
Syst. Biol. 67(2):195–215, 2018
© The Author(s) 2017. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved.
For Permissions, please email: journals.permissions@oup.com
DOI:10.1093/sysbio/syx065
Advance Access publication July 26, 2017

Cladogenetic and Anagenetic Models of Chromosome Number Evolution: A Bayesian
Model Averaging Approach

WILLIAM A. FREYMAN1,∗ AND SEBASTIAN HÖHNA1,2

1Department of Integrative Biology, University of California, 3040 Valley Life Sciences Building #3140, Berkeley, CA 94720, USA; and 2Department of
Statistics, University of California, 367 Evans Hall, Berkeley, CA 94720, USA

∗Correspondence to be sent to: Department of Integrative Biology, University of California, 3040 Valley Life Sciences Building #3140,
Berkeley, CA 94720, USA;

E-mail: freyman@berkeley.edu.

Received 08 November 2016; reviews returned 03 March 2017; accepted 01 July 2017
Associate Editor: Brian Moore

Abstract.—Chromosome number is a key feature of the higher-order organization of the genome, and changes in chromosome
number play a fundamental role in evolution. Dysploid gains and losses in chromosome number, as well as polyploidization
events, may drive reproductive isolation and lineage diversification. The recent development of probabilistic models
of chromosome number evolution in the groundbreaking work by Mayrose et al. (2010, ChromEvol) have enabled the
inference of ancestral chromosome numbers over molecular phylogenies and generated new interest in studying the
role of chromosome changes in evolution. However, the ChromEvol approach assumes all changes occur anagenetically
(along branches), and does not model events that are specifically cladogenetic. Cladogenetic changes may be expected if
chromosome changes result in reproductive isolation. Here we present a new class of models of chromosome number
evolution (called ChromoSSE) that incorporate both anagenetic and cladogenetic change. The ChromoSSE models allow us
to determine the mode of chromosome number evolution; is chromosome evolution occurring primarily within lineages,
primarily at lineage splitting, or in clade-specific combinations of both? Furthermore, we can estimate the location and
timing of possible chromosome speciation events over the phylogeny. We implemented ChromoSSE in a Bayesian statistical
framework, specifically in the software RevBayes, to accommodate uncertainty in parameter estimates while leveraging the
full power of likelihood based methods. We tested ChromoSSE’s accuracy with simulations and re-examined chromosomal
evolution in Aristolochia, Carex section Spirostachyae, Helianthus, Mimulus sensu lato (s.l.), and Primula section Aleuritia, finding
evidence for clade-specific combinations of anagenetic and cladogenetic dysploid and polyploid modes of chromosome
evolution. [Anagenetic; Bayes factors; chromosome evolution; chromosome speciation; chromoSSE; cladogenetic; dysploidy;
phylogenetic models; polyploidy; reversible-jump Markov chain Monte Carlo; whole genome duplication.]

A central organizing component of the higher-
order architecture of the genome is chromosome
number, and changes in chromosome number have
long been understood to play a fundamental role
in evolution. In the seminal work Genetics and the
Origin of Species (1937), Dobzhansky identified “the
raw materials for evolution,” the sources of natural
variation, as two evolutionary processes: mutations
and chromosome changes. “Chromosomal changes are
one of the mainsprings of evolution,” Dobzhansky
asserted, and changes in chromosome number such as
the gain or loss of a single chromosome (dysploidy),
or the doubling of the entire genome (polyploidy),
can have phenotypic consequences, affect the rates
of recombination, and increase reproductive isolation
among lineages and thus drive diversification (Stebbins
1971). Recently, evolutionary biologists have studied
the macroevolutionary consequences of chromosome
changes within a molecular phylogenetic framework,
mostly due to the groundbreaking work of Mayrose
et al. (2010, ChromEvol) which introduced likelihood-
based models of chromosome number evolution.
The ChromEvol models have permitted phylogenetic
studies of ancient whole genome duplication events,
rapid “catastrophic” chromosome speciation, major
reevaluations of the evolution of angiosperms, and
new insights into the fate of polyploid lineages
(e.g., Pires and Hertweck 2008; Mayrose et al. 2011; Tank
et al. 2015).

One aspect of chromosome evolution that has not
been thoroughly studied in a probabilistic framework
is cladogenetic change in chromosome number.
Cladogenetic changes occur solely at speciation events,
as opposed to anagenetic changes that occur within
lineages and are not associated with speciation events.
Studying cladogenetic chromosome changes in a
phylogenetic framework has been difficult since the
approach used by ChromEvol models only anagenetic
changes and ignores the changes that occur specifically
at speciation events and may be expected if chromosome
changes result in reproductive isolation. Reproductive
incompatibilities caused by chromosome changes may
play an important role in the speciation process, and
led White (1978) to propose that chromosome changes
perform “the primary role in the majority of speciation
events.” Indeed, chromosome fusions and fissions may
have played a role in the formation of reproductive
isolation and speciation in the great apes (Ayala and
Coluzzi 2005), and the importance of polyploidization
in plant speciation has long been appreciated (Coyne
and Orr 2004; Rieseberg and Willis 2007). Recent work
by Zhan et al. (2016) revealed phylogenetic evidence
that polyploidization is frequently cladogenetic in land
plants. However, their approach did not examine the
role dysploid changes may play in speciation, and it
required a two-step analysis in which one first used
ChromEvol to infer ploidy levels, and then a second
modeling step to infer the proportion of ploidy shifts

195

D
o

w
n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
rtic

le
/6

7
/2

/1
9
5
/4

0
3
7
1
7
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



196 SYSTEMATIC BIOLOGY VOL. 67

that were cladogenetic. Since ChromEvol only models
anagenetic polyploidization events these two modeling
steps are inconsistent with one another.

Here we present models of chromosome number
evolution that simultaneously account for both
cladogenetic and anagenetic polyploid as well as
dysploid changes in chromosome number over a
phylogeny. These models reconstruct an explicit
history of cladogenetic and anagenetic changes in a
clade, enabling estimation of ancestral chromosome
numbers. Our approach also identifies different modes
of chromosome number evolution among clades; we
can detect primarily anagenetic, primarily cladogenetic,
or clade-specific combinations of both modes of
chromosome changes. Furthermore, these models allow
us to infer the timing and location of possible polyploid
and dysploid speciation events over the phylogeny. Since
these models only account for changes in chromosome
number, they ignore speciation that may accompany
other types of chromosome rearrangements such as
inversions. Our models cannot determine that changes
in chromosome number “caused” the speciation event,
but they do reveal that speciation and chromosome
change are temporally correlated. Thus, these models
can give us evidence that the chromosome number
change coincided with cladogenesis and so may have
played a significant role in the speciation process.

A major challenge for all phylogenetic models
of cladogenetic character change is accounting for
unobserved speciation events due to lineages going
extinct and not leaving any extant descendants
(Bokma 2002), or due to incomplete sampling of
lineages in the present. Teasing apart the phylogenetic
signal for cladogenetic and anagenetic processes given
unobserved speciation events is a major difficulty. The
Cladogenetic State change Speciation and Extinction
(ClaSSE) model (Goldberg and Igić 2012) accounts for
unobserved speciation events by jointly modeling both
character evolution and the phylogenetic birth-death
process. Our class of chromosome evolution models
uses the ClaSSE approach, and could be considered a
special case of ClaSSE. We implemented our models
(called ChromoSSE) in a Bayesian framework and use
Markov chain Monte Carlo algorithms to estimate
posterior probabilities of the model’s parameters.
However, compared with most character evolution
models, SSE models require additional complexity since
they must model extinction and speciation processes.
Using simulations, we examined the impact of this
additional complexity on our chromosome evolution
models’ performance. Note that ChromoSSE uses
the SSE approach to integrate over all unobserved
speciation events and in this work we do not investigate
how chromosome number affects diversification rates.
Nonetheless, our implementation enables chromosome
number dependent speciation and extinction rates to be
estimated and this will be explored in future work.

Out of the class of ChromoSSE models described
here, it is possible that no single model will adequately
describe the chromosome evolution of a given clade.
The most parameter-rich ChromoSSE model has at

least 12 independent rate parameters, however the
models that best describe a given data set (a phylogeny
and a set of observed chromosome counts) may be
special cases of the full model. For example, there
may be a clade for which the best fitting models
have no anagenetic rate of polyploidization (the rate
= 0.0) and for which all polyploidization events
are cladogenetic. To explore the entire space of all
possible models of chromosome number evolution we
constructed a reversible jump Markov chain Monte Carlo
(Green 1995) that samples across models of different
dimensionality, drawing samples from chromosome
evolution models in proportion to their posterior
probability and enabling Bayes factors for each model
to be calculated. This approach incorporates model
uncertainty by permitting model-averaged inferences
that do not condition on a single model; we draw
estimates of ancestral chromosome numbers and rates
of chromosome evolution from all possible models
weighted by their posterior probability. For general
reviews of this approach to model averaging (see
Madigan and Raftery 1994; Kass and Raftery 1995;
Hoeting et al. 1999), and for its use in phylogenetics (see
Posada and Buckley 2004). Averaging over all models has
been shown to provide a better average predictive ability
than conditioning on a single model (Madigan and
Raftery 1994). Conditioning on a single model ignores
model uncertainty, which can lead to an underestimation
in the uncertainty of inferences made from that model
(Hoeting et al. 1999). In our case, this can lead to
overconfidence in estimates of ancestral chromosome
numbers and chromosome evolution parameter value
estimates.

Our motivation in developing these phylogenetic
models of chromosome evolution is to determine
the mode of chromosome number evolution; is
chromosome evolution occurring primarily within
lineages, primarily at lineage splitting, or in clade-
specific combinations of both? By identifying how much
of the pattern of chromosome number evolution is
explained by anagenetic versus cladogenetic change,
and by identifying the timing and location of possible
chromosome speciation events over the phylogeny, the
ChromoSSE models can help uncover how much of a role
chromosome changes play in speciation. In this paper,
we first describe the ChromoSSE models of chromosome
evolution and our Bayesian method of model selection,
then we assess the models’ efficacy by testing them
with simulated data sets, particularly focusing on the
impact of unobserved speciation events on inferences,
and finally we apply the models to five empirical data
sets that have been previously examined using other
models of chromosome number evolution.

METHODS

Models of Chromosome Evolution

In this section we introduce our class of probabilistic
models of chromosome number evolution. We are
interested in modeling the changes in chromosome
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2018 FREYMAN AND HÖHNA—CLADOGENETIC AND ANAGENETIC MODELS OF CHROMOSOME EVOLUTION 197

number both within lineages (anagenetic evolution)
and at speciation events (cladogenetic evolution). The
anagenetic component of the model is a continuous-
time Markov process similar to Mayrose et al. (2010)
as described below. The cladogenetic changes are
accounted for by a birth-death process similar to
Maddison et al. (2007) and Goldberg and Igić (2012),
except each type of cladogenetic chromosome event
is given its own rate. Thus, the birth-death process
has multiple speciation rates (one for each type of
cladogenetic change) and a single constant extinction
rate. Our models of chromosome number evolution
can therefore be understood as a specific case of the
Cladogenetic State change Speciation and Extinction
(ClaSSE) model (Goldberg and Igić 2012), which
integrates over all possible unobserved speciation events
(due to lineages that were unsampled or have gone
extinct) directly in the likelihood calculation of the
observed chromosome counts and tree shape. To test
the importance of accounting for unobserved speciation
events we also briefly describe a version of the model
that handles different cladogenetic event types as
transition probabilities at each observed speciation event
and ignores unobserved speciation events, similar to
the dispersal-extinction-cladogenesis (DEC) models of
geographic range evolution (Ree and Smith 2008).

Our implementation assumes chromosome numbers
can take the value of any positive integer, however to
limit the transition matrices to a reasonable size for
likelihood calculations we follow Mayrose et al. (2010)
in setting the maximum chromosome number Cm to
n+10, where n is the highest chromosome number in
the observed data. Note that we allow this parameter to
be set in our implementation. Hence, it is easily possible
to test the impact of setting a specific value for the
maximum chromosome count.

Our models contain a set of six free parameters for
anagenetic chromosome number evolution, a set of five
free parameters for cladogenetic chromosome number
evolution, an extinction rate parameter, and a vector of
Cm root frequencies of chromosome numbers, for a total
of 12+Cm free parameters. All of the 11 chromosome
rate parameters can be removed (fixed to 0.0) except the
cladogenetic no-change rate parameter. Thus, the class of
chromosome number evolution models described here
has a total of 210 =1024 nested models of chromosome
evolution.

Chromosome evolution within lineages.—Chromosome
number evolution within lineages (anagenetic change)
is modeled as a continuous-time Markov process
similar to Mayrose et al. (2010). The continuous-time
Markov process is described by an instantaneous rate
matrix Q where the value of each element represents
the instantaneous rate of change within a lineage
from a genome of i chromosomes to a genome of j
chromosomes. For all elements of Q in which either i=0
or j=0 we define Qij =0. For the off-diagonal elements

i �= j with positive values of i and j, Q is determined by:

Qij =

⎧

⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎩

�ae�m(i−1) j= i+1,

�ae�m(i−1) j= i−1,

�a j=2i,

�a j=1.5i,

0 otherwise,

(1)

where�a, �a,�a, and�a are the rates of chromosome gains,
losses, polyploidizations, and demi-polyploidizations.
�m and �m are rate modifiers of chromosome gain and
loss, respectively, that allow the rates of chromosome
gain and loss to depend on the current number of
chromosomes. This enables modeling scenarios in which
the probability of fusion or fission events is positively or
negatively correlated with the number of chromosomes.
If the rate modifier �m =0, then �ae0(i−1) =�a. If the
rate modifier �m >0, then �ae�m(i−1) ≥�a, and if �m <0
then �ae�m(i−1) ≤�a. These two rate modifiers replace the
parameters �l and �l in Mayrose et al. (2010), which in
their parameterization may result in negative transition
rates. Here we chose to exponentiate �m and �m to ensure
positive transition rates, and avoid ad hoc restrictions on
negative transition rates that may induce unintended
priors. Note that this assumes the rates of chromosome
change can vary exponentially as a function of the
current chromosome number, whereas Mayrose et al.
(2010) assumes a linear function.

For odd values of i, we set Qij =�/2 for the two integer
values of j resulting when j=1.5i was rounded up and
down. We define the diagonal elements i= j of Q as:

Qii =−

Cm∑

i �=j

Qij. (2)

The probability of anagenetically transitioning from
chromosome number i to j along a branch of length t is
then calculated by exponentiation of the instantaneous
rate matrix:

Pij(t)=e−Qt. (3)

Chromosome evolution at cladogenesis events.—At each
lineage divergence event over the phylogeny, nine
different cladogenetic changes in chromosome number
are possible (Fig. 1). Each type of cladogenetic
event occurs with the rate �c,�c,�c,�c,�c, representing
the cladogenesis rates of no change, chromosome
gain, chromosome loss, polyploidization, and demi-
polyploidization, respectively. The speciation rates � for
the birth–death process generating the tree are given
in the form of a 3D matrix between the ancestral state
i and the states of the two daughter lineages j and k. For

D
o

w
n
lo

a
d
e
d
 fro

m
 h

ttp
s
://a

c
a
d
e
m

ic
.o

u
p
.c

o
m

/s
y
s
b
io

/a
rtic

le
/6

7
/2

/1
9
5
/4

0
3
7
1
7
9
 b

y
 g

u
e
s
t o

n
 2

0
 A

u
g
u
s
t 2

0
2
2



198 SYSTEMATIC BIOLOGY VOL. 67

i

j = i k = i

no change:

λijk = φc

i

j = i+1 k = i

i

j = i k = i+1

gain:

λijk = γc/2

i

j = i−1 k = i

i

j = i k = i−1

loss:

λijk = δc/2

i

j = 2i k = i

i

j = i k = 2i

polyploidization:

λijk = ρc/2

i

j = 1.5i k = i

i

j = i k = 1.5i

demi-

polyploidization:

λijk = ηc/2

FIGURE 1. Modeled cladogenetic chromosome evolution events. At each speciation event nine different cladogenetic events are possible. The
rate of each type of speciation event is �ijk where i is the chromosome number before cladogenesis and j and k are the states of each daughter
lineage immediately after cladogenesis. The dashed lines represent possible chromosomal changes within lineages that are modeled by the
anagenetic rate matrix Q.

all positive values of i, j, and k, we define:

�ijk =

⎧

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎩

�c j=k = i

�c/2 j= i+1 and k = i,

�c/2 j= i and k = i+1,

�c/2 j= i−1 and k = i,

�c/2 j= i and k = i−1,

�c/2 j=2i and k = i,

�c/2 j= i and k =2i,

�c/2 j=1.5i and k = i,

�c/2 j= i and k =1.5i,

0 otherwise,

(4)

so that the total speciation rate of the birth–death process
�t is given by:

�t =�c +�c +�c +�c +�c. (5)

Similar to the anagenetic instantaneous rate matrix
described above, for odd values of i, we set �ijk =�c/4
for the integer values of j and k resulting when 1.5i is
rounded up and down. The extinction rate � is constant
over the tree and for all chromosome numbers.

Note that this model allows only a single chromosome
number change event on a maximum of one of the
daughter lineages at each cladogenesis event. Changes in
both daughter lineages at cladogenesis are not allowed;
at least one of the daughter lineages must inherit the

chromosome number of the ancestor. The model also
assumes that cladogenesis events are always strictly
bifurcating and that there are no hard polytomies.

Likelihood calculation accounting for unobserved
speciation.—The likelihood of cladogenetic and
anagenetic chromosome number evolution over
a phylogeny is calculated using a set of ordinary
differential equations similar to the Binary State
Speciation and Extinction (BiSSE) model (Maddison
et al. 2007). The BiSSE model was extended to incorporate
cladogenetic changes by Goldberg and Igić (2012).
Following Goldberg and Igić (2012), we define DNi(t)
as the probability that a lineage with chromosome
number i at time t evolves into the observed clade
N. We let Ei(t) be the probability that a lineage with
chromosome number i at time t goes extinct before
the present, or is not sampled at the present. However,
unlike the full ClaSSE model the extinction rate � does
not depend on the chromosome number i of the lineage.
The differential equations for these two probabilities is
given by:

dDNi(t)
dt

=−

⎛

⎝

Cm∑

j=1

Cm∑

k=1

�ijk +

Cm∑

j=1

Qij +�

⎞

⎠DNi(t)
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FIGURE 2. Chromosome evolution through time. An illustration of chromosome evolution events that could occur during each time interval
	t along the branches of a phylogeny. Equations 6 and 7 (a and b, respectively) sum over each possible chromosome evolution event and are
numerically integrated backwards through time over the phylogeny to calculate the likelihood. a) DNi(t) is the probability that the lineage at
time t evolves into the observed clade N. To calculate the change in this probability over 	t we sum over three possibilities: no event occurred, an
anagenetic change in chromosome number occurred, or a speciation event with a possible cladogenetic chromosome change occurred followed
by an extinction event on one of the two daughter lineages. b) Ei(t) is the probability that the lineage goes extinct or is not sampled at the present.
To calculate the change in this probability over 	t we sum over four possibilities: no event occurred followed eventually by extinction, extinction
occurred, an anagenetic change occurred followed by extinction, or a speciation event with a possible cladogenetic change occurred followed by
extinction of both daughter lineages.

+

Cm∑

j=1

QijDNj(t)+
Cm∑

j=1

Cm∑

k=1

�ijk

(

DNk(t)Ej(t)+DNj(t)Ek(t)
)

(6)

dEi(t)
dt

=−

⎛

⎝

Cm∑

j=1

Cm∑

k=1

�ijk +

Cm∑

j=1

Qij +�

⎞

⎠Ei(t)

+�+

Cm∑

j=1

QijEj(t)+
Cm∑

j=1

Cm∑

k=1

�ijkEj(t)Ek(t), (7)

where �ijk for each possible cladogenetic event is given
by equation 4, and the rates of anagenetic changes Qij

are given by equation 1. See Figure 2 for an explanation
of equations 6 and 7.

The differential equations above have no known
analytical solution. Therefore, we numerically integrate
the equations for every arbitrarily small time interval
moving along each branch from the tip of the tree
towards the root. When a node l is reached, the
probability of it being in state i is calculated by combining
the probabilities of its descendant nodes m and n as such:

Dli(t)=
Cm∑

j=1

Cm∑

k=1

�ijkDmj(t)Dnk(t), (8)

where again �ijk for each possible cladogenetic event is
given by equation 4. Letting D denote a set of observed
chromosome counts, 
 an observed phylogeny, and
�q a particular set of chromosome evolution model
parameters, then the likelihood for the model parameters
�q is given by:

P(D,
|�q)=
Cm∑

i=1

�iD0i(t), (9)

where �i is the root frequency of chromosome number i
and D0i(t) is the likelihood of the root node being in state
i conditional on having given rise to the observed tree 

and the observed chromosome counts D.

Initial conditions.—The initial conditions for each
observed lineage at time t=0 for the extinction
probabilities described by equation 7 are Ei(0)=1−�s
for all i where �s is the sampling probability of including
that lineage. For lineages with an observed chromosome
number of i, the initial condition is DNi(0)=�s. The
initial condition for all other chromosome numbers j is
DNj(0)=0.

Likelihood calculation ignoring unobserved speciation.—
To test the effect of unobserved speciation events
on inferences of chromosome number evolution we
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200 SYSTEMATIC BIOLOGY VOL. 67

also implemented a version of the model described
above that only accounts for observed speciation
events. At each lineage divergence event over
the phylogeny, the probabilities of cladogenetic
chromosome number evolution P({j,k}|i) are given by
the simplex {�p,�p,�p,�p,�p}, where �p,�p,�p,�p, and �p
represent the probabilities of no change, chromosome
gain, chromosome loss, polyploidization, and demi-
polyploidization, respectively. This approach does not
require estimating speciation or extinction rates.

Here, we calculate the likelihood of chromosome
number evolution over a phylogeny using Felsenstein’s
pruning algorithm (Felsenstein 1981) modified to
include cladogenetic probabilities similar to models of
biogeographic range evolution (Landis et al. 2013; Landis
2017). Let D again denote a set of observed chromosome
counts and 
 represent an observed phylogeny where
node l has descendant nodes m and n. The likelihood of
chromosome number evolution at node l conditional on
node l being in state i and �q being a particular set of
chromosome evolution model parameter values is given
by:

Pl(D,
|i,�q)

=

Cm∑

j=1

Cm∑

k=1

P({j,k}|i)

︸ ︷︷ ︸

cladogenetic

⎡

⎣

Cm∑

je=1

Pjje (tm)Pm(D,
|je,�q)

⎤

⎦

⎡

⎣

Cm∑

ke=1

Pkke
(tn)Pn(D,
|ke,�q)

⎤

⎦

︸ ︷︷ ︸

anagenetic

, (10)

where the length of the branches between l and m is tm
and between l and n is tn. The state at the end of these
branches near nodes m and n is je and ke, respectively.
The state at the beginning of these branches, where they
meet at node l, is j and k respectively. The cladogenetic
term sums over the probabilities P({j,k}|i) of all possible
cladogenetic changes from state i to the states j and k at
the beginning of each daughter lineage. The anagenetic
term of the equation is the product of the probability
of changes along the branches from state j to state je and
state k to state ke (given by equation 3) and the likelihood
of the tree above node l recursively computed from the
tips.

The likelihood for the model parameters �q is given
by:

P(D,
|�q)=
Cm∑

i=1

�iP0(D,
|i,�q), (11)

where P0(D,
|i,�q) is the conditional likelihood of the
root node being in state i and �i is the root frequency of
chromosome number i.

Estimating parameter values and ancestral states.—For any
given tree with a set of observed chromosome counts,
there exists a posterior distribution of model parameter
values and a set of probabilities for the ancestral

chromosome numbers at each internal node of the tree.
Let P(si,�q|D,
) denote the joint posterior probability
of �q and a vector of specific ancestral chromosome
numbers si given a set of observed chromosome counts D
and an observed tree 
. The posterior is given by Bayes’
rule:

P(si,�q,|D,
)=
P(D,
|si,�q)P(si|�q)P(�q)

∫

�

Cm∑

s=1
P(D,
|s,�)P(s|�)P(�)d�

. (12)

Here, P(si|�q) is the prior probability of the ancestral
states s conditioned on the model parameters �q,
and P(�q) is the joint prior probability of the model
parameters.

In the denominator of equation 12 we integrate over
all possible values of � and sum over all possible
ancestral chromosome numbers s. Since � is a vector of
12+Cm parameters and s is a vector of n−1 ancestral
states where n is the number of observed tips in the
phylogeny, the denominator of equation 12 requires
a high-dimensional integral and an extremely large
summation that is impossible to calculate analytically.
Instead we use Markov chain Monte Carlo methods
(Metropolis et al. 1953; Hastings 1970) to estimate the
posterior probability distribution in a computationally
efficient manner.

Ancestral states are inferred using a two-pass tree
traversal procedure as described in Pupko et al. (2000),
and previously implemented in a Bayesian framework
by Huelsenbeck and Bollback (2001) and Pagel et al.
(2004). First, partial likelihoods are calculated during the
backwards-time post-order tree traversal in equations 6
and 7. Joint ancestral states are then sampled during
a pre-order tree traversal in which the root state is
first drawn from the marginal likelihoods at the root,
and then states are drawn for each descendant node
conditioned on the state at the parent node until the tips
are reached. Again, we must numerically integrate over
a system of differential equations during this root-to-tip
tree traversal. This integration, however, is performed
in forward-time, thus the set of ordinary differential
equations must be slightly altered since our models of
chromosome number evolution are not time reversible.
Accordingly, we calculate:

dDNi(t)
dt

=−

⎛

⎝

Cm∑

j=1

Cm∑

k=1

�ijk +

Cm∑

j=1

Qji +�

⎞

⎠DNi(t)

+

Cm∑

j=1

QjiDNj(t)

+

Cm∑

j=1

Cm∑

k=1

�ijk

(

DNj(t)Ek(t)+DNk(t)Ej(t)
)

(13)
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TABLE 1. Model parameter names and prior distributions

Parameter X f (X)

Anagenetic Chromosome gain rate �a Exponential (�=
l/2)
Chromosome loss rate �a Exponential (�=
l/2)
Polyploidization rate �a Exponential (�=
l/2)
Demi-polyploidization rate �a Exponential (�=
l/2)
Linear component of chromosome gain rate �m Uniform (−3/Cm,3/Cm)
Linear component of chromosome loss rate �m Uniform (−3/Cm,3/Cm)

Cladogenetic No change �c Exponential (�=1/d̂)
Chromosome gain �c Exponential (�=1/d̂)
Chromosome loss �c Exponential (�=1/d̂)
Polyploidization �c Exponential (�=1/d̂)
Demi-polyploidization �c Exponential (�=1/d̂)

Other Root frequencies � Dirichlet (1,…,1)
Relative-extinction r Uniform (0, 1)

Notes: See the main text for complete description of model parameters and prior distributions. 
l represents the length of tree 
 and Cm is the
maximum chromosome number allowed.

dEi(t)
dt

=

⎛

⎝

Cm∑

j=1

Cm∑

k=1

�ijk +

Cm∑

j=1

Qji +�

⎞

⎠Ei(t)

−�−

Cm∑

j=1

QjiEj(t)−
Cm∑

j=1

Cm∑

k=1

�ijkEj(t)Ek(t), (14)

during the forward-time root-to-tip pass to draw
ancestral states from their joint distribution conditioned
on the model parameters and observed chromosome
counts. For more details and validation of our
method to estimate ancestral states, please see
Supplementary Appendix S1 available on Dryad
at http://dx.doi.org/10.5061/dryad.46m4b.

Priors.—Model parameter priors are listed in Table 1. Our
implementation allows all priors to be easily modified so
that their impact on results can be effectively assessed.
Priors for anagenetic rate parameters are given an
exponential distribution with a mean of 2/
l where 
l
is the length of the tree 
. This corresponds to a mean
rate of two events over the observed tree. The priors for
the rate modifiers �m and �m are assigned a uniform
distribution with the range −3/CM to 3/Cm. This sets
minimum and maximum bounds on the amount the
rate modifiers can affect the rates of gain and loss at
the maximum chromosome number to �ae−3 =�a0.050
and �ae3 =�a20.1, and �ae−3 =�a0.050 and �ae3 =�a20.1,
respectively.

The speciation rates are drawn from an exponential
prior with a mean equal to an estimate of the net
diversification rate d̂. Under a constant rate birth–death
process not conditioning on survival of the process, the
expected number of lineages at time t is given by:

E(Nt)=N0etd, (15)

where N0 is the number of lineages at time 0 and d
is the net diversification rate �−� (Nee et al. 1994;

Höhna 2015). Therefore, we estimate d̂ as:

d̂= (lnNt −lnN0)/t, (16)

where Nt is the number of lineages in the observed tree
that survived to the present, t is the age of the root, and
N0 =2.

The extinction rate � is given by:

�=r×�t =r×(�c +�c +�c +�c +�c), (17)

where �t is the total speciation rate and r is the relative
extinction rate. The relative extinction rate r is assigned
a uniform (0,1) prior distribution, thus forcing the
extinction rate to be smaller than the total speciation
rate. The root frequencies of chromosome numbers �
are drawn from a flat Dirichlet distribution.

Model Uncertainty and Selection

Model averaging.—To account for model uncertainty we
calculate the posterior density of chromosome evolution
model parameters � without conditioning on any single
model of chromosome evolution. For each of the 1024
chromosome models Mk , where k =1,2,...,1024, the
posterior distribution of � is

P(�|D)=
K

∑

k=1

P(�|D,Mk)P(Mk|D). (18)

Here we average over the posterior distributions
conditioned on each model weighted by the model’s
posterior probability. We assume an equal prior
probability for each model P(Mk)=2−10.

Reversible jump Markov chain Monte Carlo.—To sample
from the space of all possible chromosome evolution
models, we employ reversible jump MCMC (Green
1995). This algorithm draws samples from parameter
spaces of differing dimensions, and in stationarity
samples each model in proportion to its posterior
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probability. This permits inference of each model’s fit
to the data while simultaneously accounting for model
uncertainty.

Our reversible jump MCMC moves between models
of different dimensions using augment and reduce
moves (Huelsenbeck et al. 2000; Pagel and Meade 2006;
May et al. 2016). The reduce move proposes that a
parameter should be removed from the current model by
setting its value to 0.0, effectively disallowing that class
of evolutionary event. Augment moves reverse reduce
moves by allowing the parameter to once again have a
nonzero value. Both augment and reduce moves operate
on all chromosome rate parameters except for �c the rate
of no cladogenetic change. Thus the least complex model
the MCMC can sample from is one in which �c >0.0
and all other chromosome rate parameters are set to 0.0,
corresponding to a model of no chromosomal changes
over the phylogeny. The prior probability of reducing or
augmenting model Mk is Pr(Mk)=Pa(Mk)=0.5.

Bayes factors.—In some cases we wish to compare the fit
of models to summarize the mode of evolution within
a clade. Bayes factors (Kass and Raftery 1995) compare
the evidence between two competing models Mi
and Mj

Bij =
P(D|Mi)
P(D|Mj)

=
P(Mi|D)
P(Mj|D)

/
P(Mi)
P(Mj)

. (19)

In words, the Bayes factor Bij is given by the ratio
of the posterior odds to the prior odds of the two
models. Unlike other methods of model selection such
as Akaike Information Criterion (AIC; Akaike 1974)
and the Bayesian Information Criterion (BIC; Schwarz
1978), Bayes factors take into account the full posterior
densities of the model parameters and do not rely on
point estimates. Furthermore AIC and BIC ignore the
priors assigned to parameters, whereas Bayes factors
penalizes parameters based on the informativeness
of the prior. If the prior is informative but overlaps
little with the likelihood it is penalized more than a
diffuse uninformative prior that allows the parameter
to take on whatever value is informed by the data
(Xie et al. 2011).

Implementation

The model and MCMC analyses described here are
implemented in C++ in the software RevBayes (Höhna
et al. 2016). In Supplementary Appendix S1 available on
Dryad, we validated our SSE likelihood calculations and
ancestral state estimates against those of the R package
diversitree (FitzJohn 2012). Rev scripts that specify the
chromosome number evolution model (ChromoSSE)
described here as a probabilistic graphical model (Höhna
et al. 2014) and run the empirical analyses in RevBayes
are available at http://github.com/wf8/ChromoSSE.
The RevGadgets R package (available at https://
github.com/revbayes/RevGadgets) contains functions

to summarize results and generate plots of inferred
ancestral chromosome numbers over a phylogeny.

The MCMC proposals used are outlined in
Supplementary Appendix S2 available on Dryad.
Aside from the reversible jump MCMC proposals
described above, all other proposals are standard except
for the ElementSwapSimplex move operated on the
Dirichlet distributed root frequencies parameter. This
move randomly selects two elements r1 and r2 from
the root frequencies vector and swaps their values.
The reverse move, swapping the original values of
r1 and r2 back, will have the same probability as the
initial move since r1 and r2 were drawn from a uniform
distribution. Thus, the Hasting ratio is 1 and the
ElementSwapSimplex move is a symmetric Metropolis
move.

Simulations

We conducted a series of simulations to: 1) test
the effect of unobserved speciation events due to
extinction on chromosome number estimates when
using a model that does not account for unobserved
speciation, 2) compare the accuracy of models of
chromosome evolution that account for unobserved
speciation versus those that do not, 3) test the effect of
jointly estimating speciation and extinction rates with
chromosome number evolution, 4) test for identifiability
of cladogenetic parameters, and 5) test the effect of
incomplete sampling of extant lineages on ancestral
chromosome number estimates. We will refer to each of
the five simulations above as experiment 1, experiment 2,
experiment 3, experiment 4, and experiment 5. Detailed
descriptions of each experiment and the methods
used to simulate trees and chromosome counts are in
Supplementary Appendix S3 available on Dryad.

For all five experiments, MCMC analyses were run
for 5000 iterations, where each iteration consisted of 28
different moves in a random move schedule with 79
moves per iteration (see Supplementary Appendix S2
available on Dryad). Samples were drawn with each
iteration, and the first 1000 samples were discarded as
burn in. Effective sample sizes (ESS) for all parameters
in all simulation replicates were over 200, and the mean
ESS values of the posterior for the replicates was 1470.3.
See Supplementary Appendix S4 available on Dryad
for more on convergence of simulation replicates. To
perform all five experiments, 2100 independent MCMC
analyses were run requiring a total of 89,170.6 CPU h
on the Savio computational cluster at the University of
California, Berkeley.

Summarizing simulation results.—To summarize the
results of our simulations, we measured the accuracy
of ancestral state estimates as the percent of simulation
replicates in which the true root chromosome number
8 was found to be the maximum a posteriori (MAP)
estimate. To evaluate the uncertainty of the simulations,
we calculated the mean posterior probability of root
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TABLE 2. Empirical data sets analysed

Alignment Number Haploid chromosome
Clade Study Gene region length (bp) of OTUs numbers range

Aristolochia Ohi-Toma et al. (2006) matK 1268 34 3–16

Carex section Spirostachyae Escudero et al. (2010) ITS, trnK intron See Escudero et al. (2010) 24 30–42

Helianthus Timme et al. (2007) ETS 3085 102 17–51

Mimulus sensu lato Beardsley et al. (2004) trnL intron, ETS,
ITS

2210 115 8–46

Primula section Aleuritia Guggisberg et al. (2009) rpl16 intron,
rps16 intron,
trnL intron,
trnL-trnF spacer,
trnT-trnL spacer,
trnD-trnT region

5705 56 9–36

chromosome number for the simulation replicates that
correctly found 8 to be the MAP estimate. We also
calculated the proportion of simulation replicates for
which the true model of chromosome number evolution
used to simulate the data (as given by the table in
Supplementary Appendix S3 available on Dryad) was
estimated to be the MAP model, and calculated the
mean posterior probabilities of the true model. To
compare the accuracy of model averaged parameter
value estimates we calculated coverage probabilities.
Coverage probabilities are the percentage of simulation
replicates for which the true parameter value falls
within the 95% highest posterior density (HPD).
High accuracy is shown when coverage probabilities
approach 1.0.

Empirical Data

Phylogenetic data and chromosomes counts from
five plant genera were analyzed (see Table 2). Like in
Mayrose et al. (2010) we assumed each species had
a single cytotype, however polymorphism could be
accounted for by a vector of probabilities for each
chromosome count. Sequence data for Aristolochia was
downloaded from TreeBASE (Vos et al. 2010) study
ID 1586. Sequences for Helianthus, Mimulus sensu lato,
and Primula were downloaded directly from GenBank
(Benson et al. 2005), reconstructing the sequence
matrices from Timme et al. (2007), Beardsley et al. (2004),
and Guggisberg et al. (2009). For each of these four data
sets phylogenetic analyses were performed with all gene
regions concatenated and unpartitioned, assuming the
general time-reversible (GTR) nucleotide substitution
model (Tavaré 1986; Rodriguez et al. 1990) with among-
site rate variation modeled using a discretized gamma
distribution (Yang 1994) with four rate categories. Since
divergence time estimation in years is not the objective of
this study, and only relative branching times are needed
for our models of chromosome number evolution, a

birth-death tree prior was used with a fixed root age of
10.0 time units. The MCMC analyses were performed
in RevBayes, and were sampled every 100 iterations
and run for a total of 400000 iterations, with samples
from the first 100000 iterations discarded as burnin.
Convergence was assessed by ensuring that the ESS for
all parameters was over 200. The maximum a posteriori
tree was calculated and used for further chromosome
evolution analyses. For Carex section Spirostachyae
the time calibrated tree from Escudero et al. (2010)
was used.

Ancestral chromosome numbers and chromosome
evolution model parameters were then estimated for
each of the five clades. Since testing the effect of
incomplete taxon sampling on chromosome evolution
inference of the empirical data sets was not a goal
of this work, we focus here on results using a taxon
sampling fraction �s of 1.0 (though see the Discussion
section for more on this). MCMC analyses were run
in RevBayes for 11000 iterations, where each iteration
consisted of 28 different Metropolis–Hastings moves in
a random move schedule with 79 moves per iteration
(see Supplementary Appendix S2 available on Dryad).
Samples were drawn each iteration, and the first
1000 samples were discarded as burn in. ESS for all
parameters were over 200. For all data sets except Primula
we used priors as outlined in Table 1. To demonstrate
the flexibility of our Bayesian implementation and its
capacity to incorporate prior information we used an
informative prior for the root chromosome number in
the Primula section Aleuritia analysis. Our data set for
Primula section Aleuritia also included samples from
Primula sections Armerina and Sikkimensis. Since we were
most interested in estimating chromosome evolution
within section Aleuritia, we used an informative Dirichlet
prior {1,...,1,100,1....1} (with 100 on the 11th element) to
bias the root state towards the reported base number of
Primula x=11 (Conti et al. 2000). Note all priors can be
easily modified in our implementation, thus the impact
of priors can be efficiently tested.
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TABLE 3. Experiment 1 results: the effect of ignoring unobserved speciation events on chromosome evolution estimates

Unobserved speciation Mode of evolution True root Mean posterior True model Mean
events included used to simulate state estimated of true root estimated posterior
when simulating data? data (%) state (%) of true model

No Cladogenetic 93 0.92 13 0.10
No Anagenetic 89 0.91 31 0.12
No Mixed 88 0.84 0 0.0

Yes Cladogenetic 78 0.87 15 0.09
Yes Anagenetic 83 0.91 36 0.12
Yes Mixed 62 0.80 2 0.10

Notes: Regardless of the true mode of chromosome evolution, the presence of unobserved speciation events in the process that generated the
simulated data decreased accuracy in estimating the true root state. The columns from left to right are: 1) an indication of whether or not the
data was simulated with a process that included unobserved speciation, 2) the true mode of chromosome evolution used to simulate the data,
(for description see main text and Supplementary Appendix S3 available on Dryad), 3) the percent of simulation replicates in which the true
chromosome number at the root used to simulate the data was found to be the MAP estimate, 4) the mean posterior probability of the MAP
estimate of the true root chromosome number, 5) the percent of simulation replicates in which the true model used to simulate the data was also
found to be the MAP model, and 6) the mean posterior probability of the MAP estimate of the true model.

RESULTS

Simulations

General results.—In all simulations, the true model
of chromosome number evolution was infrequently
estimated to be the MAP model (<36% of replicates),
and when it was the posterior probability of the MAP
model was very low (<0.12; Table 3). We found that the
accuracy of root chromosome number estimation was
similar whether the process that generated the simulated
data was cladogenetic-only or anagenetic-only (Tables 3
and 4). However, when the data was simulated under a
process that included both cladogenetic and anagenetic
evolution we found a decrease in accuracy in the root
chromosome number estimates in all cases.

Experiment 1 results.—The presence of unobserved
speciation in the process that generated the simulated
data decreased the accuracy of ancestral state
estimates (Fig. 3, Table 3). Similarly, uncertainty
in root chromosome number estimates increased
with unobserved speciation (lower mean posterior
probabilities; Table 3). The accuracy of parameter value
estimates as measured by coverage probabilities was
similar (results not shown).

Experiment 2 results.—When comparing estimates from
ChromoSSE that account for unobserved speciation to
estimates from the non-SSE model that does not account
for unobserved speciation, we found that the accuracy in
estimating model parameter values was mostly similar,
though for some cladogenetic parameters there was
higher accuracy with the model that did account for
unobserved speciation (ChromoSSE; Fig. 4). For both
models estimates of anagenetic parameters were more
accurate than estimates of cladogenetic parameters
when the true generating model included cladogenetic
changes.

We found that ChromoSSE had more uncertainty
in root chromosome number estimates (lower mean
posterior probabilities) compared with the non-SSE
model that did not account for unobserved speciation.
Similarly, the root chromosome number was estimated
with slightly lower accuracy (Table 4).

Experiment 3 results.—We found that jointly estimating
speciation and extinction rates with chromosome
number evolution using ChromoSSE slightly decreased
the accuracy of root chromosome number estimates,
and further it increased the uncertainty of the inferred
root chromosome number (as reflected in lower mean
posterior probabilities; Table 4). Fixing the speciation
and extinction rates to their true value removed
much of the increased uncertainty associated with
using a model that accounts for unobserved speciation
(Table 4).

Experiment 4 results.—Under simulation scenarios
that had cladogenetic changes but no anagenetic
changes, we found that ChromoSSE overestimated
anagenetic parameters and underestimated cladogenetic
parameters (Fig. 5a), which explains the lower coverage
probabilities of cladogenetic parameters reported above
for experiment 2 (Fig. 4). When anagenetic parameters
were fixed to 0.0 cladogenetic parameters were no longer
underestimated (Fig. 5a), and the coverage probabilities
of cladogenetic parameters increased slightly
(Fig. 5b).

Experiment 5 results.—We found that incomplete
sampling of extant lineages had a minor effect on the
accuracy of ancestral chromosome number estimates
(Fig. 6). Accuracy only slightly decreased as the
percentage of extant lineages sampled declined from
100% to 50%, and decreased more rapidly when the
percentage went to 10%. As measured by the proportion
of simulation replicates that inferred the MAP root
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FIGURE 3. Experiment 1 results: the effect of unobserved speciation events on the MAP estimates of root chromosome number. Model averaged
MAP estimates of the root chromosome number for 100 replicates of each simulation type on data sets that included unobserved speciation and
data sets that did not include unobserved speciation. Each circle represents a simulation replicate, where the size of the circle is proportional to
the number of lineages that survived to the present (the number of extant tips in the tree). The true root chromosome number used to simulate
the data was 8 and is marked with a pink dotted line.

FIGURE 4. Experiment 2 results: the effect of using a model that accounts for unobserved speciation on coverage probabilities of chromosome
model parameters. Each point represents the proportion of simulation replicates for which the 95% HPD interval contains the true value of the
model parameter. Coverage probabilities of 1.00 mean perfect coverage. The circles represent coverage probabilities for estimates made using
the non-SSE model that does not account for unobserved speciation, and the triangles represent coverage probabilities for estimates made using
ChromoSSE that does account for unobserved speciation.

chromosome number to be the true root chromosome
number, the accuracy of ancestral states estimated under
ChromoSSE declined from 0.80 accuracy at 100% taxon
sampling to 0.69 at 10% taxon sampling. Essentially no
difference in accuracy was detected between the non-
SSE model that does not take unobserved speciation into
account and ChromoSSE. Furthermore, little difference
in accuracy was detected using ChromoSSE with the
taxon sampling probability �s set to 1.0 compared with
ChromoSSE with �s set to the true value (0.1, 0.5, or 1.0;
Fig. 6).

Empirical Data

Model averaged MAP estimates of ancestral
chromosome numbers for each of the five empirical
data sets are show in Figures 7–11. The mean model-
averaged chromosome number evolution parameter
value estimates for the empirical data sets are reported
in Table 5. Posterior probabilities for the MAP model
of chromosome number evolution were low for all data
sets, varying between 0.04 for Carex section Spirostachyae
and 0.21 for Helianthus (Table 6). Bayes factors supported
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TABLE 4. Experiments 2 and 3 results: the effects of using a model that accounts for unobserved speciation and of jointly estimating
diversification rates on ancestral chromosome number estimates

Estimates made w/model Speciation and Mode of evolution True root Mean posterior
that accounted for extinction rates used to simulate state estimated of true root

Experiment # unobserved speciation? jointly estimated? data (%) state

2 No No Cladogenetic 78 0.87
2 No No Anagenetic 83 0.91
2 No No Mixed 62 0.80

2 and 3 Yes Yes Cladogenetic 78 0.81
2 and 3 Yes Yes Anagenetic 80 0.86
2 and 3 Yes Yes Mixed 61 0.72

3 Yes No Cladogenetic 78 0.84
3 Yes No Anagenetic 83 0.90
3 Yes No Mixed 62 0.76

Note: This table compares estimates of chromosome evolution using a non-SSE model that does not account for unobserved speciation events
with ChromoSSE that does account for unobserved speciation events (Experiment 2), and compares estimates of chromosome evolution when
jointly estimated with speciation and extinction rates versus when the true speciation and extinction rates are given (Experiment 3). Regardless of
the true mode of chromosome evolution, the use of a model that accounts for unobserved speciation increases uncertainty in root state estimates.
The columns from left to right are: 1) an indication of which experiment the results pertain to, 2) an indication of whether or not the estimates
were made with ChromoSSE (that accounts for unobserved speciation), 3) whether diversification rates were jointly estimated with chromosome
evolution, 4) the percent of simulation replicates in which the true chromosome number at the root used to simulate the data was found to be
the MAP estimate, 5) the mean posterior probability of the MAP estimate of the true root chromosome number.

a) b)

FIGURE 5. Experiment 4 results: testing identifiability of cladogenetic parameters under ChromoSSE. a) Chromosome parameter value
estimates from 100 simulation replicates under a simulation scenario with no anagenetic changes (cladogenetic only). The stars represent true
values. The box plots compare parameter estimates made when anagenetic parameters were fixed to 0 to estimates made when all parameters
were free. When all parameters were free the anagenetic parameters were overestimated and cladogenetic parameters were underestimated.
When the anagenetic parameters were fixed to 0 the estimates for the cladogenetic parameters were more accurate. b) Coverage probabilities
of chromosome evolution parameters under the cladogenetic only model of chromosome evolution. The accuracy of cladogenetic parameter
estimates increased when anagenetic parameters were fixed to 0.

unique, clade-specific combinations of anagenetic and
cladogenetic parameters for all five data sets (Table 6).
None of the clades had support for purely anagenetic or
purely cladogenetic models of chromosome evolution.

The ancestral state reconstructions for Aristolochia
were highly similar to those found by Mayrose
et al. (2010). We found a moderately supported root

chromosome number of 8 (posterior probability 0.45),
and a polyploidization event on the branch leading
to the Isotrema clade which has a base chromosome
number of 16 with high posterior probability (0.88;
Fig. 7). On the branch leading to the main Aristolochia
clade we found a dysploid loss of a single chromosome.
Overall, we estimated moderate rates of anagenetic
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FIGURE 6. Experiment 5 results: the effect of incomplete sampling. The accuracy of ancestral chromosome number estimates slightly declined
as the percentage of sampled extant lineages decreased from 100% to 50%, and decreased more quickly once the percentage of extant lineages
decreased to 10%. There was little difference between the non-SSE model (light grey) that does not take into account unobserved speciation
and ChromoSSE (medium and dark grey) which does take into account unobserved speciation. Furthermore, little difference in accuracy was
detected using ChromoSSE with the taxon sampling probability �s set to 1.0 (medium grey) and with �s set to the true value (0.1, 0.5, or 1.0; dark
grey). The accuracy of chromosome number estimates was measured by the proportion of simulation replicates for which the estimated MAP
root chromosome number corresponded with the true chromosome number used to simulate the data.

dysploid and polyploid changes, and the rates of
cladogenetic change were 0 except for a moderate rate
of cladogenetic dysploid loss (Tables 5). There was only
one cladogenetic change inferred in the MAP ancestral
state reconstruction, which was a recent possible
dysploid speciation event that split the sympatric
west-central Mexican species Aristolochia tentaculata and
A. taliscana.

In Helianthus, on the other hand, we found high
rates of cladogenetic polyploidization, and low rates of
anagenetic change (Tables 5). Twelve separate possible
polyploid speciation events were identified over the
phylogeny (Fig. 8), and cladogenetic polyploidization
made up 16% of all observed and unobserved speciation
events. Bayes factors gave very strong support for models
that included cladogenetic polyploidization as well as
anagenetic demi-polyploidization (Table 6), the latter
explaining the frequent anagenetic transitions from 34
to 51 chromosomes found in the MAP ancestral state
reconstruction. The well supported root chromosome
number of 17 (posterior probability 0.91) corresponded
with the findings of Mayrose et al. (2010).

As opposed to the Helianthus results, the Carex
section Spirostachyae estimates had very low rates
of polyploidization and instead had high rates of

cladogenetic dysploid change (Table 5). An estimated
36.9% of all observed and unobserved speciation events
included a cladogenetic gain or loss of a single
chromosome. Overall, the rates of anagenetic changes
were estimated to be much lower than the rates of
cladogenetic changes. Bayes factors did not support
either anagenetic or cladogenetic polyploidization
(Table 6). The MAP root chromosome number of 37,
despite being very weakly supported (0.08), corresponds
with the findings of Escudero et al. (2014), where it was
also poorly supported (Fig. 9).

In Primula, we found a base chromosome number for
section Aleuritia of 9 with high posterior probability
(0.82; Fig. 10), which agrees with estimates from
Glick and Mayrose (2014). We estimated moderate
rates of anagenetic and cladogenetic changes,
including both cladogenetic polyploidization and
demi-polyploidization (Table 5). The MAP ancestral
state estimates include an inferred history of possible
polyploid and demi-polyploid speciation events in the
clade containing the tetraploid Primula halleri and the
hexaploid P. scotica. Primula is the only data set out of
the five analysed here for which Bayes factors supported
the inclusion of cladogenetic demi-polyploidization
(Table 6).
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FIGURE 7. Ancestral chromosome number estimates of Aristolochia. The model averaged MAP estimate of ancestral chromosome numbers
are shown at each branch node. The states of each daughter lineage immediately after cladogenesis are shown at the “shoulders” of each node.
The size of each circle is proportional to the chromosome number and the color represents the posterior probability. The MAP root chromosome
number is 8 with a posterior probability of 0.45. The grey arrow highlights the possible dysploid speciation event leading to the west-central
Mexican species Aristolochia tentaculata and A. taliscana. Clades corresponding to subgenera are indicated at right.

The well supported root chromosome number of
8 (posterior probability 0.90) found for Mimulus s.l.
corresponds with the inferences reported in Beardsley
et al. (2004). We estimated moderate rates of anagenetic
dysploid gains and losses, as well as a moderate
rate of cladogenetic polyploidization (Table 5). Bayes
factors also supported models that included anagenetic
dysploid gain and loss, as well as cladogenetic
polyploidization (Table 6). The MAP ancestral state
reconstruction revealed that most of the possible
polyploid speciation events took place in the Diplacus
clade, particularly in the clade containing the tetraploids
Mimulus cupreus, M. glabratus, M. luteus, and M.
yecorensis (Fig. 11). Additionally, an ancient cladogenetic
polyploidization event is inferred for the split between

the two main Diplacus clades at about 5 million time
units ago.

DISCUSSION

The results from the empirical analyses show that the
ChromoSSE models detect strikingly different modes of
chromosome evolution with clade-specific combinations
of anagenetic and cladogenetic processes. Anagenetic
dysploid gains and losses were supported in nearly all
clades; however, cladogenetic dysploid changes were
supported only in Carex. The occurrence of anagenetic
dysploid changes in all clades suggest that small
chromosome number changes due to gains and losses
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FIGURE 8. Ancestral chromosome number estimates of Helianthus. The model averaged MAP estimate of ancestral chromosome numbers
are shown at each branch node. The states of each daughter lineage immediately after cladogenesis are shown at the “shoulders” of each node.
The size of each circle is proportional to the chromosome number and the color represents the posterior probability. The MAP root chromosome
number is 17 with a posterior probability of 0.91. The grey arrows show the locations of 12 inferred polyploid speciation events.

may frequently have a minimal effect on the formation
of reproductive isolation, though our results suggest
that Carex may be a notable exception. Anagenetic
polyploidization was only supported in Aristolochia,
while cladogenetic polyploidization was supported in
Helianthus, Mimulus s.l., and Primula. These findings
confirm the evidence presented by Zhan et al. (2016)
that polyploidization events could play a significant role
during plant speciation.

Our models shed new light on the importance
of whole genome duplications as a key driver in
evolutionary diversification processes. Helianthus has
long been understood to have a complex history of
polyploid speciation (Timme et al. 2007), but our results
here are the first to statistically show the prevalance of
cladogenetic polyploidization in Helianthus (occuring
at 16% of all speciation events) and how few of the

chromosome changes are estimated to be anagenetic.
Polyploid speciation has also been suspected to be
common in Mimulus s.l. (Vickery 1995), and indeed we
estimated that 7% of speciation events were cladogenetic
polyploidization events. We also estimated that the rates
of cladogenetic dysploidization in Mimulus s.l. were 0,
which is in contrast to the parsimony based inferences
presented in Beardsley et al. (2004), which estimated
11.5% of all speciation events included polyploidization
and 13.3% included dysploidization. Their estimates,
however, did not distinguish cladogenetic from
anagenetic processes, and so they likely underestimated
anagenetic changes. Our ancestral state reconstructions
of chromosome number evolution for Helianthus,
Mimulus s.l., and Primula show that polyploidization
events generally occurred in the relatively recent past;
few ancient polyploidization events were reconstructed
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FIGURE 9. Ancestral chromosome number estimates of Carex section Spirostachyae. The model averaged MAP estimate of ancestral chromosome
numbers are shown at each branch node. The states of each daughter lineage immediately after cladogenesis are shown at the “shoulders” of
each node. The size of each circle is proportional to the chromosome number and the color represents the posterior probability. The MAP root
chromosome number is 37 with a posterior probability of 0.08. Grey arrows indicate the location of possible dysploid speciation events. 36.9%
of all speciation events include a cladogenetic gain or loss of a single chromosome. Clades corresponding to subsections are indicated at right.

(one exception being the ancient cladogenetic
polyploidization event in Mimulus clade Diplacus).
This pattern appears to be consistent with recent studies
that show polyploid lineages may undergo decreased
net diversification (Mayrose et al. 2011; Scarpino et al.
2014), leading some to suggest that polyploidization
may be an evolutionary dead-end (Arrigo and Barker
2012). While in the analyses presented here we fixed
rates of speciation and extinction through time and
across lineages, an obvious extension of our models
would be to allow these rates to vary across the tree and
statistically test for rate changes in polyploid lineages.

Our findings also suggest dysploid changes may
play a significant role in the speciation process of
some lineages. The genus Carex is distinguished by
holocentric chromosomes that undergo common fusion

and fission events but rarely polyploidization (Hipp
2007). This concurs with our findings from Carex
section Spirostachyae, where we saw no support for
models including either anagenetic or cladogenetic
polyploidization. Instead we found high rates of
cladogenetic dysploid change, which is congruent with
earlier results that show that Carex diversification is
driven by processes of fission and fusion occurring with
cladogenetic shifts in chromosome number (Hipp 2007;
Hipp et al. 2007). Hipp (2007) proposed a speciation
scenario for Carex in which the gradual accumulation
of chromosome fusions, fissions, and rearrangements
in recently diverged populations increasingly reduce
the fertility of hybrids between populations, resulting
in high species richness. More recently, Escudero et al.
(2016) found that chromosome number differences
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FIGURE 10. Ancestral chromosome number estimates of Primula section Aleuritia. The model averaged MAP estimate of ancestral chromosome
numbers are shown at each branch node. The states of each daughter lineage immediately after cladogenesis are shown at the “shoulders” of
each node. The size of each circle is proportional to the chromosome number and the color represents the posterior probability. The MAP root
chromosome number of section Aleuritia is 9 with a posterior probability of 0.82. The arrows show the inferred history of possible polyploid and
demi-polyploid speciation events in the clade containing the tetraploids Primula egaliksensis and P. halleri and the hexaploid P. scotica. Clades
corresponding to sections are indicated at right.

in Carex scoparia led to reduced germination rates,
suggesting hybrid dysfunction could spur chromosome
speciation in Carex. Holocentricity has arisen at least
13 times independently in plants and animals (Melters
et al. 2012), thus future work could examine chromosome
number evolution in other holocentric clades and test
for similar patterns of cladogenetic fission and fusion
events.

The models presented here could also be used
to further study the role of divergence in genomic
architecture during sympatric speciation. Chromosome
structural differences have been proposed to perform
a central role in sympatric speciation, both in plants
(Gottlieb 1973) and animals (Feder et al. 2005; Michel
et al. 2010). In Aristolochia we found most changes in

chromosome number were estimated to be anagenetic,
with the only cladogenetic change occuring among
a pair of recently diverged sympatric species. By
coupling our chromosome evolution models with
models of geographic range evolution it would be
possible to statistically test whether the frequency of
cladogenetic chromosome changes increase in sympatric
speciation events compared with allopatric speciation
events, thereby testing for interaction between these
two different processes of reproductive isolation and
evolutionary divergence.

The simulation results from Experiment 1
demonstrate that extinction reduces the accuracy
of inferences made by models of chromosome evolution
that do not take into account unobserved speciation
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FIGURE 11. Ancestral chromosome number estimates of Mimulus sensu lato. The model averaged MAP estimate of ancestral chromosome
numbers are shown at each branch node. The states of each daughter lineage immediately after cladogenesis are shown at the “shoulders” of
each node. The size of each circle is proportional to the chromosome number and the color represents the posterior probability. The MAP root
chromosome number is 8 with a posterior probability of 0.90. The arrows highlight the inferred history of repeated polyploid speciation events in
the Diplacus clade, which contains the tetraploids Mimulus cupreus, M. glabratus, M. luteus, and M. yecorensis. Clades corresponding to segregate
genera are indicated at right.

events. Furthermore, the simulations performed
in Experiments 2 and 3 show that the substantial
uncertainty introduced in our analyses by jointly
estimating diversification rates and chromosome
evolution resulted in lower posterior probabilities for
ancestral state reconstructions. We feel that this is a
strength of our method; the lower posterior probabilities
incorporate true uncertainty due to extinction and so
represent more conservative estimates. Additionally,
the simulation results from Experiment 4 reveal that
rates of anagenetic evolution were overestimated and
rates of cladogenetic change were underestimated when
the generating process consisted only of cladogenetic
events. This suggests the possibility that our models

of chromosome number evolution are only partially
identifiable, and that the results of our empirical
analyses may have a similar bias towards overestimating
anagenetic evolution and underestimating cladogenetic
evolution. This bias may be an issue for all ClaSSE
type models, but the practical consequences here are
conservative estimates of cladogenetic chromosome
evolution.

An important caveat for all phylogenetic methods is
that estimates of model parameters and ancestral states
can be highly sensitive to taxon sampling (Heath et al.
2008). All of the empirical data sets examined here
included nonmonophyletic taxa that were treated as
separate lineages. We made the unrealistic assumptions
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TABLE 5. Mean model-averaged parameter value estimates for empirical data sets

Clade �a �a �a �a �m �m �c �c �c �c �c �

Aristolochia 0.02 0.05 0.01 0.0 −0.01 −0.01 0.43 0.0 0.04 0.0 0.0 0.19
Carex section Spirostachyae 0.19 0.79 0.16 0.13 0.0 0.04 2.49 2.15 0.15 0.95 0.5 2.26
Helianthus 0.0 0.02 0.0 0.03 −0.0 −0.0 0.68 0.0 0.0 0.13 0.0 0.09
Mimulus s.l. 0.03 0.02 0.01 0.0 0.02 0.02 0.65 0.0 0.0 0.05 0.0 0.16
Primula section Aleuritia 0.01 0.05 0.01 0.01 −0.0 −0.0 2.39 0.01 0.03 0.15 0.09 2.47

Note: Rates for all parameters are given in units of chromosome changes per branch length unit except for � which is given in extinction events
per time units.

TABLE 6. Best supported chromosome evolution models for empirical data sets

Posterior probability
Clade MAP model of MAP model (%) BF�a BF�a BF�a BF�a BF�m BF�m BF�c BF�c BF�c BF�c

Aristolochia �a,�a,�a 0.05 3.08* 8.34* 2.52 0.42 0.55 0.61 0.15 1.09 0.06 0.03
Carex section
Spirostachyae

�a,�m,�c 0.04 1.11 42.67** 0.95 0.89 0.37 6.33* 37.02** 0.25 0.65 0.44

Helianthus �a,�a,�c 0.22 0.35 143.07** 0.51 >1000** 0.15 0.87 0.02 0.04 >1000** 0.16
Mimulus s.l. �a,�a,�m,�m, �c 0.13 101.04** 24.0** 0.86 0.31 1.57 1.55 0.07 0.1 20.41** 0.02
Primula section
Aleuritia

�a,�c,�c 0.06 0.63 5.61* 0.95 0.58 0.23 0.64 0.17 0.54 76.83** 14.89*

Notes: The MAP model of chromosome evolution and its corresponding posterior probability are shown with Bayes factors (BF) for models
that include each parameter. Parameters with BF>1 are in bold and indicate support for models that include that parameter. Parameters with
“positive” and “strong” support according to Kass and Raftery (1995) are marked with * and **, respectively.

that 1) each of the nonmonophyletic lineages sharing a
taxon name have the same cytotype, and 2) the taxon
sampling probability (�s) for the birth-death process
was 1.0. The former assumption could drastically affect
ancestral state estimates, but its effect can only be
confirmed by obtaining chromosome counts for each
lineage regardless of taxon name. While the results from
simulation Experiment 5 showed that fixing �s to 1.0 did
not decrease the accuracy of inferred ancestral states,
we still performed extra analyses of the empirical data
sets with different values of �s (results not shown).
The results indicated that total speciation and extinction
rates are sensitive to �s, but the relative speciation
rates (e.g. between �c and �c) remained similar. The
ancestral state estimates of cladogenetic and anagenetic
chromosome changes were robust to different values
of �s. This could vary among data sets and care
should be taken when considering which lineages
to sample.

Bayesian model averaging is particularly appropriate
for models of chromosome number evolution
since conditioning on a single model ignores the
considerable degree of model uncertainty found in
both the simulations and the empirical analyses. In the
simulations the true model of chromosome evolution
was rarely inferred to be the MAP model (<39% of
replicates), and in the instances it was correctly identified
the posterior probability of the MAP model was <0.13.
The posterior probabilities of the MAP models for the
empirical data sets were similarly low, varying between
0.04 and 0.22. Conditioning on a single poorly fitting
model of chromosome evolution, even when it is the

best model available, results in an underestimate of
the uncertainty of ancestral chromosome numbers.
Furthermore, Bayesian model averaging enabled us
to detect different modes of chromosome number
evolution without the limitation of traditional model
testing procedures in which multiple analyses are
performed that each condition on a different single
model. This is a particularly useful approach when the
space of all possible models is large.

Our RevBayes implementation facilitates model
modularity and easy experimentation. Experimenting
with different priors or MCMC moves is achieved by
simply editing the Rev scripts that describe the model.
Though in our analyses here we ignored phylogenetic
uncertainty by assuming a fixed known tree, we could
easily incorporate this uncertainty by modifying a
couple lines of the Rev script to integrate over a
previously estimated posterior distribution of trees. We
could also use molecular sequence data simultaneously
with the chromosome models to jointly infer phylogeny
and chromosome evolution, allowing the chromosome
data to help inform tree topology and divergence times.
In this paper we chose not to perform joint inference so
that we could isolate the behavior of the chromosome
evolution models; however, this is a promising direction
for future research.

There are a number of challenging directions for
future work on phylogenetic chromosome evolution
models. Models that incorporate multiple aspects
of chromosome morphology such as translocations,
inversions, and other gene synteny data as well as the
presence of ring and/or B chromosomes have yet to
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be developed. None of our models currently account
for allopolyploidization; indeed few phylogenetic
comparative methods can handle reticulate evolutionary
scenarios that result from allopolyploidization and
other forms of hybridization (Marcussen et al. 2015).
A more tractable problem is mapping chromosome
number changes along the branches of the phylogeny,
as opposed to simply making estimates at the nodes as
we have done here. Since the approach described here
models both anagenetic and cladogenetic chromosome
evolution processes while accounting for unobserved
speciation events, the rejection sampling procedure used
in standard stochastic character mapping (Nielsen 2002;
Huelsenbeck et al. 2003) is not sufficient. While data
augmentation approaches such as those described by
Bokma (2008) could be utilized, they require complex
MCMC algorithms that may have difficulty mixing.
Another option is to extend the method described in
this paper to draw joint ancestral states by numerically
integrating root-to-tip over the tree into a new procedure
called joint conditional character mapping. This sort
of approach would infer the joint MAP history of
chromosome changes both at the nodes and along
the branches of the tree, and provide an alternative
to stochastic character mapping that will work for all
ClaSSE type models.

Conclusions

The analyses presented here show that the
ChromoSSE models of chromosome number evolution
successfully infer different clade-specific modes of
chromosome evolution as well as the history of
anagenetic and cladogenetic chromosome number
changes for a clade, including reconstructing the timing
and location of possible chromosome speciation events
over the phylogeny. These models will help investigators
study the mode and history of chromosome evolution
within individual clades of interest as well as advance
understanding of how fundamental changes in the
architecture of the genome such as whole genome
duplications affect macroevolutionary patterns and
processes across the tree of life.
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