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Abstract7

Directed evolution (DE), a strategy for protein engineering, optimizes protein properties (i.e. fit-8

ness) by expensive and time-consuming screen or selection of a large combinatorial sequence space.9

Machine learning-assisted directed evolution (MLDE) that screens variant properties in silico can re-10

duce the experimental burden. However, the MLDE utilizing small experimentally labeled training data11

from random sampling renders low global maximal fitness hitting rates. This work introduces a cluster12

learning-assisted directed evolution (CLADE) framework, particularly designed for systems without high-13

throughput screening assays, that combines sampling through hierarchical unsupervised clustering and14

supervised learning to guide protein engineering. Based on general biological information, CLADE splits15

the genetic combinatorial space into various subspaces with heterogeneous evolutionary traits, which16

guides the selection of experimental sampling sets and the subsequent building up of supervised learning17

training sets. By virtually screening two four-site combinatorial fitness landscapes from protein G do-18

main B1 (GB1) and PhoQ, our CLADE consistently showed near 3-fold improvement on global maximal19

fitness hitting rate than using randomly sampled training data. Our CLADE can be easily applied to20

various biological systems and customized for systems with different throughput levels to maximize its21

accuracy and efficiency. It promises a significant impact to protein engineering.22
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1 Introduction39

Directed evolution (DE) is a commonly used approach in protein engineering to improve certain prop-40

erties (e.g., fitness) of a target protein. The fitness landscape is a high-dimensional surface that maps amino41

acid sequences to properties including activity, selectivity, stability, and other physicochemical features. Con-42

ventional DE seeks to discover useful variants satisfying desired properties by searching the optimal sequences43

on the fitness landscape through selection or screen. However, the full exploration of the fitness landscape is44

difficult under restricted timelines and laboratory capacities particularly when a high-throughput selection45

or screen is not available for the system because the size of the sequence space is in the order of 20L with L46

potential amino acids to be changed [1].47

The last decade has witnessed the rapid development of machine learning and deep learning algorithms48

for biological data [2, 3, 4, 5, 6]. Supervised models can learn relationships between sequences and fitness49

properties, and provide quantitative predictions on protein thermostability [7], protein folding energy [8, 9],50

protein solubility [10], protein-ligand binding affinity [11], and protein-protein binding affinity [12]. Due to51

the high cost of acquiring supervised protein labels, self-supervised protein embedding has emerged as an52

important paradigm in protein modeling. Trained on vast unlabeled sequence data resulting from natural53

evolution, self-supervised protein embedding can capture significant latent biological information of sequence54

and pass the information to the downstream supervised task [13, 14]. Adapted from natural language process-55

ing, many model architectures, such as variational auto-encoder [15], recurrent neural network [16, 17], and56

transformer [18], can be used to train the protein embedding models [13]. On the other hand, unsupervised57

clustering methods can identify the internal characteristics of unlabeled data by dividing them into multiple58

subspaces. Clustering methods, including distance-based clustering [19, 20], community-based clustering59

[21], density-based clustering [22], and graph-based clustering [23, 24], were widely applied to transcriptomic60

data analysis [25], pattern recognition [26] and image processing [27] to reveal data heterogeneity.61

DE optimizes protein fitness by mimicking the process of natural selection [28]. The epistasis is prevalent62

in the fitness landscape, where the combined effect of multiple mutations deviates from that predicted by63

adding their individual effects [29]. The DE via single-mutation search is generally restricted to exploring64

local valleys due to the epistasis [30, 31, 32], whereas multi-site saturation mutagenesis is inevitably associated65

with a huge combinatorial library, which often overwhelms the screen capacity. Recently, machine learning-66

assisted directed evolution (MLDE) becomes a new approach to navigate the epistatic fitness landscape67

for a predetermined combinatorial library at selected mutation sites. In MLDE, a supervised learning68

model is trained on a small sample of experimentally labeled variants (∼102) and is used to predict the69

fitness of all the unlabeled variants in the combinatorial library. Variants with top predicted fitness are70

experimentally screened to find optimal variants [1, 33, 34]. The MLDE has been applied to improve protein71

fitness in numerous biological systems, such as enzyme evolution [31], engineering of GFP fluorescence [35],72

the localization of membrane proteins [36], protein thermostability optimization [37], therapeutic antibody73

optimization [38].74

Functional proteins are rare in the enormous combinatorial space, and as the desired level of function75

increases the number of variants having that function decreases exponentially [1]. It is challenging for the76

MLDE to accurately predict high-fitness variants by learning from the training data overwhelmed with low-77

or zero-fitness variants. The application of zero-shot prediction, which predicts protein functions without78

any data collection, can be an effective approach in selecting more informative variants in the training data.79

With the inclusion of the zero-shot predictor, the focused training MLDE achieved significant improvement80
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in predicting fitness landscape comparing to traditional DE on protein G domain B1 (GB1) dataset [30].81

However, the unsupervised zero-shot predictor requires large amounts of prior knowledge in predicting a82

property for all variants and this property needs to be highly correlated with the desired fitness. The83

generalization of the zero-shot predictor is difficult and intricate where customized designs and testing are84

necessary before application to a new biological system or a new type of protein fitness.85

In this work, we purpose a novel cluster learning-assisted directed evolution (CLADE) framework to86

guide protein engineering. CLADE framework introduces an unsupervised clustering strategy to preselect87

the training sets for supervised learning to virtually navigate the fitness landscape. Through unsupervised88

clustering methods, the fitness heterogeneity can be identified where clusters have significantly different pop-89

ulations of high-fitness variants. Utilizing the fitness heterogeneity, we identify and oversample the clusters90

enriched with high-fitness variants according to the cluster-wise sampling probability which is dynamically91

updated and iterated with experimental screen. By introducing a hierarchical structure in clustering method,92

the performance of CLADE is accurate and robust with respect to the selection of hyperparameters. With93

the requirement of the same amount of prior knowledge with MLDE, CLADE can reach 50.8% and 55.8%94

global maximal fitness hitting rates for simulated medium and low throughput systems, respectively, which95

are over 2.7-fold improvement to MLDE on GB1 dataset. We further tested CLADE on the PhoQ dataset96

whose fitness is more sophisticated and rare than GB1 [39] and a 2.9-fold improvement on global maximal97

fitness hitting rate (i.e. from 7.2% to 20.6%) can be found comparing to MLDE. Our CLADE can be easily98

customized to systems with various throughput levels and particularly, low throughput systems may be more99

beneficial to achieve higher global maximal fitness hitting rate.100

2 Results101

2.1 Overview of CLADE102

The CLADE framework consists of the experimental screen, unsupervised clustering, and supervised103

learning, where unsupervised clustering and supervised learning serve as complementary roles to guide exper-104

imental screen to discover variants with optimal fitness in directed evolution (Figure 1A). Prior to CLADE,105

a target protein and multiple sites for saturation mutagenesis need to be determined by expert selection.106

An unlabeled combinatorial library is then constructed which consists of sequences of all candidate variants107

(Figure 1B). The unknown specific fitness information can be determined through the experimental screen,108

but usually only a small subset of variants is screened due to experimental constraints. Although specific109

fitness information is largely unknown, general biological information, such as amino acid physicochemical110

property, is available for all variants in the combinatorial library (Figure 1B). A hidden correlation between111

general biological information and specific fitness information variants can be learned. At the first stage of112

CLADE, unsupervised clustering guides coarse search and selection over clusters. By encoding sequences of113

variants with general biological information, unsupervised clustering divides the combinatorial library into114

multiple clusters with different internal characteristics. Variants in the same cluster have similar general115

biological properties, as well as fitness properties of the interest despite their values are unknown. Instead116

of a random selection of variants in the entire combinatorial library, CLADE selects variants via a cluster-117

learning sampling approach. To select one variant, one cluster is first selected according to the predefined118

cluster-wise sampling probabilities, and an uniform and random sampling selects the variant in this clus-119

ter. The selected variants are experimentally screened to obtain their fitness values. The overall fitness120

property of each cluster can be approximated by the average fitness of all selected variants in this cluster.121

The cluster-learning sampling iteratively selects variants and updates the cluster-wise sampling probabilities122

based on the overall fitness property over clusters. The labeled sample set is taken as training data to train123

a supervised learning model and provide a quantitative virtual evaluation of the rest of the combinatorial124

library. Top predicted variants are screened by experiments to discover the optimal variants and evaluate125

the predictive performance of CLADE (Figure 1C).126
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Figure 1: Overview of cluster learning-assisted directed evolution (CLADE). (A) Conceptual

diagram of CLADE. CLADE consists of three components: experimental screen, unsupervised clustering,

and supervised learning. Unsupervised clustering guides a cluster-wise coarse search of variants and se-

lection by iterating with the experimental screen. The information obtained by unsupervised learning is

passed to supervised learning for quantitative evaluation. The experimental screen provides validation of

the quantitative evaluation. Blue arrows illustrate the flow of information. The supervised learning can

also be repeated after experimental validation, but it is not considered in this work (gray dash arrow).

(B) Combinatorial library construction. For a target protein, expert selection picks L sites for saturation

mutagenesis to construct the combinatorial library including all variants at these sites. In the figure, target

protein is GB1 (PDB ID: 2gi9) and L = 4 mutation sites are V39, D40, G41, and V54. Each variant can be

encoded by well-known general biological information and the encoding of the combinatorial library leads

to a feature matrix X. The specific fitness information for each variant is unknown and the experimental

screen is required to obtain the precise fitness value, but usually only a small subset of variants can be

screened with limited experimental capacity. (C) Flowchart of CLADE. Unsupervised clustering divides the

combinatorial library into multiple clusters by using the feature matrix X. Cluster-learning sampling selects

and screen variants to construct a labeled sample set through iterations between the experimental screen and

unsupervised clustering. The labeled sample set is taken as training data passing to the supervised learn-

ing. Supervised learning learns from the training data and provides predictions on optimal variants. (D)

Cluster-learning sampling schematic diagram. Cluster-wise sampling probabilities guide variants selection

and the follow-up experimental screen at different clusters. Sampling probabilities are calculated based on

existing labeled variants and dynamically updated when a new batch of variants is screened. Clusters with

high average fitness tend to be oversampled with higher sampling probabilities. Deep hierarchical clustering

is calculated during iterations to further oversample the high-fitness clusters. The high-fitness clusters are

divided into more subclusters to allow further oversampling in these clusters.
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In cluster-learning sampling, cluster-wise sampling probabilities are dynamically updated after each127

batch of variants is screened (Figure 1D). In the first few batches, sampling probabilities are identical for128

all clusters to have a rough coverage of all clusters. Then the sampling strategy is designed to oversample129

the high-fitness clusters since high-fitness variants are more desired in fitness optimization. The sampling130

probability for each cluster is defined by the average fitness of selected variants in this cluster divided by131

the summation of the average fitness of selected variants in each cluster (Methods). To further oversample132

the high-fitness clusters, we propose a deep hierarchical clustering structure (Figure 1D). Clusters with133

higher average fitness are divided into more subclusters and then the same cluster-wise sampling procedure134

is applied to clusters at the new hierarchy. For maximum hierarchy N , N hyperparameters are needed135

for the increment of new clusters at each hierarchy. The increment of clusters at hierarchy i is defined as136

Ki (i = 1, 2, · · · , N) (Methods). Three examples of simulated sampling with various maximum hierarchies137

were presented to further illustrate the sampling process (Supplementary Information S3, Figure S1).138

In the experimental screen, a batch of variants is usually screened in parallel and the batch size varies139

in systems with different throughput systems. To adopt CLADE to systems with different throughputs, the140

frequency for updating sampling probability or generating clusters at new hierarchy needs to be multiples141

of the batch size, as well as the number of training data and the number of top-predicted variants being142

screened. Two batch sizes, 96 and 1, were taken in this work. Batch size 96 is followed by the small 96-well143

plate commonly seen in many experimental systems [31, 35] and it is used to simulate medium throughput144

systems. Batch size 1 is used to simulate systems with extremely low throughput where variants need to be145

screened one by one. For these two types of systems, many procedures are identical in this work: 1) the size of146

training data is 384 and top 96 predicted variants are screened to evaluate the predictive performance; 2) the147

first 96 samples are selected randomly and uniformly over clusters; 3) new subclusters at new hierarchy are148

generated after every 96 variants are collected until reaching the maximum hierarchy N . The only difference149

is the frequency for updating sampling probabilities, which is identical to the batch size. The outcome of150

CLADE consists of variants in the training data and the top 96 predicted variants. The max fitness and151

mean fitness are used to evaluate the CLADE outcome. Another important metric, the global maximal152

fitness hitting rate, measures the frequency that CLADE successfully picks the global maximal variant in153

either training data or top prediction. Details and more metrics are given in Methods.154

2.2 Unsupervised clustering reveals fitness heterogeneity155

The fitness landscape is usually enriched with low- or zero-fitness variants [1]. For example, an empiri-156

cally determined combinatorial fitness landscape of protein G domain B1 (GB1; PDB ID: 2gi9) consists of157

experimentally determined fitness [32]. The fitness was defined as the enrichment of folded protein bound to158

the antibody IgG-Fc. This data set contains 149,361 variants out of 204 = 160,000 variants at four amino159

acid sites (V39, D40, G41, and V54). By normalizing the fitness to its global maximum, 92% of variants160

have fitness lower than 0.01 and 99.3% variants have fitness lower than 0.3. As a case study, we tested our161

CLADE method on the GB1 dataset.162

As a proof of principle, we employed K-means clustering and took four physicochemical descriptors,163

AA encoding, as the sequence encoding method (Methods). We first cluster the fitness landscape into164

K1 = 3 clusters. Three clusters contain the similar number of variants and they are well separated in the165

projected principal components space. The population of high-fitness variants (i.e. > 0.3) is rare in the166

fitness landscape. Interestingly, the heterogeneity of high-fitness variants was found in these clusters, where167

cluster 3 contains over 11-fold of high-fitness variants than either cluster 1 or cluster 2 (Figure 2A).168

Next, we performed the K-means clustering with various numbers of clusters K1 (10, 40, and 100) and169

multiple repeats were performed for each K1 value. In a single simulation, clusters were numbered by a170

unique cluster ID, where cluster ID indicates the descending ranking of the average fitness for all variants171

within the corresponding cluster. Expected average fitness in the cluster with identical cluster ID were172

calculated (Figure 2B). The distribution of cluster average fitness reveals the fitness heterogeneity where the173
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Figure 2: K-means reveals fitness heterogeneity and cluster-learning sampling recapitulates

the heterogeneity with maximum hierarchy N = 1. (A) Visualization of GB1 variants in the reduced

two-dimensional space spanned by the first two principal components. Three clusters were obtained from

K-means. Dots with different colors represent variants in different clusters. Each cluster was plotted

individually (from the second subplot to the fourth subplot). Variants with fitness lower or higher than 0.3

are denoted by light or dark colors, respectively. Numbers of variants in three clusters are 50,030, 51,016,

and 48,315, respectively. And numbers of high-fitness variants (i.e. > 0.3) in these clusters are 80, 59,

and 911, respectively. (B) K-means clustering and the follow-up cluster-learning sampling on the GB1

dataset with 500 independent repeats. Three sets of parameters are presented individually in different plots:

K1 = 10 (blue), 40 (red), and 100 (yellow). In a single simulation, each cluster is numbered by a unique

cluster ID, where cluster ID indicates the descending ranking of the average fitness for all variants within the

corresponding cluster. Bar plots above the abscissa with dark color show the expected average ground-truth

fitness for all variants contained in each cluster. Bar plots below the abscissa with light color show the

expected average fitness for variants selected from the cluster-learning sampling in each cluster.

cluster with lower numbering has higher average fitness (Figure 2B). We found the distribution of cluster174

average fitness becomes more polarized near the origin as K1 increases. Specifically, 32%, 52% and 67% of175

high-fitness variants (i.e. > 0.3) are contained in the top 10% clusters for K1 values at 10, 40, and 100,176

respectively (Figure 2B).177

The cluster-learning then oversampled the high-fitness cluster in the simulated medium-throughput sys-178

tem. In sampled data, distributions of the expected cluster average fitness recapitulated the polarized dis-179

tributions as shown in the ground-truth fitness and the distributions become more polarized as K1 increases180

(Figure 2B). Indeed, K-means can capture the fitness heterogeneity and our cluster-learning algorithm can181

recapitulate this heterogeneity and select more samples with higher fitness. A community-based clustering182

method, Louvain clustering [21], was also carried out to capture the fitness heterogeneity (Supplementary183

Information S4, Figure S2).184

2.3 Accurate and robust CLADE outcome with deep hierarchical structure185

Utilizing the fitness heterogeneity, CLADE performed differently under different clustering architectures.186

First, we performed CLADE on simulated medium-throughput systems by exploring maximum hierarchy N187

and hyperparameters (i.e. increments of clusters at each hierarchy). With shallow hierarchy N = 1, CLADE188

using K-means improved all evaluating metrics, including expected max fitness, expected mean fitness,189

global maximal hitting rate, NDGC, cross validation errors, and testing errors, for both training data and190
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top 96 predicted variants, comparing to the case using the random sampled training data regardless of the191

parameters selection (Table S1-S3). Moreover, the global maximal fitness hitting rate can reach 40.2% when192

K1 = 90, a 2.2-fold improvement to the case using the random sampled training data (Table 1). Similarly,193

by exploring hyperparameters of Louvain method, CLADE can lead to similar improvement and an almost194

2-fold improvement on global maximal fitness hitting rate, 36.4%, can be observed (Table 1). In hierarchical195

clustering, a cluster may contain fewer variants than the number of its subclusters at the next hierarchy196

since the number of variants in one cluster decreases quickly with respect to its hierarchy. To avoid this197

issue, various cluster increments (K1, K2, K3, etc.) are explored in smaller ranges for deep hierarchy. With198

deep hierarchy, CLADE performance was further improved (Table S1-S3). A 2.7-fold improvement of the199

global maximal hitting rate, 50.8%, can be observed for both N = 2 and N = 3 (Table 1).200

Clustering

method;

architecture

Parameters Expected

max fitness

Expected

mean fitness

Global max

hitting rate

random

sampling

(MLDE);

N = 0;

– 0.774 0.305 18.6%

K-means;

N = 1

K1 = 90 0.870 0.406 40.2%

Seurat

(Louvain);

N = 1

k.param=500;

resolution=1.2

0.846 0.357 36.4%

K-means;

N = 2

K1 = 40;

K2 = 30

0.887 0.421 50.8%

K-means;

N = 3

K1 = 30;

K2 = K3 = 40

0.888 0.423 50.8%

Low

throughput;

K-means;

N = 3

K1 = 30;

K2 = K3 = 50

0.904 0.431 55.6%

Table 1: CLADE performance GB1 dataset with different sampling architectures by using AA encoding. For

each architecture, hyperparameters for clustering method were explored (Table S1-S3). The case with highest expected max

fitness for each architecture was shown in this table. Unless explicitly indicated, the batch size is taken as 96 to simulate the

medium-throughput systems. The case with N = 0 indicates randomly sampled training data which is equivalent to the MLDE

approach. All statistics were obtained from 500 independent repeats of both sampling and training. Expected max fitness and

expected mean fitness were evaluated on top 96 variants from supervised learning model. The global maximum hitting rate

was evaluated on the union of the top 96 variants from supervised learning model and the 384 variants in training data.

In applications, the robustness of CLADE performance to hyperparameters is also desired since only201

one set of hyperparameters can be picked and applied. Surprisingly, the robustness was enhanced as the202

maximum hierarchy increases (Figure S3-S5, Table S1). With shallow hierarchy N = 1, the global maximal203

fitness hitting rate is relatively low and varies in a relatively large range from 30.6% to 41.2%. While for204

deep hierarchy N = 3, the global maximal fitness hitting rate is relatively higher and varies in a relatively205

small range from 41.6% to 50.8%.206

We also performed CLADE in the simulated low-throughput systems. We only explored CLADE with207

maximum hierarchy N = 3, which achieves the best performance in medium-throughput systems. Because208

sampling probabilities are updated more frequently, the simulated low-throughput systems can achieve better209

performance measured in expected max fitness, expected mean fitness, and global maximal fitness hitting210

rate. Especially, the global maximal fitness hitting rate can reach 55.6% (Table 1).211
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Overall, deep CLADE ensures robust and accurate performance in directed evolution. Systems with212

lower throughput may achieve better performance.213

2.4 CLADE mediates training data diversity to improve its outcome214

In CLADE, various clustering architectures result in different compositions of training data and affect215

the outcome of the downstream supervised learning. Training data diversity is critical to the outcome of216

the supervised learning model, where high diversity may minimize the extrapolation and low diversity may217

allow more accurate predictions at a local structure. Here, we study training data diversity in both feature218

space (i.e. sequence diversity) and labels space (i.e. fitness diversity), and both of them are quantified by219

the modified functional attribute diversity (MFAD) (Methods).220

We compared four CLADE simulations with various maximum hierarchies N from 0 to 3 on GB1 dataset221

with AA encoding, particularly, N = 0 represents random sampling without clustering (Figure 3A-F). We222

picked increments of clusters such that any cases at the same hierarchy have the same number of clusters223

despite their different maximum hierarchy. All cases are overwhelmed with low- or zero-fitness, which is224

inherent from the fitness landscape. But as the maximum hierarchy N increases, more high-fitness variants225

can be selected and the fitness distribution becomes less localized at 0, especially for the last batch of selection226

where variants were selected at the maximum hierarchy (Figure 3A and Figure S6). As a result, fitness227

diversity increases when a new hierarchy is added. On the other hand, we observed distributions of variants228

in reduced sequence space become more localized as a new hierarchy is added, as a result, the sequence229

diversity decreases (Figure 3C-F and Figure S7). With increased fitness diversity and reduced sequence230

diversity in training data, the performance of the downstream supervised learning model is improved for231

both max fitness and mean fitness of top predicted variants with deep hierarchy (Figure 3B). The consistent232

conclusion can be drawn statistically with multiple repeats (Figure S8).233

By aligning statistical results from different CLADE architectures and hyperparameters, relations be-234

tween training data diversity and CLADE outcome can be clearly seen (Figure 3G-I). In general, a deeper235

hierarchy results in lower sequence diversity and higher fitness diversity (Figure 3G). Although shallow hier-236

archy can reach the similar fitness diversity level with the deep hierarchy with sufficient large K1, it has much237

higher sequence diversity close to that in random sampling (Figure 3G). CLADE generally achieved better238

performance on expected max fitness if lower sequence diversity is achieved in training data (Figure 3H). On239

the other hand, with increasing fitness diversity, shallow CLADE performance can be improved first with240

small K1 but then drop with large K1. In contrast, deep CLADE performance continues to be improved241

with increasing fitness diversity (Figure 3I). Such improvement from deep CLADE is not limited to expected242

max fitness but all evaluating metrics we discussed in this work, including expected mean fitness, global243

maximal fitness hitting rate, NDCG, cross validation errors, and testing errors (Table S1-S3). Overall, the244

deeper maximum hierarchy allows further improvement of CLADE performance through mediation on the245

training data diversity.246

2.5 CLADE on PhoQ dataset247

We further tested CLADE on PhoQ dataset, a fitness landscape on a combinatorial library with four248

mutation sites (A284, V285, S288, and T289) [39]. This data set consists of 140,517 labeled variants out249

of 204=160,000. The fitness was defined as the enrichment of similar phosphatase activity with wild-type250

PhoQ to its substrate PhoP. By normalizing the fitness to its global maximum, PhoQ dataset was found to251

be overwhelmed with low- or zero-fitness variants with 92% of variants having fitness lower than 0.01 and252

99.96% of variants having fitness lower than 0.3, where the high-fitness variants are more rare than that in253

GB1 dataset (Figure S9A).254

Unlike GB1 where the value of fitness directly reflects the levels of protein property (i.e. binding affinity),255

the value of fitness for PhoQ is more sophisticated as it does not indicate the level of protein property. Using256

AA encoding, we found a 19% improvement on max fitness and a 3-fold improvement on global maximum257
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Figure 3: Relations between training data diversity and CLADE outcome. (A-F) Single CLADE

simulation with various maximum hierarchies: 1) N = 0 (random sampling; MLDE); 2) N = 1 (K1 = 30);

3) N = 2 (K1 = K2 = 30); 4) N = 3 (K1 = K2 = K3 = 30). Distributions of fitness in (A) training data

sampled at fourth batch (consists of 96 samples) and (B) the top 96 predicted variants. The violin plot

outlines illustrate kernel probability density where the width of the shaded area represents the proportion

of the data located there. Each black dot represents a variant and its ordinate show the fitness of the

variant. The red line shows the maximum fitness and the purple line shows the mean fitness. In (A), fitness

diversity measured by modified functional attribute diversity (MFAD) are: 1) N = 0: 1.4; 2) N = 1: 5.3;

3) N = 2: 7.4; and 4) N = 3: 10.2. Distributions of variants selected at fourth batch in sequence space in

the projected first two-principle component space: (C) N = 0; (D) N = 1; (E) N = 2; and (F) N = 3.

The sequence diversity measured by MFAD are: 518, 517, 460, and 446, respectively, for these four cases. In

(C-F), gray dots show all variants in the combinatorial library. (G-H) For various maximum hierarchies,

hyperparameters were explored (Table S1-S3). For N = 1, two ranges of K1 were explored: 10:10:90 and

100:200:1000. For N = 2, combinations of K1 and K2 were explored: K1 = 10 : 10 : 50 and K2 = 10 : 10 : 50.

For N = 3, K3 was assumed to be identical to K2. Combinations of K1 and K2 were explored: K1 = 10 :

10 : 50 and K2 = 10 : 10 : 50. For each set of hyperparameters, CLADE was repeated independently 500

times and expected values of training data fitness diversity, training data sequence diversity, and expected

maximum fitness from CLADE are shown. Numbers next to dots inside the plots for cases N = 0 or N = 1

denote the number of clusters at the first hierarchy, K1. (G) Expected sequence diversity versus expected

fitness diversity. (H) Expected sequence diversity versus expected maximum fitness from CLADE. (I)

Expected fitness diversity versus expected maximum fitness from CLADE.

hitting rate from deep CLADE comparing to CLADE using randomly sampled training data (i.e. MLDE).258

However, the improved predictive performance from deep CLADE still has low expected max fitness and259

low global maximal fitness hitting rate. Instead of using AA encoding extracted from a small subset of260

AAIndex [40], Georgiev encoding [41, 42], a more comprehensive encoding method by integrating over 500261
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amino acid indices in AAIndex database, was tested. We found CLADE performance was largely improved262

by using Georgiev encoding. Deep CLADE again showed significant improvement compared to the case263

uses randomly sampled training data, where a 36% improvement on expected max fitness and a 2.9-fold264

improvement (i.e. from 7.2% to 20.6%) on global maximum hitting were observed (Table 2). Despite of265

CLADE showing lower global maximum hitting rate and expected max fitness in PhoQ dataset than that266

in GB1 dataset, the fitness improvement relative to wild-type protein measured by expected max fitness is267

much higher for PhoQ, which are 7.8- and 67-fold, respectively, for GB1 and PhoQ (Figure S9B).268

Encoding

method

Architecture Expected

max fitness

Expected

mean fitness

Global max

hitting rate

AA random

sampling

(MLDE); N = 0

0.299 0.072 1.0%

AA N = 3;

K1 = 40;

K2 = K3 = 30

0.357 0.093 3.0%

Georgiev random

sampling

(MLDE); N = 0

0.371 0.077 7.2%

Georgiev N = 3;

K1 = 10;

K2 = K3 = 30

0.503 0.096 20.6%

Table 2: CLADE performance with different encoding methods on PhoQ data set. Deep CLADE was only explored

for maximum hierarchy N = 3 and parameters were explored (Table S1-S3). All cases used K-means for clustering method.

The cases with highest expected max fitness were shown in this table. Unless explicitly indicated, the batch size is taken as

96 to simulate the medium-throughput systems. The case with N = 0 indicates randomly sampled training data which is

equivalent to the MLDE approach. All statistics were obtained from 500 independent repeats including sampling and training.

Expected max fitness and expected mean fitness were evaluated on top 96 variants from supervised learning model. The global

maximum hitting rate was evaluated on the union of the top 96 variants from supervised learning model and the 384 variants

in training data.

3 Discussions269

In this study, we proposed a cluster learning-assisted directed evolution framework. CLADE is effective270

to identify the heterogeneity of the fitness landscape by utilizing general biological information. Then, the271

cluster-learning sampling is able to recapitulate such heterogeneity to provide more informative training data.272

With the proposed deep hierarchical structure in clustering, we found CLADE is efficient to assist experiment273

to find high-fitness variants and its performance is robust to the selection of hyperparameters. In applications,274

after expert selection on potential mutation sites for saturation mutagenesis, CLADE can efficiently navigate275

the fitness landscape in silico by selecting and learning from a small subset of experimentally screened276

variants. It requires only general biological information such as amino acid physiochemical properties, but277

no specific information on fitness or target protein. CLADE can simply be customized to different biological278

systems to maximize its impacts. Especially, low-throughput systems may benefit more from this framework.279

In general, fitness diversity also reflects the enrichment of high-fitness in the training data for the fitness280

landscape containing a large portion of low- or zero-fitness variants. Increased fitness diversity allows CLADE281

to learn more information from high-fitness variants. Deep hierarchical structure in CLADE significantly282

improves fitness diversity. Because the epistatic landscape has multiple local optima, variants may scatter283

over multiple local optima. Increased fitness diversity may not ensure CLADE improvement when it exceeds284

a certain level (Figure S3). To further improve CLADE performance, training data with more variants285
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near the global optima may help (i.e., reduced sequence diversity). While extremely low sequence diversity286

may have opposite effects on supervised learning [30]. In deep CLADE, sequential selection of variants287

over clusters from shallow to deep hierarchies can obtain both low and high sequence diversity at different288

batches (Figure S7). Therefore, deep CLADE properly regulates training data diversity properly to improve289

its performance.290

CLADE can be implemented by using any sequence encoding methods. In this work, two physicochemi-291

cal sequence encoding methods were tested. Regardless of the encoding method or the dataset, deep CLADE292

consistently showed near 3-fold improvement on global maximal fitness hitting rate comparing to CLADE293

using randomly sampled training data (i.e. MLDE) (Table S4). Interestingly, CLADE on GB1 using AA294

encoding has better predictive performance than that using Georgiev encoding, while PhoQ behaved other295

way around. AA encoding is a subset of AAIndex while Georgiev gives a comprehensive low-dimensional296

representation of AAIndex. For the GB1 dataset, the AA encoding may be sufficient to learn the fitness,297

and Georgiev encoding may contain redundant information leading to its underperformance than AA en-298

coding. For the PhoQ dataset, due to its sophisticated fitness property, four physicochemical descriptors299

from AA encoding may not be sufficient to learn the fitness, consequently, Georgiev encoding outperforms300

AA encoding. To maximize the impacts of CLADE, a universal and informative encoding method is de-301

sired. The physicochemical descriptors have been widely applied to many other machine learning tasks in302

predicting protein functions [8, 12, 43]. Moreover, the development of self-supervised pretraining methods303

provides novel data-driven approaches in sequence encoding methods [13, 44]. While they were reported to304

underperform Georgiev encoding on GB1 dataset in MLDE [30], the self-supervised learning enriched with305

hidden information should be further explored. A careful design for the target protein may be necessary. For306

example, more homology of the targeted protein can be included in the training data of the self-supervised307

learning model [33].308

The fitness landscape is usually overwhelmed with low- or zero-fitness variants. Avoiding the non-309

functional variants in training data would significantly improve directed evolution performance. The zero-310

shot predictor, utilizing large amount of prior knowledge to predict whether a variant is functional, can311

guide the training data creation to exclude low- or zero-fitness variants. The zero-shot predictor requires312

its predicted quantities highly correlated to the fitness of interest. The focused training MLDE (ftMLDE)313

combining a zero-shot predictor with MLDE performed extremely well on the GB1 dataset with 92% global314

maximal fitness hitting rate [30]. However, the design of the zero-shot predictor may vary much from different315

proteins and the target fitness properties. The performance of such an unsupervised zero-shot predictor is316

difficult to be tested before applications. Alternatively, the selection of every batch of variants in CLADE317

is simply driven by the previously screened variants. Our CLADE provides a general framework in directed318

evolution that significantly improves the performance of traditional MLDE without the requirement of extra319

prior knowledge. Although CLADE achieved lower global maximum hitting rate (i.e. 50.8%) on GB1 dataset320

than ftMLDE, we showed the generalization to more sophisticated fitness on the PhoQ data set, where the321

value of fitness no longer represents levels of certain protein property and fewer variants near the global322

maximal fitness (Figure S9). Moreover, integrating additional partial prior knowledge with the CLADE323

framework, similar to the zero-shot predictor, may further improve CLADE performance.324

Iterating with experimental screen, our cluster-learning sampling approach is a special type of active325

learning in protein engineering [3]. The current active learning methods usually use supervised learning326

to make decisions for the next round of experiment. Followed by the supervised learning at the end, the327

CLADE may significantly enhance the outcome robustness by exploring more diverse space and exclusion of328

low- or zero-fitness variants while preserving sequence and fitness diversity in the training set. In contrast to329

the current MLDE protocols where site-directed mutagenesis is conducted to generate the variants used to330

train ML models, the CLADE protocol requires making specific variants throughout the whole process from331

the initial sampling and the training sets to the predicted set, which would increase experimental cost in332

making constructs. However, with the rapid decrease in the cost of gene synthesis and development of high-333

throughput site-directed mutagenesis [45], making hundreds of variants harboring multiple mutations would334
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still be efficient and affordable. The increased cost would be sufficiently compensated by the significantly335

improved performance of the supervised learning with the increased expected max fitness and global max336

hitting rate.337

4 Methods338

Physicochemical sequence encoding In this work, two types of physicochemical sequence encoding339

methods, AA and Georgiev, were used to test CLADE. The encoding matrix of the combinatorial library340

was standardized via StandardScalar() in scikit-learn [46] before further usage. The same encoding matrix341

was used for both unsupervised clustering and supervised learning models. First, the AA encoding consists of342

four physicochemical descriptors including molecular mass, hydropathy, surface area, and volume (Table S5).343

Molecular mass, hydropathy, and surface area are obtained from the AAIndex database [40], and volume is344

from the experimental work [47]. This encoding was previously used in protein stability changes predictions345

[8]. Instead of picking a subset of AAIndex database, the Georgiev encoding [41, 42] comprehensively346

integrated over 500 amino acid indices in AAIndex database and it gives a low-dimensional representation347

of these indices with in 19-dimensional. More details see Supplementary Information S1.348

Unsupervised clustering and cluster-learning sampling In this work, two unsupervised clustering349

algorithms, K-means [19] and Louvain [21], were tested on CLADE. K-means clustering is computed using350

scikit-learn package with default kmeans++ initialization [46]. Louvain clustering is computed on a shared351

nearest neighbor graph implemented by Seurat package [48] (Supplementary Information S4).352

The cluster-wise sampling probabilities depend on the average fitness of selected variants in each cluster.353

The cluster with higher average fitness has the higher probability to be selected. In k-th cluster at i-th354

hierarchy, the sampling probability is given by:355

P
(i)
k =

1

#C
(i)
k

∑

j in C
(i)
k

yj

1
∑

l

#C
(i)
l

∑

l

∑

j in C
(i)
l

yj
, (1)

where C
(i)
l ⊂ I is the index set of l-th cluster at i-th hierarchy and I is the index set of the combinatorial356

library that gives each variant an unique index. And yj is the fitness of j-th variant.357

In deep hierarchical clustering, only K-means is applied since it is easy to control the number of clusters358

with a single hyperparameter K. For maximum hierarchy N , increment of clusters at i-th (i ≤ N) hierarchy359

is given by Ki. The total number of clusters at maximum hierarchy is the sum of these numbers
N
∑

i=1

Ki.360

At a new hierarchy, clusters with higher average fitness are divided into more subclusters, and clusters with361

low average fitness are divided into fewer subclusters or not divided. The k-th parent cluster at (i − 1)-th362

hierarchy will be divided into L
(i)
k subclusters at i-th hierarchy, and L

(i)
k is given by363

L
(i)
k =











[P
(i)
k Ki] + 1, if k 6= k0

Ki −
∑

j 6=k0

[P
(i)
j Ki] + 1, if k = k0

(2)

where k0 is the cluster index such that this cluster has maximum average fitness from selected variants in364

all clusters and [x] represents the largest integer not greater than x.365

We summarize the flow of cluster-learning sampling together with required hyperparameters. The struc-366

ture of clusters needs to be determined prior to the sampling process with N +1 hyperparameters, including367

maximum hierarchy N and the increment of clusters at each hierarchy Ki. The batch size, NUMbatch, is368

taken to be the number of variants being screened simultaneously in experiment. The batch size decides the369
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parameter medium throughput low throughput

NUMbatch 96 1

T 384 384

M 96 96

NUM1st 96 96

NUMhierarchy 96 96

Table 3: Numbers for simulated medium- and low-throughput systems in work.

frequency for updating sampling probability and clusters at new hierarchy, and a lower batch size usually370

leads to more accurate CLADE prediction but higher cost in experiment. During sampling, the first round371

selection selects NUM1st variants, that are equally picked over clusters to have a rough coverage of all clus-372

ters. After the first-round selection, sampling probability is updated every batch according to Eq. (1), and a373

new hierarchy is generated after every NUMhierarchy variants is screened until reaching maximum hierarchy374

N . The sampling process generates NUMtrain labeled variants to train the downstream supervised learning375

model. The top M variants predicted by CLADE are experimentally screened. These numbers, NUM1st,376

NUMhierarchy, NUMtrain, and M are all required to be multiples of batch size NUMbatch. The N +1 hyper-377

parameters for clustering were extensive explored in this work. Two sets of the other five hyperparameters378

were explored to simulate medium- and low-throughput systems (Table 3). In application, NUMbatch is379

picked according to experimental protocol and T can be picked according to screening capacity. The other380

three numbers can be selected according to our experiment and scaled to the suitable values.381

Supervised learning The MLDE package [33] was used for the supervised learning model in this work.382

An ensemble of 16 regression models optimized by Bayesian hyperparameter optimizations were used. Five-383

fold cross validation is performed on training data and used to evaluate the performance of each model384

measured by mean square errors. Bayesian hyperparameter optimizations are performed to find the best-385

performing hyperparameters for each model. After hyperparameter optimizations, the top three models are386

picked and averaged to predict the fitness of unlabeled variants. Details see Supplementary Information S2387

and Table S6-S7.388

Evaluating metrics Various metrics were used to evaluate the training data diversity and CLADE out-389

come. Mean fitness and max fitness are calculated in three sets, including training data, the top M predicted390

variants and their union. Global maximal fitness hitting rate calculated the frequency that the global max391

fitness variant is successfully picked in multiple independent repeats. Normalized discounted cumulative gain392

(NDCG) is a measure of ranking quality to evaluate the predictive performance of CLADE on all unlabeled393

data. Its value is between 0 and 1. When NDCG is closed to 1, it indicates that variants ranked by the394

predicted fitness are similar to that ranked by the ground truth fitness. Root mean square error (RMSE) and395

Pearson correlation are used to evaluate the performance of the supervised learning for both cross validation396

and testing. Modified functional attribute diversity (MFAD) is a quantity to measure data diversity [49]. In397

this work, we used it to measure fitness and sequence diversity for training data. Suppose T is the training398

data size, MFAD is given by399

MFAD =

T
∑

i=1

T
∑

j=1

dij

T
, (3)

where dij represents the dissimilarity between i-th sample and j-th sample. For fitness diversity, the dissim-400

ilarity is calculated by the difference of fitness between two samples:401

d fitness
ij = |yi − yj | . (4)
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For sequence diversity, the dissimilarity is calculated by Euclidean distance between two samples of the402

physicochemical encoding:403

d
sequence
ij = ‖xi − xj‖2 (5)

where xi is the physicochemical encoding feature vector of i-th variant, and ‖ · ‖ is the Euclidean distance.404

Data Availability405

The GB1 dataset [32] is an empirical fitness landscape for protein G domain B1 (GB1; PDB ID: 2GI9)406

binding to an antibody. The fitness was defined as the enrichment of folded protein bound to the antibody407

IgG-Fc. This data set contains 149,361 experimentally labeled variants out of 204=160,000 at four amino408

acid sites (V39, D40, G41, and V54). The fitness of the remaining 10,639 unlabeled variants is imputed,409

but they are not considered in this study. In this work, we linearly scaled the range of fitness to [0, 1] by410

normalizing fitness to global maximum fitness.411

In PhoQ dataset [39], a high-throughput assay for the signaling of the two-component regulatory system,412

PhoQ-PhoP sensor kinase and a response regulator (PDB ID: 3DGE), was developed with a YFP reporter413

expressed from a PhoP-dependent promoter. The combinatorial library was constructed at four sites (A284,414

V285, S288, and T289) for PhoQ. Phosphatase or kinase activity by stimulating PhoQ with high or low415

extracellular magnesium was performed. This two-step selection involving two libraries was used to select416

mutants that behaved similarly to the wild-type PhoQ. In this work, we took the data from the combinatorial417

library with high extracellular magnesium treatment, where it has large coverage with 140,517 quality-read418

variants out of 204=160,000. The fitness was defined as the enrichment of similar phosphatase activity with419

wild-type PhoQ to its substrate PhoP. We linearly scaled the range of fitness to [0, 1] by normalizing fitness420

to global maximum fitness.421

Code Availability422

All source codes and models are publicly available at https://github.com/YuchiQiu/CLADE.423
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