–No. 12) are
demonstrated in Figure 7. The linear regression equation [24,25] is validated to build
the relationship between the independent variables (SRI) and the dependent variables
(amplitude) for the prediction of SRI according to the amplitude of the cladding mode. It is
of great importance that the factor of R2 [26] is used to evaluate whether both independent
and dependent variables in the regression equation are a good fit, defined by

R2 = 1− ∑(yi − ŷi)
2

∑(yi − y)2 (1)

where yi is the measured value, ŷi is the data value after fitting, and y is the average
measured value. The subscript i represents the ordinal of the data.

To avoid the downside, only the linear regressions for the cladding modes (No. 7–No. 10)
with R2 higher than 99% showing good linearity were considered. After comparison, the
most sensitive cladding mode No. 10 with a sensitivity of −6887 dB/RIU was obtained,
whose spectral variation is presented in the inset of Figure 6. On the contrary, the linear
regressions for cladding modes No. 11 and No. 12 with lower R2, which are 95.5% and
98.5%, respectively, were abandoned. Meanwhile, they present the lowest sensitivities of
−1899 dB/RIU and −1840 dB/RIU, respectively.
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3.3. Cladding Mode Fitting for Efficiency and Sensitivity Improvement

Driven by the demand of biochemical reaction process monitoring in real time, fast SRI
demodulation technique is desired. Here, although the highest sensitivity of−6887 dB/RIU
for Mode 10 was obtained, it took 15.77 s to scan the wavelength range from 1520 nm to
1620 nm, which was not fast enough for real-time measurement. To improve that, the
wavelength resolution was decreased from 0.028 nm to 0.07 nm, 0.14 nm, and 0.28 nm,
respectively, and the scanning time was shortened to 6.31 s, 3.15 s, and 1.58 s, accordingly.
The transmitted amplitude spectra and the linear fits of the cladding mode amplitudes
(vertical line in black) are shown in Figure 8. It is found that the SRI sensitivity gradually
decreases from −6887 dB/RIU to −5685 dB/RIU (17.5% less), −5415 dB/RIU (21.4%
less), and −4359 dB/RIU (36.7% less), respectively. Thus, there is a trade-off between
scanning time and refractometric sensitivity. Thanks to the calculation of parabolic equation
based on three original data centered on the wavelength corresponding to the cladding
mode amplitude (square point in red), the amended amplitude of the cladding mode
(vertical line in red) was obtained. For 0.028 nm, the sensitivity remained, which could
be attributed to the coincidence of the cladding mode amplitudes before and after the
calculation of parabolic equation, and the high wavelength resolution. Nevertheless,
the sensor probes with lower wavelength resolutions and faster scanning rates are more
attractive to investigate. It is discovered that the improved sensitivities, i.e., −6322 dB/RIU
(11.2% improvement) and −5850 dB/RIU (8.0% improvement), were obtained for the
resolution of 0.07 nm and 0.14 nm, respectively. For the wavelength resolution of 0.28 nm,
the sensitivity is hardly improved due to the lack of data points.

Afterwards, odd number over three of original data centered on the cladding mode
were considered for Gauss fitting. In addition, since the data centered on the min-peak of
the cladding modes play more important roles for Gauss fitting, the weighting rule that
data closer to the min-peak have greater weight, and vice versa, is applied for Gauss fitting
improvement. Weighted fitting has been applied successfully in industry and pharmacy in
previous works [27–29]. The specific weight formula is as follows:

w(i) =
[

1− |xi − xmin|
xmin − xL

]4
xL ≤ xi ≤ xmin (2)

w(i) =
[

1− |xi − xmin|
xR − xmin

]4
xmin < xi ≤ xR (3)

where x represent the wavelength, the subscript min, L and R denote the wavelength
corresponding to the min-peak, the leftmost and the rightmost data, respectively, and w(i)
represents the weight. Therefore, the R2 is adapted to be

R2 = 1− ∑ w(i)(yi − ŷi)
2

∑(yi − y)2 (4)

The amplitude of the cladding mode No. 10 after unweighted and weighted Gauss
fitting and the amount of original data used for fitting as a function of R2 are shown in
Figures 9 and 10 for wavelength resolution 0.07 nm and 0.14 nm, respectively, in terms of
SRI change 8.8 × 10−5. Then, after the calculation of the average of the cladding mode
amplitudes resulting from Gauss fitting (R2 greater than 99%), a linear fit between the
average amplitude and the SRI change was conducted.
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Figure 10. Amplitude of the cladding mode No. 10 after Gauss fitting in terms of SRI change
8.8 × 10−5 for wavelength resolution 0.14 nm (unweighted (a) and weighted (b)).

For the wavelength resolution 0.07 nm, the sensitivities obtained by unweighted and
weighted Gauss fitting are −6307 dB/RIU and −6721 dB/RIU, respectively, as shown in
Figure 11, which are higher than the sensitivity resulting from the original data−5685 dB/RIU.
Additionally, the sensitivity calculated from unweighted Gauss fitting is close to
−6332 dB/RIU resulting from the parabolic equation, and the linear fit R2 corresponding
to unweighted Gauss fitting is only 97.4%, which is inappropriate for sensing applications.
Compared to unweighted Gauss fitting, the sensitivity obtained by weighted Gauss fitting
is improved by 6.6%, and the linear fit R2 is 99.5%. Both the sensitivity and the R2 are
similar to the results obtained from original data or parabolic equation for the wavelength
resolution 0.028 nm.

For the wavelength resolution 0.14 nm, the sensitivities obtained by 5-data unweighted
and weighted Gauss fitting are−4851 dB/RIU and−6228 dB/RIU, respectively, as depicted
in Figure 12. It is found that compared to unweighted Gauss fitting, the sensitivity calcu-
lated from weighted gaussian fitting is improved by 28.4% with the linear fit R2 improved
from 98.7% to 99.1%. The sensitivity obtained is higher than −5415 dB/RIU from original
data and −5850 dB/RIU from parabolic equation. Although the sensitivity (calculated
from weighted Gauss fitting) of −6228 dB/RIU for the wavelength resolution 0.14 nm is
7.3% smaller than −6721 dB/RIU for the wavelength resolution 0.07 nm, the scanning time
of the OSA is reduced by 50%. The spectra of the cladding mode No. 10 with unweighted
and weighted Gauss fitting, respectively, are illustrated in Figure 13, showing a better fit
at the bottom after weighted Gauss fitting. A comparison of the slope and R2 after linear
regression of the amplitude of the cladding mode No. 10, resulting from original data,
parabolic equation, unweighted and weighted gauss fit, is presented in Table 1.
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Table 1. Comparison of the slope and R2 after linear regression of the amplitude of the cladding
mode No. 10 resulting from original data, parabolic equation, unweighted, and weighted gauss fit.

Wavelength
Resolution

Original
Data

Parabolic
Equation

Unweighted
Gauss Fit

Weighted
Gauss Fit

0.07 nm
Slope (dB/RIU) −5685 −6332 −6307 −6721

R2 (%) 99.9 99.7 97.4 99.5

0.14 nm
Slope (dB/RIU) −5415 −5850 −4851 −6228

R2 (%) 99.3 99.5 98.7 99.1

It is worth mentioning that both the SRI and the fiber refractive index could be
influenced by the temperature, so the automatic calibration process for small refractive
index change sensing could be interfered. Thus, in this work the calibration process
was conducted rapidly in the temperature-controlled environment, and the temperature
influence was consequently omitted.

4. Conclusions

In summary, we proposed a new algorithm to automatically demodulate SRI changes
by selecting and calibrating the most sensitive cladding mode in the adjacent SPR region
of the TFBG-SPR sensor probe. After that, both the calculation of parabolic equation,
unweighted, and weighted Gauss fitting based on the original data were implemented for
the improvement of the efficiency and the sensitivity of the TFBG-SPR sensor probe, which
paves the way to the automatic calibration and ease of application, and may potentially be
integrated into a commercial device in the future.
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