
CLAMShell: Speeding up Crowds for
Low-latency Data Labeling

Daniel Haas♦ Jiannan Wang♣∗ Eugene Wu♠ Michael J. Franklin♦

AMPLab, UC Berkeley♦ Simon Fraser University♣ Columbia University♠

{dhaas, franklin}@cs.berkeley.edu jnwang@cs.berkeley.edu ewu@cs.columbia.edu

ABSTRACT

Data labeling is a necessary but often slow process that
impedes the development of interactive systems for mod-
ern data analysis. Despite rising demand for manual data
labeling, there is a surprising lack of work addressing its
high and unpredictable latency. In this paper, we introduce
CLAMShell, a system that speeds up crowds in order to
achieve consistently low-latency data labeling. We offer a
taxonomy of the sources of labeling latency and study sev-
eral large crowd-sourced labeling deployments to understand
their empirical latency profiles. Driven by these insights, we
comprehensively tackle each source of latency, both by de-
veloping novel techniques such as straggler mitigation and
pool maintenance and by optimizing existing methods such
as crowd retainer pools and active learning. We evaluate
CLAMShell in simulation and on live workers on Amazon’s
Mechanical Turk, demonstrating that our techniques can
provide an order of magnitude speedup and variance reduc-
tion over existing crowdsourced labeling strategies.

1. INTRODUCTION
Modern data analysis is fundamentally centered around

the human analyst and her ability to rapidly iterate be-
tween hypotheses and evidence. Towards this goal numerous
projects have optimized individual data analysis components
(e.g., data ingest [1, 43], data analytics [14, 39, 48, 57, 56],
visualization [54, 53, 35, 27] and predictive models [17, 40,
26, 19]) as well as multi-stage workflows [21, 30] to reduce
end-to-end latency of data analysis.

Unfortunately, these advances continue to be hindered by
the need for synchronous human effort, often in the form
of manual labeling. For example, human workers are fre-
quently tasked to label training data (e.g., sentiment analy-
sis, user preferences) for machine learning models. Similarly,
many data cleaning systems [18, 52, 49, 28] rely on crowd
workers to provide labels for entity resolution, value imputa-
tion, and other error mitigation algorithms. In fact, a recent

∗Research conducted while at the AMPLab, UC Berkeley

This work is licensed under the Creative Commons Attribution-
NonCommercial-NoDerivatives 4.0 International License. To view a copy
of this license, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. For
any use beyond those covered by this license, obtain permission by emailing
info@vldb.org.
Proceedings of the VLDB Endowment, Vol. 9, No. 4
Copyright 2015 VLDB Endowment 2150-8097/15/12.

survey of software companies [37] found that these compa-
nies use crowd workers to complete hundreds of thousands
of data cleaning tasks per day. Such heavy reliance on man-
ually generated data inevitably limits the speed of analysis
pipelines by the latency of their crowdsourcing steps.

All crowd-based data labeling systems seek to reduce cost
and speed while maximizing quality. However, most research
has focused only on the trade-off between quality and cost,
routinely reporting task latencies on the order of minutes
to hours to complete an average task [6, 31, 15]—clearly
unacceptable for user-facing systems.

In this paper, we explicitly tackle the trade-off between
cost and latency for crowd-sourced labeling tasks. Though
there are a few existing works that explicitly aim at tackling
latency, they are either tailored to specific tasks [36, 38, 50],
targeted towards a single source of latency such as recruit-
ment time [5, 8, 16], or focused on machine learning tech-
niques (e.g., active learning) that ignore the practicalities of
live crowdsourcing and may be counterproductive in terms
of wall clock latency [41].

In addition, predictability of overall task latency is an im-
portant consideration that has not been carefully studied.
Depending on the numerous external factors, the quantity,
quality, and speed of available workers on crowd platforms
such as Amazon’s Mechanical Turk (MTurk) [42] can fluc-
tuate wildly [24, 23] and result in individual task latencies
from seconds to even days. We argue that the variance of
task latency must be within single-digit seconds before it can
be usefully embedded in interactive user-facing applications
such as Data Wrangler [28].

In this paper, we introduce CLAMShell, a system that
speeds up crowds in order to achieve consistent, low-latency
data labeling. Rather than focus on a single algorithm or
step in the data labeling lifecycle, our goal is to develop a
collection of pragmatic techniques to clamp down on latency
and variance during all stages of labelling. To this end, we
first perform an empirical study of the dominant sources of
latency—per-task latency, batch-wise latency, and end-to-
end overall latency. We then systematically address each
major source through three novel techniques: Straggler mit-
igation uses redundant labelers to mitigate ‘straggler tasks’
at the end of batches, decreasing the variance of batch label-
ing time from minutes to fractions of seconds. Pool mainte-
nance uses threshold-based eviction techniques to maintain
a pool of fast, high-quality workers and decrease the average
time to label each task. Hybrid learning combines active and
passive learning to exploit crowd pool parallelism when there
are more workers available than the active learning batch

372



size, and dynamically favors passive learning on datasets
where active learning performs poorly. Our evaluation of
CLAMShell, a system that implements these techniques on
live workers, demonstrates up to 8× speedups in label ac-
quisition time and over 2 orders of magnitude reduction in
variance compared to typical non-optimized deployments. A
key benefit of our work is that all of these optimizations are
compatible with standard quality control algorithms such
as redundancy-based voting schemes and worker quality es-
timation algorithms.

2. STUDYING CROWD LATENCY
In this section, we categorize the primary sources of crowd-

sourced microtask latency, describe existing work that ad-
dresses crowdsourcing latency, and outline our approach to-
wards a comprehensive solution. We include a study of one
crowd-labeling MTurk deployment that ran ∼ 60,000 tasks
to label medical publication abstracts. A full analysis of this
and three other microtask deployments can be found in our
technical report.

2.1 Sources of Latency
A multitude of factors can increase latency, from algo-

rithm choice to worker and environmental factors. We find
that categorizing the factors based on the granularity of
work provides a clear decoupling of algorithmic contribu-
tions from systems concerns. Specifically, latency might
arise from the speed of a single task, a fixed batch of tasks, or
the full run of multiple batches (of possibly varying sizes).

Per-Task Latency We can view the latency of a single task
as a linear sequence of three phases:

1. Recruitment: Workers do not immediately begin work-
ing on newly submitted tasks, and recruitment latency
consists of the time until an interested crowd worker
accepts a newly posted task. In the medical deploy-
ment, the min, median and standard deviation statis-
tics were 5, 36, and 9 minutes, respectively.

2. Qualification and Training: Once workers accept a
task for the first time, they are often presented with
tutorials or qualification tasks before they are permit-
ted to perform actual work.

3. Work: The amount of time a worker spends to com-
plete a task can vary depending on the worker com-
petency, the time of day, fatigue, and numerous other
factors [33, 24]. Note that a single task may produce
multiple labels if records are grouped into tasks (a com-
mon practice).

Per-Batch Latency We define the batch latency as the
time for all tasks in a fixed-sized set to fully complete when
sent to a crowd, which is dependent on the latency distri-
bution of all available workers in addition to each worker’s
individual variations.

For example, in the medical deployment, the median and
standard deviation to complete a given HIT were 4 and
2 minutes, respectively, while the 90th percentiles are up-
wards of 1.1 and 3 hours, respectively. Although each HIT
produces multiple labels, this extreme long-tail distribution
is common-place on microtask platforms like MTurk, and
driven by three sources:

1. Stragglers: The batch must block until the slowest
task is completed – up to 3 orders of magnitude slower
than the median.

2. Mean Pool Latency (MPL): The expected latency de-
pends on the MPL, which varies from 1 to 2 minutes.

3. Pool and Worker Variance: The long-tail ultimately
results in high variance within and between batches.
The most and least consistent workers had standard
deviations of 4 minutes and 2.7 hours, respectively.

These sources contribute to task response times that are,
in practice, slow and extremely variable.

Full-Run Latency Rather than require crowd workers to
label terabytes of data, machine learning is often used to
infer labels once enough records have been labeled to train
a high-quality model. Active learning can reduce the size
of this training set, however training the model requires ac-
quiring small batches of labels in a blocking fashion. This
induces four latency sources:

1. Decision Latency: The time to pick the next batch of
tasks (e.g., uncertainty sampling for active learning)

2. Task Count: The number of labeling tasks, which ma-
chine learning approaches seek to reduce.

3. Batch Size: The batch size affects both active learning
convergence as well as the amount of parallelism within
a batch.

4. Pool Size: The number of workers completing tasks
controls the maximum parallelism possible, however is
often dictated by operational constraints.

Active learning can drastically reduce the task count, but
incurs increased decision latency and requires limited batch
sizes to be effective. In contrast, passive learning can lever-
age the parallelism of all available workers, but might require
many more tasks to train a model of equivalent accuracy.
The choice ultimately depends on the labeling task, as we
show empirically in Section 6.5.

2.2 Tackling Latency

Task Latency Batch Latency Full-Run Latency
Recruitment* Stragglers Decision Time

Qual & Training Mean pool latency Task Count*
Work* Pool variance Batch Size

Pool Size

Table 1: Classification of sources of latency in data labeling.

Table 1 summarizes the sources of latency described in
the previous section, and notes (*) sources that have been
addressed in the literature. From the table, it is clear that
there is ample opportunity to improve the state of crowd-
sourced latency.

Existing Literature The primary work addresses recruit-
ment time, a dominant source of task latency. Bigham et
al. [8] frequently repost tasks (among other techniques) to
improve the chances of workers accepting their tasks. How-
ever, if widely adopted, such techniques would likely exac-
erbate recruitment time. Gao et al. [16] algorithmically in-
crease prices over time to encourage workers to accept tasks
by a deadline. Bernstein et al. [5, 7] proposed the retainer
model, which pre-recruits a pool of crowd workers (a retainer
pool) and pays them to wait until tasks arrive. In settings
where tasks are streaming or come in batches, this model
can effectively eliminate recruitment time at a small cost.
In our work, we build on top of the retainer model.

Work time has been reduced by re-designing task inter-
faces [36]. For example, Marcus et al. [38] study join inter-
faces for images, and design interface batching techniques
that let workers complete up to 9 pair-wise comparisons

373



in the same time as a single pair-wise comparison task.
However, these approaches are task specific, so CLAMShell
views them as complementary to its general task optimiza-
tion framework and does not explicitly address them.

Finally, algorithmic analysis and machine learning have
been used to reduce task count. The former focus on efficient
algorithms for specific operations (e.g., entity resolution [51],
counting [36], or information retrieval [12, 44]). These focus
on full-run latency, and could leverage CLAMShell’s per-
task, per-batch, and machine learning techniques.

The latter trains models using data from completed tasks
until the prediction quality exceeds a user-defined threshold,
and then is used to predict the remaining responses. In this
setting, active learning [11] is a commonly used method [41,
18]. Given unlabeled data, active learning iteratively uses a
point selection algorithm to pick a small set of informative
points to acquire labels for, and incorporates the new labels
into its model. The algorithm continues until the model ac-
curacy (e.g., cross-validation) converges. Active learning is
indispensable when there are more items than can be prac-
tically labeled, and can be used in conjunction with algo-
rithmic approaches that rely on the labels [12, 51].

Despite reducing the task count, active learning may counter-
intuitively increase the overall latency by constraining the
parallelism due to its batch size limitations. Its convergence
properties have only been proved when the batch size is 1.
and larger batch sizes (e.g., 10) have only been tested empir-
ically. When the number of workers significantly exceeds the
batch size, active learning can be much slower than labeling
as many random tasks in parallel as possible and using a
passive learner.

Towards a Comprehensive Solution The core problem
is a trade-off between cost, accuracy and latency: a user
wants to label a set of items accurately at high speed and
low cost. This work focuses especially on reducing latency
by sacrificing cost. To this end, we systematically tackle the
primary sources of latency (Table 1) in a general purpose
labeling system:

1. Task Latency: CLAMShell addresses task latency by
adopting retainer pools to reduce recruitment costs.
CLAMShell automatically maintains the pool size at
p as workers abandon the pool, and provides guidance
about how the cost and latency will be affected by
changing p. In addition, CLAMShell trains and verifies
worker qualifications as part of recruitment, ensuring
that every worker in the pool is immediately available
to provide useful work when new tasks arrive.

2. Batch Latency: Straggler mitigation uses worker re-
dundancy on slow tasks to compensate for long-tail
latencies. Pool maintenance selectively replaces pool
workers to progressively shift and tighten the latency
distribution towards faster responses. Together, they
eliminate straggler effects, reduce mean pool latencies
over time, and significantly reduce batch variance.

3. Full-Run Latency: CLAMShell uses a hybrid strategy
that allocates subsets of the worker pool to active and
passive learning. In addition, CLAMShell pipelines the
expensive model retraining and uncertainty sampling
steps with crowd labeling to eliminate decision latency
at the cost of slightly stale model results.

Note that CLAMShell does not explicitly address work
time, nor pool size: work time is often specific to the task
interface, which we view as an orthogonal interface optimiza-

Figure 1: CLAMShell architecture diagram.

tion problem, and pool size is a parameter to The Crowd La-
beling Problem and typically set by operational constraints.
Instead, the following text focuses on the other sources of
latency listed in Table 1.

3. THE CLAMSHELL SYSTEM
In this section, we present an overview of CLAMShell, a

system for fast label acquisition.
The CLAMShell architecture is illustrated in Figure 1.

The user submits a set or stream of labeling tasks to the
Batcher and uses the Task selector (Section 5.1) to pick B

incomplete tasks to process in the current iteration. The
tasks are selected via uncertainty sampling using the most
recently trained model to pick tasks that benefit active learn-
ing, and random sampling to pick tasks for passive learning.
The resulting batch is sent to LifeGuard, which schedules
tasks within the batch to be sent to the Crowd Platform.
This level of indirection is necessary when the batch size ex-
ceeds the size of the retainer pool, and so the Mitigator can
control redundancy when there are slow tasks.

The Crowd Platform holds a set of slots (S1 . . . S4) in the
current retainer pool. Each slot corresponds to a persistent
retainer task that a crowd worker has accepted, and may be
empty (e.g., S4) or contain a task (e.g., T0). The Scheduler
immediately sends new tasks to available slots (e.g., S3).
If all tasks have been sent, then the Mitigator sends dupli-
cate (mitigation) tasks for slow, incomplete tasks (e.g., S1).
If a slot is consistently performing slowly, the Maintainer
may recruit and train a worker for a replacement slot in the
background, then evict the slow slot (✗ in S4).
Completed labels are sent directly to the Batcher, which

retrains the machine learning model. The Task Selector uses
different sampling algorithms such as uniform sampling, ac-
tive learning-based uncertainty sampling, or our hybrid sam-
pler, to pick the next batch of tasks. At all times, the
user can access the completed labels and query the currently
trained model for new predictions. The following example
illustrates the use of CLAMShell in practice.

Example 1. Imagine a news outlet is covering a live po-
litical debate, and wants to monitor and visualize the pub-
lic’s reaction to candidates’ comments on hot-button issues

374



by analyzing the sentiment of related tweets. Because au-
tomated sentiment analysis techniques on tweets are often
inadequate [2], the company asks a crowd to label tweets as
“positive”, “negative”, or “neutral”. If the system suffered
from high crowd latency, the sentiment visualization would
be unable to keep up with the changes in public opinion as
the debate proceeded, rendering the tool unhelpful.

CLAMShell can be used to address this issue with both per-
batch and full-run optimizations. The per-batch optimiza-
tions, including straggler mitigation and pool maintenance
techniques, are designed to reduce the time that is required to
label a batch of tasks using crowds, e.g., asking for crowd la-
bels for a batch of ten tweets. Once the company has enough
labeled data, they hope to switch to an automated process in
the long term. The full-run optimizations, including hybrid
learning, are designed to reduce the number of iterations that
a learning model needs to converge, i.e., the total number of
batches that we need to ask crowds to label.

4. PER-BATCH LATENCY OPTIMIZATION
Per-batch optimizations aim to reduce the latency for a

single batch of labeling tasks — the Batcher sends a batch
of tasks to a pool of workers, and waits for the batch of
work to complete. In this model, the dominant costs are
due to the variability of worker latencies within the pool, as
well as the variability within the tasks that a single worker
performs.

Figure 2: Distribution of worker latencies.

For example, Figure 2 depicts per-worker means and stan-
dard deviations of latency from the medical deployment as
CDFs. We can see that average worker speeds are spread
out from tens of seconds to hours. In addition, even workers
who are very fast on average (∼1 minute) can take as long
as an hour or more to complete some tasks. This variation
is bad for per-batch latency because the batch must block
until all of its tasks are complete.

So in order to reduce per-batch latency, a system must re-
duce both the mean of the latency distribution (workers who
are slow on average) and its variance (workers who are in-
consistent). This section describes the mechanisms for each
of these approaches respectively, along with mathematical
models and simulation results. Section 6 evaluates these
strategies on a live deployment on MTurk.

Throughout the following sections, we reference experi-
ments run in simulation. The simulator is described in Sec-
tion 6.1, but due to space constraints detailed analysis of
the results can be found only in our technical report.

4.1 Straggler Mitigation: Reducing Variance
In cluster computing frameworks such as Hadoop [22] or

Spark [56] where the presence of straggler tasks in a stage
(e.g., reduce stage of MapReduce [13]) can delay downstream
computation, replicating the slow tasks [4, 13, 3, 55] via
speculative execution or task cloning [4] is an effective counter-
measure.

We take a similar replication-based approach to human
stragglers in our crowd pool. We call a worker active if she
is currently working on a task, and available otherwise. Sim-
ilarly, a task is either active, complete, or unassigned. By de-
fault, CLAMShell routes only unassigned tasks to available
workers until all tasks are complete. Once all tasks are ac-
tive or complete, available workers must wait until the next
batch to receive a task. With straggler mitigation, in con-
trast, such workers are immediately assigned active tasks,
creating duplicate assignments of those tasks. CLAMShell
returns the first completed assignment of a task to the user
and immediately reassigns all other workers still working on
that task to a new unassigned or active task (though it pays
them for their partial work on the old task regardless). The
effect of straggler mitigation is that when an inconsistent
worker takes a long time to complete a task, the system
hides that latency by sending the task to other, faster work-
ers. As a result, the fastest workers complete the majority of
the tasks and earn money commensurate with their speed.
For example, in the medical deployment, the fastest worker
(µ = 28.5 seconds) could complete, on average, 8× as many
tasks as the median worker (µ = 4 minutes).

Simulation. A natural question arises when performing
straggler mitigation: which task should be assigned to an
available worker? We ran simulation experiments testing
several straggler routing algorithms, including routing to the
longest-running active task, to a random task, to the task
with fewest active workers, or to the task known by an oracle
to complete the slowest.

To our surprise, the selection algorithm didn’t affect end-
to-end latency, and random performed as fast as the oracle
solution because the fast workers complete almost all of the
tasks in the batch.

A second question is: at what batch sizes is straggler
mitigation effective? We study this in simulation by vary-

ing the pool size to batch size ratio R =
Npool

Nbatch
using the

random selection algorithm and different pool sizes. The
benefit of straggler mitigation comes from its ability to re-
move the overhead of slow workers at the end of a batch of
tasks. When R is higher, each batch gains the full benefit
of straggler mitigation and completes at the speed of the
fastest workers, however the number of tasks completed in
each batch is lower. Conversely, with a small ratio, workers
spend most of their time working on unassigned tasks, and
the impact of straggler mitigation is lessened.

Impact on Crowdsourcing Systems. Straggler mitiga-
tion is a general technique that does not affect the program-
ming interface of the system it is applied to. It can therefore
be used easily in conjunction with any existing crowdsourc-
ing system that processes batches of microtasks. One im-
portant benefit of hiding the variance in worker latencies is
that task completion times become much more predictable.
This characteristic is vital to the development of declarative
crowd systems such as crowdsourced query processors, be-
cause optimizers need to be able to accurately estimate the
cost of executing a declarative crowd workflow.

4.2 Pool Maintenance: Better Mean Latency
Straggler mitigation reduces the variance of task latencies,

but if many workers in the labeling pool are slow on average,
variance reduction will be ineffective at reducing per-batch
latency. To improve the average speed of the pool over time,

375



CLAMShell uses pool maintenance, a technique that contin-
uously replaces slow workers in order to converge to a pool of
mostly fast workers. Because a fast pool will label each task
more quickly, pool maintenance reduces per-batch labeling
latency over time.

Our maintenance algorithm takes as input a latency thresh-
old PMℓ, and continuously releases workers slower than the
threshold asynchronously as labeling proceeds. To do so, it
computes an empirical latency for each pool worker based on
the worker’s completed tasks and flags the worker as a can-
didate for removal if his latency is significantly above PMℓ

(determined using a one-sided significance test).
Instead of removing a slower worker before recruiting a

replacement, CLAMShell continuously recruits and trains
workers in the background in order to maintain a reserve
of new workers. Although this might seem costly, pipelining
recruitment means that pool maintenance can proceed with-
out blocking on worker recruitment, and we find empirically
that the latency savings of pool maintenance translate to
cost savings that overwhelm the cost of background recruit-
ment (Section 6.2). The removed worker is paid for their ac-
tive job (if any), and informed that there are no more tasks
available for the experimental run. They are not blacklisted,
so that future experiments are not biased.

Pool speed convergence. The following model demon-
strates the mean latency to which a maintained pool will
eventually converge. Assume a population of workers with
mean latencies µi following some global distribution W hav-
ing mean Γ, and sample an initial pool P0 ⊂ W uniformly at
random from W. Let PMℓ be a latency threshold splitting
the distribution W into two parts, with probability densi-
ties q and 1 − q above and below PMℓ respectively. Fur-
ther, let µf be the mean latency among fast workers having
µi < PMℓ, and let µs be the mean latency among slow work-
ers having µi > PMℓ.

Then our initial pool has a mean latency E[µi] = (1 −
q)µf + qµs. If at each maintenance step, we remove all slow
workers having µi > PMℓ and replace them with workers
drawn randomly from W, and letting Pi be the pool after i
steps, we see that P1 has mean latency E[µi] = (1− q)µf +
(q(1 − q)µf + q2µs), and in general Pn has mean latency:

E[µi] = (

n∑

i=0

q
i)(1− q)µf + q

n+1
µs

= (1− q
n+1)µf + q

n+1
µs.

We observe that limn→∞ E[µi] = µf , that is, the pool con-
verges to the mean latency of all workers below PMℓ. This
implies that it is desirable to set PMℓ as low as possible: in
practice, setting the threshold too low leads to thrashing, as
we show in section 6.2.

Simulation. We simulated how pool maintenance affects
batch latency with respect to the task to pool size ratio R

using a latency threshold PMℓ of one standard deviation
below the mean. After each batch, we replace all workers
slower than PMℓ with new samples from the worker dis-
tribution. With pool maintenance, the batch latency falls
quickly, nearly halving in just 15 to 20 batches. When there
are many more tasks than pool workers, the effect becomes
less pronounced, because there are enough tasks that slow
workers who only complete a small fraction of tasks do not
impact the per-batch latency.

To better understand how the distribution of mean worker

latency is changing over time, we simulate the mean pool la-
tency (MPL) of the worker pool over time with and without
maintenance, and compare the MPL to the mathematical
model’s predictions. With maintenance, the pool’s MPL
converges quickly to the model’s predicted asymptote, fol-
lowing the model closely across pool-size to task ratiosR.

Latency Threshold. The pool maintenance latency thresh-
old determines which workers are slow and should be re-
moved from the pool. To pick a good threshold, we can
observe the empirical distribution of all workers ever seen,
and estimate the threshold as k standard deviations below
the mean. The goal is to find a threshold low enough to
decrease average pool latency by releasing slow workers, but
high enough to avoid discarding the fastest workers from
the pool. In Section 6.2, we vary the threshold and find
that it has significant impact on the benefits of pool main-
tenance.

Extensions. As described, pool maintenance is focused
only on reducing the mean latency of the pool. However,
it can be easily extended to optimize for other criteria by
choosing an objective function other than worker speed. For
example, we could maintain a pool using quality (estimated
using, e.g., inter-worker agreement [9]) to converge to a high-
quality pool, use a weighted average to trade off quality and
speed, or minimize another metric such as worker variance.
Ramesh et al. [46] take a similar approach to identifying
high-quality workers, though they use an oracle for accuracy
and evaluate their technique only in simulation.

4.3 Combing Per-Batch Techniques

Interference Effects. Both straggler mitigation and pool
maintenance deal with tail latencies — maintenance detects
and removes workers whose average speeds are outliers, and
straggler mitigation hides individual workers’ outlier tasks.
From our initial live experiments, we were surprised to find
that naively combining the two techniques together resulted
in zero or even negative gains as compared to straggler mit-
igation alone. For example, the number of workers replaced
in each batch was reduced from ∼ 30 to less than 5 despite
similar worker distributions.

The reason is that straggler mitigation terminates slower
tasks, artificially skewing every worker’s completion times
towards the latency of the fastest workers. This makes di-
rectly measuring true worker latency infeasible. In response,
we developed a simple model called TermEst to estimate the
average latencies of terminated tasks based on the number
of times a worker’s task is terminated.

We assume the worker pool is represented by two worker
types — slow workers ws and a fast workers wf that each
uses a true latency of ls,j and lf,j to complete task tj .
Our goal is to estimate the latency of ws’ terminated tasks.
Let ws start N tasks Tall = {t1, . . . , tN}, where Tt ⊆ Tall

are terminated, and Tc = Tall − Tt are completed. Let
lk,T = 1

N

∑
ti∈T

lk,i be the average latency for wk to com-

plete a random task in T , and let lk be wk’s true mean
latency. Since wf can start working on tj at any time after
ws with uniform probability, the probability that wf starts

early enough to cause ws to terminate is
ls,j−lf,j

ls,j
. Thus, ws

is expected to be terminated Nt times over N tasks:

∑

ti∈Tt

ls,i − lf,i

ls,i
≈

ls,Tt
− lf

ls,Tt

×N = T

Rearranging the terms, we can estimate ls,Tt , where Nc =

376



N −Nt:

ls,Tt
=

lf ×N

Nc

We then add a smoothing term alpha to N in order to com-
pensate for the lack of latency evidence when N is small
and avoid divide-by-zero errors when all of a worker’s tasks
are terminated (N = T ). In practice, we estimate lf as the
empirical mean of the workers that caused any of ws’ past
jobs to terminate:

ls,Tt
=

lf (N + α)

Nc + α

Finally, to estimate the overall latency of ws by taking the
the weighted average of ls,Tt and the empirical mean latency
of the tasks ws is able to complete, ls,Tc :

ls =
Nt

N
× ls,Tt

+
Nc

N
× ls,Tc

Note that our formulation is equivalent to modifying the la-
tency threshold on a per worker basis. Thus, while changing
the global latency threshold is important for setting a worker
replacement rate, this adjustment replaces workers who are
frequently terminated.

Working with Quality Control. One potential draw-
back of this work is that by selecting workers based only
on speed, we might be rewarding spammers or other fast
but inaccurate workers. Our empirical data actually show
that faster workers are no more likely to be inaccurate than
slow workers (analysis omitted for space), but it is worth
mentioning that traditional quality control techniques are
entirely complementary to these per-batch techniques. For
example, CLAMShell implements redundancy-based quality
control algorithms such as [25] or [29] that use votes from
multiple workers to better estimate the true answer by sim-
ply acquiring more labels using straggler mitigation and pool
maintenance. This might appear confusing, as straggler mit-
igation also acquires extra labels, but there is a key differ-
ence: straggler mitigation asks for extra labels but doesn’t
wait for them, whereas quality control requires extra labels
and waits for all of them.

5. FULL-RUN LATENCY OPTIMIZATION
In order to eliminate the need to manually label all points

in a potentially large set, CLAMShell acquires labels for
only as many points as needed to train a predictive model
of sufficient quality, then uses that model to impute labels
for all remaining points. As described in Section 2, there are
many factors that influence the latency of the labeling pro-
cess. Relying on learning greatly decreases the task count
necessary to label the entire dataset, but has implications
for the decision latency and batch size involved. In partic-
ular, CLAMShell uses uncertainty sampling to reduce the
task count even further, but trades this improvement for
increased decision latency (the learner must choose which
points to label next) and decreased batch size (active learn-
ing is inherently iterative and cannot label as many points
in parallel).

In this section, we describe how CLAMShell ameliorates
the drawbacks of active learning for low-latency labeling.
We introduce hybrid learning, a novel technique which com-
bines active and passive learning to maximize pool paral-
lelism and hide the inherent limits of active learning batch
size. We also describe how CLAMShell leverages existing

techniques to set an effective batch size for active learning
and uses asynchronous model retraining to hide active learn-
ing’s decision latency.

5.1 Hybrid learning
Active learning uses the current trained model to decide

which points to label in the point selection phase, reducing
the number of points needing labels in order to train a high-
quality model. In practice, however, there are two major
challenges to active learning at low latency. First, at each
iteration, active learning has a limited batch size—setting
the batch size too high can cause the model to converge even
more slowly than passive learning [47]. This limits the wall-
clock speed at which active learning can proceed. Second,
when labeling work is challenging, it will be hard to train
a good model. As a result, the current trained model may
misguide the point selection phase, and active learning may
perform poorly, perhaps even worse than passive learning.
On the other hand, passive learning that trains a model
using a randomly sampled data points can proceed as fast
as the crowd can label, but it will waste human effort for
easy labeling work.

To address these issues, we propose hybrid learning in
CLAMShell, with the basic idea of maintaining the best
traits of both passive and active learning, allowing for fast
model convergence on both easy and hard data labeling
work. Hybrid learning simultaneously acquires labels using
the active selection strategy and random sampling, maximiz-
ing crowd worker parallelism and compensating for datasets
where active learning alone would perform poorly. As a re-
sult, label acquisition can proceed at high speed in spite of
a low active learning batch size.

Point Selection. Once a batch size has been selected
for active learning (Section 5.2, below), hybrid learning at-
tempts to maximize crowd worker parallelism by ensuring
that each worker in the pool has at least one point to la-
bel. That is, given a batch size k and a pool size p, hybrid
learning uses the active selection criterion to choose k points
for labeling, then randomly selects max(0, p − k) points for
passive labeling. Because CLAMShell caches all previously
labeled points, if the points chosen for active or passive la-
beling overlap, their labels are read from the cache and ad-
ditional points are selected for labeling.

Model Retraining. Once a new batch of points has been
labeled, hybrid learning retrains a model on all previously
observed labels. These points come from two sampling dis-
tributions: uncertain sampling (active learning) and random
sampling (passive learning). Currently, CLAMShell retrains
the model on the union of these points without distinguish-
ing their difference, though it does weight points based on
the active-to-passive ratio (i.e., k

p
). If users provide hints to

CLAMShell about how hard their labeling work is (e.g., very
difficult), CLAMShell can adjust these weights accordingly.
We leave the exploration of optimal re-weighting schemes
for future work.

5.2 Active learning batch size
Because the speed of active learning is constrained by the

size of its batches, setting a good batch size is important
for fast convergence. Too small, and training will be slow
because it will take a long time to label all the points. Too
large, and training will be slow because each batch contains

377



less useful points, slowing down convergence to a good model
(or even converging to a bad one!). The literature provides
no guidance on an appropriate batch size for batch-mode
active learning, assuming that that the batch size is cho-
sen by the user in advance. Chakraborty et. al [10] of-
fer an active learning technique that dynamically sets the
batch size, but it is not generic across learners and requires
knowledge of the labeling time for each instance. We exper-
imented extensively with the active learning batch size, and
found that once batch size was within a reasonable range
(10-40), there was no significant correlation between batch
size and convergence rates on any single dataset, let alone
across datasets.

As a result, we rely on empirical results from our hybrid
learning experiments (Section 6.5) to set an active learning
batch size that works well with our hybrid strategy. Those
experiments show that the fraction of the pool r = k

p
al-

located to active learning has a significant impact on the
convergence of the learner, and that r = 0.5 is a reasonable
value for multiple datasets. In our end-to-end experiments,
we set k = 0.5p accordingly.

5.3 Active learning decision latency
The time taken by the active learner to retrain a model

and select a new batch of points after the previous batch
has been labeled has a significant impact on full-run latency,
because the labeling process blocks until the learner is ready
with the next batch. To mitigate this latency (which is not
an issue for passive learning), CLAMShell uses two known
techniques.

First, rather than consider all unlabeled points for selec-
tion in the next batch, we consider only a uniform random
sample of the points. This has been shown to have little
impact on active learning convergence, and offers significant
performance improvements: the point selection time is lin-
ear in the sample size, not the size of the entire unlabeled
dataset, which might include millions of examples.

Second, rather than performing retraining and selection
synchronously at the end of each batch, CLAMShell contin-
ually retrains models asynchronously on the latest available
points. A new batch of points is selected based on each
new model, so at any point in time there is an available
model and an available selection of points for the next batch.
When each batch of points completes the labeling process,
the next batch is selected based on the most recently com-
puted model. This trades off decision latency for staleness
of points to be selected, and empirically we find that it does
not significantly impact model convergence.

5.4 Putting it all together
CLAMShell is powered by three techniques: Straggler

Mitigation (straggler), Retainer Pool Maintenance (pool),
and Hybrid Learning (hybrid). Table 2 summarizes their im-
pact on system performance across four axes: (1) Can they
improve the mean latency of labeling? (2) Can they mitigate
the variance of individual workers’ labeling latency? (3) Do
they require additional cost to use? (4) Are they general or
restricted to a certain labeling setting?

6. EVALUATION
In this section, we evaluate CLAMShell both in simulation

and on live crowd workers on MTurk in order to show that
it enables data labeling to proceed at interactive speeds. We

CLAMShell Latency
Cost General

Techniques Mean Variance

straggler Yes Yes Increase Yes
pool Yes Yes No Change Yes
hybrid Yes No Increase AL

Table 2: CLAMShell techniques (AL: Active Learning).

Param Description

PMℓ Latency threshold for pool maintenance
SM Straggler mitigation: on (SM), off (NoSM).
Np Number of workers in the retainer pool.
Ng Task size: # records grouped a HIT.

Small (1), Medium (5), Large (10 records)
R Pool-batch ratio.
Alg Learning algorithm: active (AL), passive (PL),

hybrid learning (HL), or none (NL)

Table 3: Experimental Parameters

first evaluate each technique in isolation, then provide end-
to-end experiments demonstrating the total time it takes
to label unlabeled datasets. Table 3 summarizes important
parameters varied in the experiments.

6.1 Experimental Setup

Simulator. The simulated experiments described in the
previous text and the following evaluation are run on a
python simulator that models a retainer-pool crowd data la-
beler and implements uncertainty sampling on top of scikit-
learn’s model training [45]. To simulate crowd workers, we
use traces from the medical deployment described in Sec-
tion 2.1. From each trace, we measure each worker’s mean
labeling latency µi, variance in labeling latency σ2

i , and
mean accuracy λi. We then generate a worker’s latency
on an assigned labeling task by drawing a sample i.i.d from
N (µi, σ

2
i ), and generate the label itself by returning the cor-

rect label with probability λi and the incorrect label with
probability 1− λi. Using these worker pools, the simulator
can model recruitment (adding random workers to the pool),
pool maintenance (releasing workers with high observed µi

from the pool), straggler mitigation (assigning multiple sim-
ulated workers to the same task and returning the minimum
of the sampled latencies), and active learning (using simu-
lated workers to label batches of points and measuring the
latency of the whole batch).

Live Experiments. The live experiments discussed below
run on a custom implementation of the retainer model for
MTurk. Recruitment occurs by repeatedly re-posting re-
cruitment tasks every 3 minutes to MTurk until the desired
number of workers have joined the pool. Workers are paid
$.05 / minute to wait for available work once they join a
pool, and $.02 / record to perform the work once it becomes
available. MTurk tasks require a minimum qualification of
85% worker approval to join a pool. Experiments in these
pools were run at multiple times of day on both weekdays
and weekends. In contrast with prior work, we found that
results were remarkably consistent across these parameters
when using our latency mitigation techniques. This may be
the result of our relatively strict qualification requirement,
or may reflect more systemic changes in the MTurk market-
place. Following the retainer pool model, we assume recruit-
ment time is amortized across batches and measure latency
from the moment the first task is sent to the pool, rather
than from the beginning of the recruitment process. Over-

378



all, we collected timing results for nearly 250,000 individual
task assignments over the span of several weeks.

Datasets. The active learning tasks run in this evalua-
tion are all classification tasks, based on publicly available
datasets. The MNIST dataset [34] contains 70,000 black and
white images of handwritten digits, and the multi-class clas-
sification task is to detect which digit is in each image. We
used raw pixel values as features, leading to 784 features per
image, and use entropy as our uncertainty metric when per-
forming active learning. The CIFAR-10 dataset [32] contains
60,000 color images of various objects, and the classification
task is to identify the category of the primary object in each
image. In order to make the learning task simpler, we lim-
ited the topic categories to two: “Birds” and “Airplanes”.
We used raw pixel values as features, generating 3072 fea-
tures per image. In addition to the real datasets, which have
concrete labeling tasks that we can send to human workers,
we also generate datasets of varying difficulty to illustrate
the relationship between problem hardness and the perfor-
mance of our techniques. These datasets are generated with
the scikit-learn data generator, which builds classification
problems following the algorithm from [20].

6.2 Pool Maintenance
In this section, we evaluate the effects of pool mainte-

nance on batch time. The experiments execute 500 tasks
that label MNIST digit images. We compare tasks of vary-
ing size (Small, Medium, Large) that use Ng = 1, 5, or 10
MNIST images, respectively. The latency threshold is set to
PMℓ = 8 and PMℓ = ∞ (no maintenance).

Figure 3: # points labeled over time in 2 typical runs.

Figure 3 is an overview of the total number of labeled
points (Ng ×Ntasks) over time for each configuration. The
slope of each curve describes the speed of task completion,
where a flat curve denotes stragglers that take a very long
time to complete a task. We find that task completion for
smaller tasks is uniformly fast, so pool maintenance provides
little additional benefit; however, larger tasks are affected by
outliers, and maintenance’s ability to cull slow workers helps
reduce the presence of very long tasks.

Overall. Ultimately, pool maintenance does not improve
end-to-end latency for small tasks significantly, but is able
to reduce the latency for medium and large tasks by 1.3×
and 1.8× on average, respectively (Figure 4). Interestingly,
despite its added cost to recruit workers concurrently with
labeling tasks, maintenance is able to reduce the overall cost
of the medium and large tasks by 7 − 16%. This is due to
finishing the experiment faster and saving the cost of paying
workers to stay in the retainer pool. Changing the rate paid
to waiting workers may increase or reduce this effect.

Latency Distribution. To better understand how pool

Figure 4: Summary of end-to-end cost and latency experi-
ments with and without pool maintenance.

Figure 5: Comparison between age of the worker in the pool
when starting a given task and the time to complete the
task. Tasks where the latency per labeled point is greater
than 8 seconds are colored in blue.

maintenance effects the composition of the worker pool, Fig-
ure 5 plots task completion speeds against the age of the
worker when starting a given task. We define a worker’s
age with respect to task ti as the number of tasks the user
has already completed in the experimental run. The y-axis
shows the latency to acquire a single label, computed as
task latency

Ng
; each column shows all tasks across the runs for

a given task size; and the top and bottom rows are with
maintenance turned on (PM8) and off (PM∞). In addition,
the points are categorized as fast (< 4 sec per label), medium
(5 − 7 sec), or slow (≥ 8 sec). Although workers that are
new to the worker pool naturally exhibit high task latency
variability, maintenance is able to purge the slow workers
over time. For every task size, the slow and even medium
latency tasks are nearly all removed once workers have re-
mained in the pool for more than 4 minutes. In contrast,
the lack of pool maintenance allows slow and highly vari-
able workers continue working on tasks, so that slow tasks
are seen throughout the entire experiment.

Figure 6: Mean pool latency over time.

Mean Pool Latency. Figure 6 provides a different view on
pool maintenance’s effects on the worker pool – it measures

379



the mean pool latency (MPL) for each batch of tasks sent to
the pool throughout the experiment. MPL is computed as
the average latency of all completed tasks in the pool. Each
subplot compares the MPL with and without maintenance
for a given experimental run and task size. While the aver-
age of each pair of curves is similar, pool maintenance shows
significantly less variance across the batches because it ef-
fectively removes the long tail of the latency distribution.
The variation in the pool maintenance curve is simply due
to the variation of the newly recruited workers.

Figure 7: The number of workers replaced over time for
varying maintenance latency thresholds.

Latency Threshold. Our analysis of MPL shows that pool
maintenance is able to remove outliers from the worker pool.
However, the reduction in MPL is not as fast as predicted
by the model or simulations presented in Section 4.2. This
is expected, as workers may not maintain consistent speed
over time, and our empirical estimates of worker’s speed may
be inaccurate. Another potential issue may be that our la-
tency threshold is poorly tuned, thus in our final experiment
(Figures 7 and 8), we study whether varying the latency
threshold between 2 and 32 seconds can affect the median
task latency in addition to the variance. Figure 7 demon-
strates that decreasing the threshold causes more workers to
be replaced during a run, as expected. Figure 8 shows the
latency percentiles at different worker-age slices (e.g., < 5
tasks) in the experiment. We find that varying the thresh-
old affects both the median and higher percentiles, with a
more pronounced effect on the extrema task latencies. For
this workload, the optimal threshold is PM8, which can re-
duce the straggler latencies by nearly 2×. However, further
reducing the threshold to 4 or 2 seconds goes beyond the
point where even fast workers are able to complete tasks,
and effectively replaces all workers with the mean of the un-
derlying MTurk distribution. The curves reduce across work
slices due to the effects of pool maintenance, consistent with
the analysis in Figure 5.

Figure 8: 50th, 95th, and 99th percentiles of task latency
as maintenance latency threshold varies. Each facet is a
different amount of time into the experiment.

6.3 Straggler Mitigation
In this section, we evaluate the performance of straggler

mitigation along two key metrics: task latency and task vari-
ance. An important parameter of straggler mitigation is R,
the ratio of workers in the pool to tasks in a batch (Table 3),

Figure 9: Straggler mitigation dramatically reduces the
standard deviation of per-task latency across batches.

Figure 10: Points labeled over time with straggler mitigation
in 2 typical runs.

because it controls how many workers are assigned on aver-
age to eliminate stragglers. Set too low, and stragglers will
occur unfettered. Set too high, and money and effort will
be wasted unnecessarily. In these experiments, we set task
size to Ng = 5, the pool size to Np = 15, and give workers
CIFAR-10 tasks.

Variance. One of the key properties of straggler mitigation
is its ability to reduce the variance of individual task laten-
cies. Figure 9 plots the standard deviation of the latencies
of task completion times for each batch. Straggler mitiga-
tion consistently decreases the standard deviation by 5 to
10× (a decrease in variance of up to 100×!), very important
when trying to predict the run-time of a batch consistently.
One interesting observation is the jaggedness of the R = 3
plots. This is likely because with 3 times as many workers
as tasks, workers spend much more time waiting, and are
slow to respond when work becomes available because they
are involved in other work.

Latency. Because straggler mitigation enables task batches
to finish without waiting for high-latency straggler task as-
signments to complete, it significantly reduces the latency
of each batch, up to 5× on some runs (Figure 10). Increas-
ing R can increase those gains, but comes at an additional
cost, as it pays more workers to complete each task. Al-
though intuitively we might expect straggler mitigation to
become more and more effective as R increases, there are
practical limitations that prevent this effect. With high R,
even fast workers are often terminated before finishing their
tasks because many workers are working on every task at
once. In addition to the added latency of this termination

380



(workers must click a dialog to finish the old task and be
presented with a new one, which takes seconds), this creates
a frustrating environment for workers, who feel as though
they aren’t being allowed to work. As a result, keeping R

between 0.75 and 1 is attractive, as it limits cost and still
shows impressive speedups.

Figure 11: Straggler mitigation increases costs by 1 to 2×,
improves latency by 2.5− 5×, and variance by 4− 14×.

6.4 Combining Per-Batch Techniques
Figure 12 summarizes the effects of combining both strag-

gler mitigation and pool maintenance when labeling CIFAR-
10 tasks. We see that the two techniques can be comple-
mentary, but in some experiments we observe destructive
interference between straggler mitigation and pool mainte-
nance. We believe this is a result of fluctuating conditions
on the underlying crowd platform across experiments: some-
times the initial pool selection is high-quality, rendering pool
maintenance ineffective, and other times very slow workers
join the pool and maintenance is invaluable. We note that
in all cases, combining per-batch techniques still results in
a significant speedup over not using either technique, lead-
ing to a reduction in latency of up to 6×, and reduction in
standard deviation of up to 15×.

Detailed View. Figure 13 shows the latency of every task
for a single experimental run with every combination of
straggler mitigation and pool maintenance. Each line seg-
ment depicts the start and end time of a specific task. Red
tasks are successfully completed, while blue tasks are termi-
nated due to the worker leaving the pool or because another
worker finished the task in less time. Red and blue dots de-
note the start and end of a batch, and the tasks completed by
a given worker are aligned vertically along the y-axis.

The top two subplots show the value of pool maintenance
– although stragglers are still present under pool mainte-
nance, there are considerably fewer and lower magnitude
stragglers as compared to the baseline pool. The bottom
two subplots show that maintenance can further improve
straggler mitigation by reducing the number of stragglers
that must be ameliorated.

Figure 12: End-to-end Latency, Variance, and Costs for dif-
ferent straggler mitigation and pool maintenance configura-
tions.

Figure 14: Replacement rate when using TermEst (Sec-
tion 4.3) with α = 1.

Figure 15: Active, Passive, and Hybrid strategies for learn-
ing on crowds run on generated datasets in the simulator.

Effect of TermEst. Figure 14 measures the effectiveness
of our model for estimating the latency of terminated tasks
(Section 4.3). We see that, as expected, without TermEst,
the worker replacement rate decreases dramatically, because
workers are estimated to be faster than PMℓ and are not re-
placed. Adding TermEst adjusts for the gap: with it turned
on, replacement happens just as frequently as with no strag-
gler mitigation.

6.5 Hybrid Learning
In this section, we evaluate our hybrid learning strategy,

demonstrating that it is effective on datasets where either
active or passive learning would perform better, and that
it successfully takes advantage of pool parallelism to reduce
the time required to train a good model.

Accuracy. The Hybrid algorithm depends on the assump-
tion that active learning does not outperform passive learn-
ing in all settings. Figure 15 validates this assumption in
our simulator. It plots learning curves for active and pas-
sive learning on generated datasets of increasing hardness
(rows show number of generated features), and shows how
each learner performs given different amounts of the crowd’s
resources (columns show the percentage of the crowd pool
used for active learning). On easier datasets, active learning
significantly outperforms passive learning, but when given
as many resources as active learning, passive learning is the
better choice on harder learning tasks where active point
selection is ineffective. This reinforces our belief that a suc-
cessful hybrid strategy can trade off between the two ap-
proaches, and the hybrid lines in both Figure 15 and Fig-
ure 16 (wherein we replicate the simulator results on real-
world datasets with live workers) demonstrate that the strat-
egy is indeed successful. In all cases, hybrid performs as well
as or better than either active or passive learning.

Latency savings. As a result of the fact that hybrid learn-
ing leverages the full parallelism of the crowd (as opposed to
active learning with a limited batch size), the hybrid learn-
ing strategy is able to train better models faster. Figure 16

381



Figure 13: Per-assignment view of each straggler mitigation and churn configuration. Each horizontal segment is the length
of an assignment. Red and blue dots denote batch boundaries

Figure 16: Active, Passive, and Hybrid strategies for learn-
ing on crowds run on real-world datasets on live workers.

shows the hybrid learning strategy’s performance compared
to pure active or pure passive over time on the MNIST and
CIFAR datasets. The x and y axes of each plot show the
accuracy improvement over time as points are labeled, the
rows depict the datasets, and the columns represent the set-
ting of the AL batch size as a percentage of the crowd pool
size. In the same amount of time, the hybrid strategy is
always the preferred solution for model training. In fact,
on average, hybrid trains models of 85% accuracy on CI-
FAR (70% accuracy on MNIST) 1.2× (1.7×) faster than
pure active learning and 1.6× (1.2×) faster than pure pas-
sive learning.

6.6 End-to-End Evaluation
In this section, we evaluate the end-to-end performance

of CLAMShell against two baselines. Base-NR, which repre-
sents a typical crowd labeling deployment, sends labels out
all at once, uses no retainer pool, and trains passive learn-
ing models to infer labels for unlabeled records. Base-R,
which leverages the latest techniques for low-latency crowd-
sourcing, uses a retainer pool to label points in batches and
active learning to infer labels for unlabeled records. In this
experiment, 500 points were labeled by each strategy on the
CIFAR-10 and MNIST datasets, and the accuracy of the
resulting models were measured.

Results. Figures 17 and 18 summarize the results of this
evaluation. In Figure 17, the rows represent an accuracy
threshold for the model, and the plots show the wall-clock

time taken by each strategy to train a model of that accu-
racy. Note that neither baselines reach an accuracy of 80%
on the MNIST dataset in 500 points. To reach an accuracy of
75%, CLAMShell requires 4 to 5× less time than Base-NR.
On the CIFAR dataset, CLAMShell does not significantly
outperform Base-R, because passive learning performs well
on CIFAR and the benefits of hybrid learning are limited.
Figure 18 displays the full learning curves for each strategy,
demonstrating that CLAMShell dominates both baselines in
terms of model accuracy.

We also measured the raw time to acquire 500 labels from
the crowd, and found that CLAMShell increases the label-
ing throughput by 7.24× compared to Base-NR. In addition,
CLAMShell reduces the variance of labeling by 151×, and
the absolute values are extremely low: 3.1 seconds vs. 475
seconds.

Figure 17: Summary of end to end to reach model accuracy

Figure 18: Wall clock time vs Model Accuracy

7. CONCLUSION & FUTURE DIRECTIONS
In summary, we have introduced CLAMShell, a system

for data labelling that acquires labels from human crowd
workers at interactive speeds. Latency can arise from many

382



points in the labeling lifecycle, and CLAMShell addresses
the key sources of latency with techniques that explore novel
regions of the cost-accuracy-speed tradeoff. Straggler miti-
gation reduces the variance of task latencies within a batch
by assigning additional workers to complete the task. Pool
maintenance increases the average speed of workers in a la-
beling pool by replacing slow workers with faster ones over
time. Hybrid learning reduces end-to-end labeling time by
combining the fast convergence of active learning with the
parallelism of passive learning. The result is an important
step towards integrating data labeling with interactive sys-
tems for data analysis.

Though CLAMShell takes a comprehensive approach to
latency reduction for data labeling, there are a number of
directions in which this work can be extended. First, we
would like to explore richer objective functions than mean
worker speed for pool maintenance in order to strike a bal-
ance between worker speed, variance and quality. In addi-
tion, hybrid learning simply trains a single model on the
points labeled by active and passive learners. We would
like to investigate whether better models can be trained by
keeping the points separate and using more sophisticated
machine learning techniques such as model averaging or en-
sembling. Finally, we are integrating CLAMShell with an
interactive data cleaning system [21] in order to learn how
it performs with application-driven latency constraints on a
wider range of crowd tasks.

We are grateful to the hundreds of crowd workers who

made this work possible. This material is based upon work

supported by the National Science Foundation Graduate Re-

search Fellowship under Grant No. DGE 1106400. This

research is supported in part by NSF CISE Expeditions

Award CCF-1139158, DOE Award SN10040 DE-SC0012463,

and DARPA XData Award FA8750-12-2-0331, and gifts from

Amazon Web Services, Google, IBM, SAP, The Thomas and

Stacey Siebel Foundation, Adatao, Adobe, Apple, Inc., Blue

Goji, Bosch, Cisco, Cray, Cloudera, EMC2, Ericsson, Face-

book, Fujitsu, Guavus, HP, Huawei, Informatica, Intel, Mi-

crosoft, NetApp, Pivotal, Samsung, Schlumberger, Splunk,

Virdata and VMware.

References
[1] A. Abouzied, D. J. Abadi, and A. Silberschatz. Invisible loading:

access-driven data transfer from raw files into database systems.
EDBT, 2013.

[2] A. Agarwal et al. Sentiment analysis of Twitter data. LASM,
2011.

[3] G. Ananthanarayanan et al. Reining in the Outliers in Map-
Reduce Clusters using Mantri. OSDI, 2010.

[4] G. Ananthanarayanan et al. Effective Straggler Mitigation: At-
tack of the Clones. NSDI, 2013.

[5] M. S. Bernstein, J. Brandt, R. C. Miller, and D. R. Karger.
Crowds in two seconds: enabling realtime crowd-powered inter-
faces. UIST, 2011.

[6] M. S. Bernstein et al. Soylent: a word processor with a crowd
inside. UIST, 2010.

[7] M. S. Bernstein, D. R. Karger, R. C. Miller, and J. Brandt.
Analytic Methods for Optimizing Realtime Crowdsourcing. Col-
lective Intelligence, 2012.

[8] J. P. Bigham et al. VizWiz: nearly real-time answers to visual
questions. UIST, 2010.

[9] C. Callison-Burch. Fast, cheap, and creative: evaluating trans-
lation quality using Amazon’s Mechanical Turk. EMNLP, 2009.

[10] S. Chakraborty et al. Adaptive Batch Mode Active Learning.
Trans. Neural Netw. Learning Sys., 2015.

[11] D. A. Cohn, Z. Ghahramani, and M. I. Jordan. Active Learning
with Statistical Models. JAIR, 1996.

[12] A. Das Sarma et al. Crowd-powered find algorithms. ICDE,
2014.

[13] J. Dean and S. Ghemawat. MapReduce: simplified data process-
ing on large clusters. Communications of the ACM, 2008.

[14] C. Diaconu et al. Hekaton: SQL server’s memory-optimized
OLTP engine. SIGMOD, 2013.

[15] M. J. Franklin et al. CrowdDB: answering queries with crowd-
sourcing. SIGMOD, 2011.

[16] Y. Gao and A. G. Parameswaran. Finish them!: Pricing algo-
rithms for human computation. PVLDB, 7(14):1965–1976, 2014.

[17] A. Ghoting et al. SystemML: Declarative machine learning on
MapReduce. ICDE, 2011.

[18] C. Gokhale et al. Corleone: hands-off crowdsourcing for entity
matching. SIGMOD, 2014.

[19] J. E. Gonzalez et al. PowerGraph: Distributed Graph-Parallel
Computation on Natural Graphs. OSDI, 2012.

[20] I. Guyon. Design of experiments for the NIPS 2003 variable
selection benchmark, 2003.

[21] D. Haas, S. Krishnan, J. Wang, M. J. Franklin, and E. Wu. Wis-
teria: Nurturing Scalable Data Cleaning Infrastructure. VLDB,
2015.

[22] Hadoop. http://hadoop.apache.org/.
[23] P. Ipeirotis and J. Horton. Visualizations of the oDesk ”oCon-

omy”: Exploring Our World of Work. https://www.upwork.com/
blog/2012/07/visualizations-of-odesk-oconomy/, 2012.

[24] P. G. Ipeirotis. Analyzing the Amazon Mechanical Turk market-
place. ACM Crossroads, 2010.

[25] P. G. Ipeirotis, F. Provost, and J. Wang. Quality management
on Amazon Mechanical Turk. SIGKDD, 2010.

[26] M. I. Jordan and T. M. Mitchell. Machine learning: Trends,
perspectives, and prospects. Science, 2015.

[27] U. Jugel, Z. Jerzak, G. Hackenbroich, and V. Markl. M4: A
Visualization-Oriented Time Series Data Aggregation. VLDB,
2014.

[28] S. Kandel, A. Paepcke, J. M. Hellerstein, and J. Heer. Wrangler:
interactive visual specification of data transformation scripts.
CHI, 2011.

[29] D. R. Karger, S. Oh, and D. Shah. Iterative Learning for Reli-
able Crowdsourcing Systems. Advances in neural information
processing systems (NIPS), 2011.

[30] Keystone ML. http://keystone-ml.org/.
[31] A. Kittur, E. H. Chi, and B. Suh. Crowdsourcing user studies

with Mechanical Turk. CHI, 2008.
[32] A. Krizhevsky. Learning multiple layers of features from tiny

images, 2009.
[33] G. P. Krueger. Sustained work, fatigue, sleep loss and perfor-

mance: A review of the issues. Work & Stress, 2007.
[34] Y. LeCun et al. Gradient-based learning applied to document

recognition. Proceedings of the IEEE, 86(11):2278–2324, 1998.
[35] Z. Liu, B. Jiang, and J. Heer. imMens: Real-time Visual Query-

ing of Big Data. EuroVis, 2013.
[36] A. Marcus, D. Karger, S. Madden, R. Miller, and S. Oh. Count-

ing with the crowd. VLDB, 2012.
[37] A. Marcus and A. Parameswaran. Crowdsourced data man-

agement industry and academic perspectives. Foundations and
Trends in Databases, 2015.

[38] A. Marcus, E. Wu, D. Karger, S. Madden, and R. Miller. Human-
powered sorts and joins. VLDB, 2011.

[39] S. Melnik et al. Dremel: interactive analysis of web-scale
datasets. VLDB, 2010.

[40] X. Meng et al. MLlib: Machine Learning in Apache Spark.
arXiv.org, 2015.

[41] B. Mozafari et al. Scaling up crowd-sourcing to very large
datasets: a case for active learning. VLDB, 2014.

[42] Amazon Mechanical Turk. https://www.mturk.com/.
[43] T. Mühlbauer et al. Instant loading for main memory databases.

VLDB, 2013.
[44] A. G. Parameswaran et al. DataSift: An Expressive and Accu-

rate Crowd-Powered Search Toolkit. HCOMP, 2013.
[45] F. Pedregosa et al. Scikit-learn: Machine learning in Python.

Journal of Machine Learning Research, 12:2825–2830, 2011.
[46] A. Ramesh et al. Identifying Reliable Workers Swiftly. Technical

report, Stanford University, 2012.
[47] B. Settles. Active learning literature survey. Technical report,

University of Wisconsin-Madison, 2010.
[48] M. Stonebraker et al. C-store: a column-oriented DBMS. VLDB,

2005.
[49] M. Stonebraker et al. Data Curation at Scale: The Data Tamer

System. CIDR, 2013.
[50] B. Trushkowsky, T. Kraska, M. J. Franklin, and P. Sarkar.

Crowdsourced enumeration queries. ICDE, 2013.
[51] J. Wang, T. Kraska, M. J. Franklin, and J. Feng. CrowdER:

Crowdsourcing Entity Resolution. VLDB, 2012.
[52] J. Wang, S. Krishnan, M. J. Franklin, K. Goldberg, T. Kraska,

and T. Milo. A sample-and-clean framework for fast and accurate
query processing on dirty data. SIGMOD, 2014.

[53] H. Wickham. Bin-summarise-smooth: a framework for visualis-
ing large data. Technical report, RStudio, 2013.

[54] E. Wu, L. Battle, and S. R. Madden. The Case for Data Visual-
ization Management Systems. VLDB, 2014.

[55] M. Zaharia et al. Improving MapReduce Performance in Hetero-
geneous Environments. OSDI, 2008.

[56] M. Zaharia et al. Resilient distributed datasets: A fault-tolerant
abstraction for in-memory cluster computing. NSDI, 2012.

[57] M. Zukowski, M. van de Wiel, and P. A. Boncz. Vectorwise: A
Vectorized Analytical DBMS. ICDE, 2012.

383


