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Abstract

The crosslinked RNA sequencing technology ligates interacting RNA strands followed by next-generation 

sequencing. Mapping of the resulting duplex reads allows for functional inference of the corresponding 

intramolecular/intermolecular RNA-RNA interactions. However, duplex read mapping remains 

computationally challenging, and the existing best-performing software fails to map a significant portion of 

the duplex reads. To address this challenge, we develop a novel algorithm for duplex read mapping, called 

CrossLinked reads ANalysis tool (CLAN). CLAN demonstrates drastically improved sensitivity and high 

alignment accuracy when applied to real crosslinked RNA sequencing data. CLAN is implemented in GNU 

C++, and is freely available from https://sourceforge.net/projects/clan-mapping. 

 

Background 

Non-coding RNA (ncRNA) is RNA that do not code for protein; instead, it performs various biological 

functions such as expression regulation, modification, and catalysis etc. [1, 2]. Many of these functions are 

made possible through the folding into specific RNA structures. For example, the long non-coding RNA 

(lncRNA) HOTAIR requires a structural basis to expose its PRC2 (polycomb repressive complex 2)-binding 

motif to properly perform its biological function [3]. Some other ncRNA functions are mediated through RNA-

RNA interaction (RRI); e.g. the microRNA (miRNA) interacts with its target mRNA through sequence 

complementarity and regulates the corresponding gene expression level through regulating the stability of 

the targeted mRNA [4]. Another important RRI is the binding of the U1 small nuclear RNA (snRNA) and the 

pre-mRNA, as well as other snRNAs (U2, U4, U5, and U6) recruited during the formation of the spliceosome 

[5]. As a result, genome-wide study of ncRNA secondary structure and RRI can provide valuable insight to 

the function of the transcriptome. 

Genome-wide RNA secondary structure and RNA-RNA interaction were traditionally studied 

computationally. The RNA folding [6-8] and co-folding [9, 10] algorithms seek to find the Minimum Free 

Energy (MFE) structure of a single RNA molecule or RNA duplex, respectively. Sequence-based RRIs, 

such as miRNA-mRNA interaction, were also computationally predicted using sophisticated computational 

models [11] that summarize sequence complementarity [12] and site accessibility [13] information. 

Unfortunately, the existing free energy model [14] and sequence-based interaction model remain 
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insufficient to characterize the complex molecular dynamics, and the computationally predicted RNA 

secondary structure and RRI remain imprecise. To obtain more accurate RNA secondary structurome, RNA 

chemical probing technique was coupled with the next-generation sequencing (NGS) technology to allow 

for genome-wide RNA secondary structure probing; specific technologies include SHAPE-Seq [15], PARS 

[16], and FragSeq [17] etc. However, the NGS-empowered RNA probing technology remains incapable of 

studying genome-wide RRIs.  

Recently, an NGS-based crosslinked RNA sequencing technology was developed to directly probe 

genome-wide ncRNA secondary structures and RRIs simultaneously (Figure 1). This technology first 

protects interacting RNA strands (Figure 1, cyan boxes), followed by fragmentation of the RNA molecules. 

After fragmentation and size selection (or immunoprecipitation if the RNA strands are bond to protein), the 

protected interacting RNA strands are enriched. The technology then either chemically or radioactively 

crosslinks the interacting RNA strands, linearizes the product, and adopts standard library preparation and 

sequencing steps to generate duplex reads (Figure 1). The crosslinked RNA sequencing technology has 

been applied to different model organisms, and is currently mature enough for human. Specific technologies 

differ in experimental protocol and biological application, with examples including CLASH [18, 19], iPAR-

CLIP [20], MARIO [21], hiCLIP [22], RPL [23], PARIS [24], and LIGR-Seq [25] etc. Some of the above 

methods rely on immunoprecipitation to enrich specific RRIs; for example, CLASH uses the Argonaute 

(AGO) antibody to specifically pull down interacting miRNA and mRNA [19]. Others are protein-independent 

and can study transcriptome-wide intramolecular and intermolecular RRIs (e.g. PARIS [24] and LIGR-seq 

[25]). Mapping of the duplex reads against the reference genome reveals the genomic locations of the two 

interacting RNA strands (also referred to as RNA arms). Intuitively, an intramolecular RRI corresponds to 

a stem/helix secondary structure in a single RNA molecule, and an intermolecular RRI corresponds to a 

potential binding site of two interacting RNA molecules. 

Unfortunately, the seemingly straightforward analysis strategy is currently hampered by our inability for 

generating comprehensive and high-quality mapping of the duplex reads. Read mapping is considered as 

the main cause of information loss, and one of the major challenges in crosslinked RNA sequencing data 

analysis [26]. To understand the unique computational challenge in duplex read mapping, note the -

RNA arm-spacer-RNA arm- a duplex read (Figure 1). The linker sequences (Figure 1, 
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flanking green segments) are often ligated to the termini of the cDNA libraries to assist with PCR 

amplification, and they can be easily removed with existing trimming software when linker sequence library 

is given. However, the spacer sequence (Figure 1, internal green segment) is more difficult to detect. The 

mechanism for the inclusion of the spacer sequence has not been thoroughly discussed, and possible 

reasons could be either biological, experimental, or even artificial (depending on specific experimental 

protocol). For example, in CLASH [19], the spacer sequence may due to post-transcriptional modification 

of one of the interaction partners (e.g. oligoadenylation) [27]. While in hiCLIP, the spacer sequence 

of one of the interaction partners [22]. 

Moreover, during the crosslinking step, short oligonucleotides may also be crosslinked between the two 

interacting RNA strands due to opportunistic spatial proximity and become the spacer sequence. In some 

cases (such as hiCLIP), knowing the adaptor sequence is possible to identify the spacer sequence, 

however it would inevitably complicate the entire analysis pipeline. In other cases (such as CLASH and 

proximity-driven crosslinking), it is very difficult to reliably detect the spacer sequence. Currently, existing 

dedicated analysis pipelines set up a hard cutoff for the length of the spacer sequence (e.g. 4nt for CLASH 

[27] and 10nt for PARIS [24]). The spacer length cutoff is empirical and highly technology-specific, which 

may filter out valid duplex reads with longer spacer sequences [27] and poses heavy burden on the users 

to supply correct parameter. While for general-purpose read-mappers such as BWA [28], BOWTIE2 [29] , 

and STAR [30], most of them can only automatically truncate end sequences (also known as soft-clipping), 

but not internal sequences [31]. Or, as in STAR [30], it requires the user to supply a hard cutoff to soft-clip 

internal sequence, which is difficult to estimate and could lead to low sensitivity for the above mentioned 

reason. The consequence of improper handling of a spacer sequence is that the spacer sequences will be 

treated as excessive sequencing errors, which makes the mappers discard the corresponding duplex read, 

and subsequently leading to low mapping sensitivity. 

In addition to the spacer sequence, two other reasons also make duplex-read mapping challenging. 

First, many alignment/mapping tools require long seed match to initialize the alignment to ensure high 

computational efficiency. For example, the current version of BLASTN requires a pair of non-overlapping 

11-nt gapped seeds to initiate an alignment [32]. Such a requirement implies that each RNA arm needs to 

be at least 22nt long, which disqualifies many (partial) miRNA arms. The seed-length requirement may be 
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more stringent in mapping tools (e.g. BOWTIE2, which requires 28nt seed-matches by default). Second, 

the layout of a crosslinked RNA sequencing read can be different from regular RNA-seq reads. The majority 

of RNA-seq mapper are restricted to detecting splicing events, where the two exonic sequences must be 

mapped to the same chromosome. However, in crosslinked RNA sequencing data, inter-chromosomal RNA 

arms could be derived from inter-molecular RRIs, making the read difficult to be handled by programs 

restricted to detecting splicing events.  

Unfortunately, all issues mentioned above have not been fully recognized, and most existing studies 

still adopt general-purpose mapper such as BLASTN [32], BOWTIE2 [29], or STAR [30], leading to 

extremely low read-mapping rate (e.g. 3% as reported in CLASH [19]). Other dedicated analysis pipelines, 

such as Hyb [27] designed for CLASH datasets and Aligator [25] for LIGR-Seq datasets, also call the 

existing alignment/mapping tools as its read-mapping subroutine and are therefore subject to the above-

mentioned issues. As a result, to the best of our knowledge, no existing alignment/mapping software 

suitable for duplex read mapping is available on the market. 

We attempt to address the existing limitations in crosslinked RNA sequencing read mapping by 

formulating a novel read-mapping problem. We respect the fact that each duplex read may contain (random 

or unidentified) linker/spacer sequences; and only partial sequence of the read is informative and 

corresponds to interacting RNA strands. With this intuition, we seek to identify two non-overlapping 

substrings of the read, where each substring can be mapped to the reference genome with less than a 

given number of edits (sequencing errors/polymorphisms), and that the total length of the two substrings is 

maximized. With this formulation, no information regarding the adaptor sequence nor spacer length cutoff 

is expected from the user, and both spacer and linker sequences will be detected automatically. We 

construct Burrows-Wheeler Transformation (BWT) and the corresponding FM-index on the reference 

genome, and perform exhaustive search of all prefixes of the read to find potential mappings. We then 

merge and chain (using dynamic programming) the resulting mapped substrings, to identify the non-

overlapping pair of substrings with the maximized total length. Because our algorithm respects the 

existence of the linker/spacer sequence and performs exhaustive search of all mappings, we anticipate its 

much higher mapping sensitivity. Also, with heuristics (detailed in the Methods section), our algorithm is 

expected to perform efficiently in practice. 
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We implemented the algorithm into software called CLAN (the CrossLinked reads ANalysis tool). We 

benchmarked CLAN with popular alignment/mapping tools BLASTN [32] and STAR [30]; we selected 

BLASTN as the representative of alignment tools for its popularity, and STAR as the representative of 

mapping tool both for its high mapping performance [31] and its ability to map chimeric reads. We 

benchmarked the three programs on four different crosslinked RNA sequencing datasets including CLASH 

[19], hiCLIP [22], PARIS [24], and LIGR-Seq [25], for all of them were derived from human samples. We 

found that CLAN was capable of mapping much more reads than BLASTN and STAR, with the most 

significant improvement being observed from the CLASH dataset, where >90% of the reads were uniquely 

mapped by CLAN. Furthermore, the mapping locations predicted by CLAN are also highly accurate, 

with >90% of them being consistent with those predicted by BLASTN. Compared to BLASTN and STAR, 

CLAN requires ~30% more physical memory; however, the requirement (~37G for human genome) can be 

easily accommodated by current computing facility. CLAN runs hundreds of times faster than BLASTN, and 

only 2-3X slower than STAR; the extra running time can be easily accommodated by introducing extra 

computing units. In summary, CLAN is a powerful tool for crosslinked RNA sequencing read mapping with 

high sensitivity, high accuracy, and high speed. CLAN is implemented in GNU C++, and is freely available 

from https://sourceforge.net/projects/clan-mapping. 

 

Results 

We selected four crosslinked RNA sequencing datasets that were generated by different groups and 

different technologies (CLASH [19], hiCLIP [22], PARIS [24], and LIGR-Seq [25]) to benchmark the 

performance of CLAN together with BLAST [32] and STAR [30]. We only analyzed the mappings of the first 

2.5 million reads from each dataset, as BLAST was unable to finish the mapping of the entire datasets 

within a reasonable time; the in-total 10 million reads dataset is sufficiently large to generate statistically 

meaningful conclusions for a benchmark purpose. Each dataset was quality-trimmed using Trimmomatic 

[33] under default parameters. Details on the benchmark dataset are included in Table 1. 

The reads were mapped against the human reference genome (version hg38) using CLAN, BLASTN, 

and STAR. CLAN was run under default parameters (see the Methods section for details). To make 

BLASTN (version 2.6.0+) run within a reasonable time, the maximum number of target sequence to search 
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was - ameters were used. For STAR (version 

--outFilterMultimapNmax 

-- , which requires 

at least 5nt for each reported RNA arm). Other default parameters were used for STAR. All programs were 

run with 8 threads. All experiments were performed on an in-house server equipped with Intel(R) Xeon(R) 

CPU E7-4850 v4 @ 2.10GHz and 1T RAM. 

Computational efficiency of CLAN 

We summarize the wall-clock running time and peak memory consumption of CLAN, BLASTN, and STAR 

in Table 2. STAR demonstrated the highest speed among the three programs tested. CLAN was ~2-3X 

slower than the read mapping tool STAR, because CLAN exhaustively searched all possible matchings. 

On the other hand, BLASTN required a much longer running time (~300X slower in the worst case) than 

CLAN and STAR, which makes BLASTN inappropriate for routine analysis of large sequencing datasets. 

By extrapolation, BLASTN may require ~42 days to map the entire LIGR-Seq dataset (~50 million reads) 

with 8 CPUs; while CLAN would take ~3hrs for the same task. The memory consumption of the three 

software was similar in the worst-case scenario, with CLAN required ~30% more memory than the other 

software.  

CLAN mapped more duplex reads than BLASTN and STAR 

We summarize the read mapping results of CLAN, BLASTN, and STAR on CLASH, hiCLIP, PARIS, and 

LIGR-Seq datasets in Figure 2. In all four cases, CLAN mapped more reads than BLASTN and STAR. 

high sensitivity is most apparent for the CLASH dataset. Specifically, the novel rate of CLAN 

mapping (defined by the number of unique CLAN mapping over the total number of mapped reads) was 

94.9% (CLASH), 24.7% (hiCLIP), 30.5% (PARIS), and 15.8% (LIGR-Seq). The majority of the reads that 

can be mapped by BLASTN or STAR can also be mapped by CLAN, with CLAN missing only 3 CLASH 

reads, 3 hiCLIP reads, and 50 LIGR-Seq reads that can be mapped by BLASTN; CLAN also mapped all 

reads that can be mapped by STAR. Surprisingly, the mapping of BLASTN and STAR was not entirely 

consistent, with the Jaccard similarity coefficient being 0.157 (CLASH), 0.249 (hiCLIP), 0.440 (PARIS), and 

0.761 (LIGR-Seq). Although STAR was significantly faster than BLASTN, it mapped 51.4% less CLASH 

reads, 65.7% less hiCLIP reads, 53.2% less PARIS reads, and 16.0% less LIGR-Seq reads than BLASTN, 
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suggesting that the sensitivity of the mapping tool may be compromised for its higher speed. Overall, the 

reads mapped by CLAN was almost a superset of the union of the BLASTN and STAR mappings, thus 

CLAN demonstrated the highest mapping sensitivity and robustness among all three programs tested. 

CLAN accurately mapped duplex reads 

To analyze the mapping accuracy of CLAN, we compare the mapping locations generated by CLAN, 

BLASTN, and STAR. We decompose the CLAN mappings into four categories by comparing the mapping 

locations with those predicted by BLASTN (or STAR). For each CLAN-mapped read, if the mapping location 

was identical to those predicted by BLASTN (or STAR), we consider the mapping as consistent. Or, if the 

mapping location overlapped with those predicted by BLASTN (or STAR) for >60% of its total length, we 

consider the mapping as overlap. Third, if the mapping location overlapped with those predicted by BLASTN 

(or STAR) for 60%, we consider the mapping as inconsistent. Finally, if the mapping was uniquely 

generated by CLAN, we consider the mapping as novel. Define concordance rate by using the following 

formula:  

 

The mapping location comparison between CLAN and BLASTN is summarized in Figure 3. Overall, the 

CLAN prediction was highly consistent with BLASTN prediction, with concordance rates being 98.0%, 

95.2%, 94.4%, and 92.3% for the CLASH, hiCLIP, PARIS, and LIGR-Seq datasets, respectively. We 

perform the same comparison between CLAN and STAR predictions and the result is summarized in Figure 

4. The concordance rates were also high for all four datasets; specifically, 87.7%, 85.8%, 79.2%, and 81.3% 

for the CLASH, hiCLIP, PARIS, and LIGR-Seq datasets, respectively. Overall, both comparisons suggest 

that the mapping locations predicted by CLAN were concordant with the existing software, which further 

indicates that CLAN correctly maps the duplex reads. Furthermore, note that the concordance rates 

between CLAN and BLAST, for all four datasets, were higher than those between CLAN and STAR. Since 

BLASTN adopts the traditional alignment algorithm for its seed-and-extend strategy, the mapping 

generated by BLASTN is, in most cases, considered as the most accurate one among those generated by 

the existing mapping/alignment software. The results thus suggest that CLAN was capable of generating 
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more accurate mapping than STAR. In summary, the mapping predicted by CLAN is highly concordant to 

that predicted by BLASTN, and is more accurate than that predicted by STAR. 

Mechanisms for CLAN to generate overlapping and inconsistent mappings 

We then take a deeper look at the cases where CLAN generated overlapping and/or inconsistent mappings 

when compared to BLASTN predictions. We summarize the major mechanisms in Figure 5. Figure 5(A) 

demonstrates the major mechanism for CLAN to generate overlapping mapping. In BLASTN, the read was 

aligned to the reference with two mismatches (Figure 5, red ). Since CLAN only allowed for one 

error/polymorphism (by default, see the Methods section for more details), the alignment of the short 

was discarded, which made the mapped region shorter 

 

Figure 5(B) illustrates the major mechanism for CLAN to generate inconsistent mapping. In this case, 

the read can be ambiguously treated as a single-arm read (Figure 5(B), single gray brace) or a double-arm 

read (Figure 5(B), double gray braces); when treated as a double-arm read, some common sequences 

(Figure 5(B), green sequence ) were shared at the flanking regions of the two arms. BLASTN treated 

the read as a single-arm read by assigning the shared sequence to the first arm, while CLAN treats the 

read as a double-arm read by assigning the shared sequence to the second arm. Since when performing 

the backward exhaustive BWT search, CLAN first identified the mapping of the first-arm prefix (up to the 

, CLAN considered the mapping 

of the shorter prefix (up to as 

redundant, and subsequently discarded such a mapping location. An alternative mapping location (chr14) 

remained for the shorter prefix. As a result, after chaining, CLAN reported the read as a double-arm read, 

with both arms respectively mapped to chr14 and chr10, completely different from the mapping to chr6 as 

reported by BLASTN. The mapping location to chr14 predicted by CLAN also -

scoring list (8th place, 100% identity), as well as in the corresponding BLAT [34] search (2nd place, 100% 

identity). As a result, the inconsistency of mapping was primarily due to different  preferences in 

assigning read mapping, but not an error of CLAN. We also note that one can avoid such a mapping 

inconsistency by setting higher duplex mapping cost (see more details in the Methods section), such that 

CLAN will favor more in treating the read as single-arm read. 
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CLAN analysis of the CLASH data revealed potential novel miRNA-mRNA interactions

Here, we showcase biological applications of CLAN in discovering novel miRNA-mRNA interactions by 

analyzing the entire CLASH dataset SRR959751, which was generated from the Flp-In T-REx 293 cell line 

derived from human kidney stem cells [19]. The entire dataset contains 48,695,407 reads in total after 

Trimmomatic [33] trimming (using the same criterion as described above). CLASH mapped 48,681,395 

(99.97%) of them. The mapped reads were further annotated using ANNOVAR (version 2017-07-17; under 

the gene annotation mode) [35] with RefSeq hg38 as the genome annotation database. As recommended 

by the CLASH authors [27], the annotation was made strand-specific and only the mappings on the 

annotated transcript strand was considered. Among all mapped reads, 11,993,182 (24.63%) of them have 

one of both arms mapped to an annotated microRNA; furthermore, 11,819 reads have one of their both 

arms mapped to an annotated microRNA and at the same time the other arm mapped to an annotated 

 These reads were clustered based on their mapped locations, and finally revealed 1,042 

unique miRNA-mRNA interactions (see Supplementary Table S1).  

As an example, we performed further analysis on interactions relating to miR-10a. In total, 46 miR-10a-

mRNA interactions were supported by at least one CLASH duplex read. We used RNAcofold [10] to perform 

RNA dimer binding analysis on these predicted interactions (as in ViennaRNA Package [6] v2.4.3, with 

pa - . The mature miRNA sequences were taken from miRBase 

[36]. For the mRNA sequences, since CLASH is unable to reveal single-nucleotide-resolution information 

regarding the interacting RNA arms, the mRNA sequences were 

s (as recommended in Hyb [27]). Among the 46 interactions, only 5 (10.8%) were predicted by the 

original CLASH analysis (using BLASTN as the mapping tool), and only 3 (6.5%) were predicted by 

TargetScan [12]. The 46 interactions were sorted based on the number of supporting duplex reads 

(Supplementary Table S2). The 15 interactions with more than 5 supporting reads are summarized in Table 

3. 

We visualize the corresponding base pairs of these 15 predicted miR-10a-mRNA interactions in Figure 

6. As the figure shows, most of the predicted miR-10a-mRNA interactions are facilitated by a large number 

of inter-arm base pairings. The strongest miR-10a- RPRD1A, 

which corresponds to a free energy of -15.25 Kcal/mol and is supported by 89 CLASH duplex reads. 
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Correspondingly, the miR-10a-RPRD1A interaction is the only one that was both predicted by TargetScan 

and the previous CLASH analysis. The base pairs formed between miR-10a and RPRD1A 

consistent with the existing annotation of the miR-10a seed region. The previous CLASH analysis also 

predicted the miR-10a-TRPM7 interaction. The majority of the miR-10a-related interactions listed were not 

identified by neither TargetScan nor the previous CLASH analysis; and many interactions such as those 

relating to TNS1, NEBL, UCP3, and GATAD2B have low free energy and a significantly amount of 

supporting duplex reads (see Table 3). Surprisingly, the predicted GATAD2B 

the conserved binding motif ( ACAGGGUA ) of miR-10a, as revealed by the multiple sequence alignment 

generated from 18 vertebrates (see Supplementary Figure S1). The base pairs formed within the predicted 

miR-10a-GATAD2B interaction are also consistent with the annotated miR-10a seed region. The other 

predicted interactions involve base pairs overlapping with the annotated seed region, however the 

interaction patterns appear to be non-canonical. For example, the binding between miR-10a and FAM126A 

is mediated by 9 consecutive base pairs (with a bulge loop created by a single-nucleotide insert at the 

FAM126A -10a seed region. In summary, 

these results suggest that current computational methods for miRNA target prediction remain imperfect and 

may miss many true targets, and coupling experimental data with high-performance analysis tools such as 

CLAN will reveal a more comprehensive picture of the miRNA-mRNA interactome. 

We further analyzed the related pathways associated with the predicted targets of miR-10a to provide 

additional insights for understanding the biological function of miR-10a. We used Cytoscape (version 3.5.1) 

[37] to perform gene set enrichment analysis among the 46 predicted miR-10a target genes and their linker 

genes; the identified interactions and the 10 most significantly enriched pathways are shown in Figure 7 (a 

complete list of enriched pathways with FDR < 0.01 is available from Supplementary Table S3). In the 

network shown in Figure 7(A), the blue round nodes correspond to predicted miR-10a targets, the red round 

nodes correspond to the linker genes among the targets, and the red diamond nodes correspond to hubs 

( 10 interactions) of the pathway. The hubs suggest two central biological functions of the network, i.e. 

ubiquitination (involving hubs UBB and UBC) and the signal transduction by binding to phosphoserine-

containing proteins (involving hubs YWHAB, YWHAG, and node YWHAZ). The most significantly enriched 

biological pathways shown in Figure 7(B), i.e. the Hippo signaling pathway and the MAPK signaling 
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pathway, shed lights for our understanding of the cooperation of the two central biological functions in the 

network. Ubiquitination has been reported as a key regulator of the MAPK signaling pathway [38], and thus 

can indirectly regulate the Hippo signaling pathway [39]. Interestingly, recent research also revealed that 

under hypoxia condition, the Hippo signaling pathway can be directly regulated through the SIAH2 ubiquitin 

E3 ligase [40]. The hippo signaling pathway play critical roles in restraining cell proliferation and promoting 

apoptosis, and is critical in stem cell and tissue specific progenitor cell self-renewal and expansion [41]. Its 

overrepresentation is consistent with the cell line, i.e. the human kidney stem cell, from which the CLASH 

dataset SRR959751 was generated. The pathway analysis and results shown in Figure 7 suggest miR-

 under overgrowth condition, which is also consistent with the aberrant 

expression of miR-10a in many cancerous cells (e.g. glioblastoma [42], hepatocellular carcinomas [43], 

colon cancer [44], melanoma [45], breast cancer [45], chronic myeloid leukemia [46], and acute myeloid 

leukemia [47, 48]). More importantly, more and more evidences have been accumulated to support mir-

 under these cancerous conditions [49, 50]. Using CLAN, 

we were able to identify much more direct targets of miR-10a (40/46 are novel) and construct the complete 

miR-10a related pathway, which provides much more comprehensive and detailed information for the 

elucidation of miR-  

 

Discussion 

In this article, we present a novel algorithm CLAN for duplex read mapping. CLAN was applied to four 

different datasets generated by CLASH, hiCLIP, PARIS, and LIGR-Seq technologies. Compared to 

BLASTN, CLAN mapped 96.0%, 29.4%, 31.8%, and 19.2% more reads for the CLASH, hiCLIP, PARIS, 

and LIGR-Seq datasets, respectively. The same trend was also observed for the comparison between 

CLAN and STAR. Apparently, the highest improvement over mapping rate by CLAN was observed when 

analyzing CLASH dataset, because the average read length for the CLAN dataset is the shortest (55bp, 

see Table 1). For the other datasets that have longer average read lengths, CLAN can still find mapping 

for more reads, however the improvement was less significant compared to CLASH data. We argue that 

CLAN remain highly useful even when current sequencing technologies routinely generate longer reads. 

First, many RNA-RNA interaction intrinsically involving short RNA strands (e.g. miRNA-mRNA interactions 
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studied by CLASH), and the resulting duplex cDNA libraries will inevitably contain the corresponding short 

RNA arms (i.e. the miRNA that is ~22-28bp long). The analysis of these short RNA arms cannot be made 

-high sensitivity and accuracy. Second, when the 

sequencing length grows longer, the running time of BLASTN becomes much longer than CLAN (300X 

slower, see Table 2); on the other hand, mapping tools such as STAR are fast but cannot match the 

mapping sensitivity and accuracy of BLASTN. CLAN remains the only available choice with a speed 

comparable to mapping tools like STAR and a mapping accuracy comparable to alignment tools like 

BLASTN.  As a result, CLAN is a unique and highly useful tool for duplex reads mapping. 

We performed deeper analysis on the CLAN mapping of the CLASH dataset and identified potential 

-world applications. Because the limit of the space, we have 

not present the corresponding findings made when analyzing the hiCLIP, PARIS, and LIGR-Seq datasets. 

However, both intermolecular and intramolecular RNA-RNA interactions were observed from the re-

analysis of PARIS and LIGR-Seq, which could be used in RRI and RNA secondary structure predictions. 

We note, although CLAN can accurately map duplex reads, it remains incapable of telling whether the 

mapped duplex reads correspond to real RNA-RNA interactions, as the duplex may be resulted from 

opportunistic spatial proximity [19]. Experiments or other auxiliary information may be required to confirm 

the biological relevance of the mappings produced by CLAN.  

Currently, CLAN reports all mappings that are equivalently optimal. Because each RNA arm is usually 

short, multiple genomic locations may be contained in the output. The rationale for this setting is to provide 

the most comprehensive mapping information to the users of CLAN; and one can devise a tailored strategy 

to post-process the multi-mapping according to specific research purposes. For example, only may prioritize 

the mapping locations based on their coverages; or one can lower the parameter for controlling the 

maximum number of allowed mapping locations for each arm (see details in the Method section) to focus 

on the uniquely mapped reads. Also, one can annotate the mapping locations using existing genome 

annotation and identify biological relevant mappings (e.g. in the CLASH study of miRNA-mRNA interactome, 

the mapping is restricted to the annotated protein-coding genes and miRNA genes [19]). 

Existing computational pipelines are available for processing the duplex reads mapping results. For 

example, Hyb [27] contains scripts for merging the read mappings and detecting genomic islands 
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corresponding to the interacting RNAs, labeling the genomic islands based on existing genome annotation, 

and performing thermodynamic stability analysis of the predicted RNA duplex etc. All the analyses will 

provide valuable information to assess the biological relevance of the mappings. Most of the existing post-

processing pipelines require BLAST output format or the SAM format [51] as input. Currently, the CLAN 

output contains information including read ID and RNA arm locations, reference genome chromosome, 

strand, and exact locations, as well as mapping length etc., which is sufficient to be reformatted into the 

BLAST output format or the SAM format. Therefore, it is straightforward to couple CLAN with the existing 

post-processing pipelines to complete the entire analysis. In the near future, we also plan to provide 

different output formats as options in the new releases of CLAN to allow easier analysis integration and 

pipeline coupling. 

We applied CLAN to re-analyze a public CLASH dataset SRR959751 and identified 40 (out of 46 

predicted by CLAN in total) novel miR-10a related interactions, and these novel pathways are involved in 

pathways relating to cell proliferation regulation and apoptosis with statistical significance (<6*10-6). This 

finding suggests that existing analysis of CLASH data overlooks a significant amount of true interactions 

due to low mapping rate, and the missed interactions can be retrieved using CLAN, our mapping tool with 

much higher mapping power. We also note that the miR-10a targets identified here are a subset of all 

known miR-10a targets, because the CLASH data was generated from a specific cell line. Generating more 

CLASH data from different cell lines or tissues will reveal a more complete picture of the miRNA interactome.  

 

Conclusions 

In this article, we present a novel duplex read-mapping algorithm CLAN, targeted for analyzing crosslinked 

RNA sequencing data. To account for -RNA arm-spacer-RNA arm- a duplex read, 

CLAN reformulates a novel computational problem as finding two non-overlapping mappings of the read 

whose total length is maximized. CLAN exhaustively searches all possible maximal contiguous mappings 

of any of its prefixes against the reference genome. Then, CLAN merges the mapping according to the 

reference genome locations to rescue broken mappings due to errors/polymorphisms. Finally, CLAN adopts 

a dynamic programming-based chaining algorithm to select the two non-overlapping mappings whose total 

length is maximized. By using BWT and FM-index, CLAN can easily handle the current NGS data volume. 
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Performance benchmark of CLAN was conducted with BLASTN and STAR on four different crosslinked 

RNA sequencing technologies, including CLASH, hiCLIP, PARIS, and LIGR-Seq. CLAN was shown to 

identify much more reads than BLASTN and STAR. In addition to the high mapping sensitivity, the read 

mapping accuracy of CLAN also appears to match that of BLASTN and higher than that of STAR. In 

conclusion, the high computational efficiency, high mapping sensitivity, and high mapping accuracy of 

CLAN make it a powerful tool for crosslinked RNA sequencing data analysis. CLAN is implemented in C++ 

and freely available on https://sourceforge.net/projects/clan-mapping. 

 

Methods 

The CLAN algorithm 

We formulate the duplex read mapping problem as finding two non-overlapping substrings (i.e. the two 

RNA arms) whose total mapping length is maximized (see Figure 8 for the high-level summary of the CLAN 

algorithm).  

We start the process by first identifying a set of seeds; each seed satisfies the following conditions: (1) 

each seed must be at least nt long (default 10); (2) each seed should be mapped to less than  genomics 

locations (default 20); (3) each seed must be mapped to the reference genome perfectly (no mismatch/gap).  

CLAN first constructs the BWT and FM-index from the reference genome (as a one-pass step). Then, for a 

read  with length , CLAN performs exhaustive backward BWT search to find all seeds within  (see Figure 

8, the 1st Exhaustive BWT Search ). For every  (where  is the minimum seed length), CLAN 

looks for the minimum index  such that the substring  is a seed. The termination of the extension of 

a seed could due to an error/polymorphism, or the reach of the termini of the indexed references (see Figure 

8, the 2nd Seeds To reduce redundancy, the mapping to each genomic location 

is tracked. A genomic location is considered as covered if there exists a backward BWT search that ends 

on it (or, it is the starting location of a mapping). For each identified seed, all covered genomic positions 

are subsequently removed from its list of mapped locations. If the list of mapping locations becomes empty, 

then the entire seed is discarded, otherwise we record the seed and the corresponding mapping locations. 

Since the direction of the BWT searches is backward, each genomic location will first be covered by the 
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longest seed that begins at this location; only the seeds that are completely contained in the other seeds 

are eliminated. 

The second step is to merge seeds that are potentially broken due to errors/ polymorphisms (see Figure 

8, the 3rd panel Merge Seeds ). For example, in Figure 8, the first two seeds (Figure 8, the 3rd panel, green 

sequences) map to adjacent locations in the genome (Figure 8, the 3rd panel, first row, purple broken arrow 

and genomic locations), suggesting that the seeds are potentially broken due to an error/polymorphism. 

We assume that each RNA arm can be broken for no more than  times (by default 1). To describe the 

merging step, let an arbitrary seed  be mapped to a set of genomic locations, with the th denoted as 

. Here,  is the reference genome, and  and  are the start and end of the mapped genomic 

interval. For two non-overlapping seeds  and  (without loss of generality we assume ), 

we attempt to merge the seeds by looking for two adjacent mapped locations, i.e.  and , 

such that:  

(1) ; (2) ; and (3) . 

The first two conditions ensure that the two seeds are adjacent in the duplex read and in the reference 

genome (at most nt apart, default 5); the third condition ensures that the gap (if any) for the corresponding 

alignment is small (default value of  is set to 5). CLAN will exhaustively test all combinations of mapped 

genomic locations, and merges both seeds into a candidate (i.e., , with a new mapping location 

, see Figure 8, 3rd panel, second row, purple genomic location) if all conditions are satisfied. A 

candidate is defined as a substring mapping that contain up to  errors/polymorphisms. A seed is by 

definition a candidate; therefore the candidate set contains all seeds and merged candidates. CLAN iterates 

this merging process for  times, to allow each candidate containing up to  errors/polymorphisms.   

The third step is to find  non-overlapping arms with maximized total mapping length (Figure 8, the 4th 

panel,  Layout ). Note that  is set to 2 in CLAN for aligning duplex reads; but our algorithm can 

be extended for any value of . Conceptually, the candidates and their relationships can be represented by 

a directed acyclic graph (DAG). In the graph, each node corresponds to a candidate (Figure 8, the 4th panel, 

black boxes). Partially order the candidates based on the increasing order of their starting locations, and 

break ties with the decreasing order of their ending locations; also consider two nodes as compatible if their 

corresponding candidates do not overlap. For two arbitrary nodes  and , a  edge (Figure 8, the 4th 
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panel, blue solid arrow) is added if the following three conditions are satisfied: (1)  is partially ordered 

before ; (2)  and  do not overlap; and (3) no node exists between  and , and is simultaneously 

compatible with both of  and . Finally, a dummy node  succeeding every other node in the graph (Figure 

8, the 4th panel, the rightmost round node) is included into the DAG; and dummy edges are added 

correspondingly from each node to the dummy node (Figure 8, the 4th panel, gray solid edges). For each 

edge , CLAN sets its length  as the follows:   if  (regular edges); and  

if  (dummy edges). The parameter  is the penalty (default 5) for including an additional candidate 

in the solution set; including this parameter makes the algorithm prefer a single-arm configuration of the 

read and become more conservative in duplex detection. In this case, the problem of finding two non-

overlapping candidates whose total length is maximized can be transformed as finding the longest path in 

the DAG that involves no more than  edges.  

CLAN solves this problem using a dynamic programming (DP) approach. Denote the resulting DAG as 

, where  corresponds to the node set and  corresponds to the edge set. Also let  be the 

maximum length of the paths which end at  and involve  edges. CLAN computes  as the follows: 

 

The first condition considers cases where the path is extended to  from  with the candidate  being taken 

into the solution. The second condition considers similar cases but assumes that the candidate  is not 

taken into the solution. The third condition corresponds to boundary cases where  is the starting node of 

the path. The final solution can be found in , where  is the dummy node. The output of the mapping 

contains the selected arms and their corresponding locations in the duplex read and the reference genomes 

(Figure 8, the 5th panel, .  

Time complexity analysis of the CLAN algorithm 

Denote the length of a duplex read as . Clearly, with the help of BWT and FM-index, the search of an -

long sequence against the reference genome requires  time. Because CLAN searches every prefix of 

the duplex read and there are at most  prefixes, the total time required for the exhaustive BWT search step 

adds up to . For candidate merging, CLAN tests the merging of every pair of candidate seeds in the 
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worst-case scenario, which leads to an  complexity, where  is the number of genomic locations 

associated with each candidate. However, because  is a constant (by default 20), and CLAN only 

attempts to merge adjacent candidates (parameter , by default 5), the merging step is in fact very efficient. 

Finally, for the DP-based chaining, each node  has at most  nodes that precede it; as a result, computing 

the answer for each DP-table entry requires  time. There are  entries of the DP table , and the 

total time required for the chaining step is thus . Since  is set to 2 for duplex read mapping, the time 

complexity for the DP chaining step is . Taken together, CLAN requires  to map a single duplex 

read. Note that the duplex read length  is technology-dependent and can also be considered as a constant; 

CLAN thus requires a constant time to map a single duplex read, and the overall running time is linear with 

respect to the throughput of the experiment (or the number of reads in the dataset).      
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Figures Legends
Figure 1: An overview of the duplex read generation process. Interacting RNA strands could be either 

intermolecular (red and blue RNAs) or intramolecular (black RNA). The interacting RNA strands are either 

protected by chemical reagents (e.g. psoralen) or ligated to interacting proteins (e.g. AGO or Staufen 1) 

(cyan boxes). Then, RNase is applied to digest the RNAs and enrich the interacting RNA strands. 

Consecutively, the enriched RNA strands are crosslinked (with potential incorporation of spacer sequences, 

internal green segments) and with barcode/adaptors ligated to the ends as linker sequences (flanking green 

segments). The crosslinked RNA strands are then linearized and subject to standard library preparation 

and sequencing steps. The resulting duplex reads, in general, have a common architectural pattern of 

nker-RNA arm-spacer-RNA arm-  

Figure 2: Venn diagram of the read-mapping results generated by CLAN (blue), BLAST (red), and STAR 

(green) on the CLASH, hiCLIP, PARIS, and LIGR-Seq datasets. 

uniquely mapped by BLAST No read is uniquely 

mapped by STAR.  indicates reads mapped by both CLAN and BLASTN but not by STAR; 

 

indicates reads that are mapped by all three 

mapped by at least 

any of the programs. 

Figure 3: Decomposition of the CLAN read mapping for the CLASH, hiCLIP, PARIS, and LIGR-Seq 

datasets by comparing with BLASTN mappings. 

ns predicted by CLAN and 

but do not overlap or overlap for 60% of the total length  

Figure 4: Decomposition of the CLAN read mapping for the CLASH, hiCLIP, PARIS, and LIGR-Seq 

CLAN and STAR dicted by CLAN and STAR 
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 reads mapped by both CLAN and BLASTN but do not 

overlap or overlap for 60% of the total length  

Figure 5: Mechanisms for CLAN to generate  mappings (as compared to 

BLASTN)

in the mapped region, additional alignment segments that lead to more errors than allowed will be discarded. 

In this example where only one error is allowed, CLAN has already detected one error (the re , 

and therefore it discards the additional alignment segment (blue segment in read, which can be detected 

by BLASTN) since the inclusion of such a segment leads to an additional . (B) The 

 CLAN identifies the mapping of the prefix (up to the green 

 against chr6 (the gray brace in the second row), and therefore discards the 

mapping of the subsequent to the same genomic 

positions (chr6) as redundancy. At this point, the substring prefix only maps to chr14 (the first gray brace in 

the third row). During chaining, the read is optimally decomposed into two RNA arms (indicated by the last 

two gray braces in the third row) a

is thus directed to chr14. On the other hand, BLASTN only identifies the mapping of the longer prefix (green 

 (gray brace in the first row). 

Figure 6: Visualization of miR-10a-mRNA interactions that have at least 5 CLASH duplex read supports. 

The interactions were predicted using RNAcofold. The red sequences correspond to the mature miR-10a 

sequence, and the blue sequence corresponds to the extended mRNA target revealed by the CLASH data. 

The canonical seed region of miR-10a is highlighted by the gray box. 

Figure 7: The interaction network and enriched biological pathways identified from the CLAN-predicted 

miR-10a target genes. (A) The interaction network. Blue round dots correspond to the predicted miR-10a 

target genes, red round dots correspond to linker genes, and the red diamond dots correspond to hubs 

which involve at least 10 interactions within the network. (B) The enriched biological pathways (labels in 

the first column: (K): KEGG, (R): Reactome, and (N): NetPath), the corresponding false discovery rate 

(FDR), and the involved genes. 
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Figure 8: An overview of the CLAN algorithm with an artificial example. The 1st panel 

 subject to backward BWT search against the constructed reference 

genome index. The 2nd panel Record Maximal Seeds

encountered (red bases and crosses) or the terminals (an orange base and a terminating symbol 

indexed strings is reached. The blue sequences correspond to sequences in the reference genome. The 

3rd panel Seeds are considered as candidate arms (green strings); 

each candidate arm is associated with a set of identified reference genome locations. By examining the 

locations of the candidate arms in the duplex read and their corresponding mapping locations in the 

reference genome (purple arrow and genome locations), CLAN identifies candidate arm pairs that are 

potentially broken due to a sequencing error or polymorphism (first row). CLAN merges the candidate arm 

pairs into a single candidate arm and updates its corresponding mapping location (second row). The 4th 

panel Candidate L  a directed acyclic graph (DAG) is generated to represent the relationship 

between the candidates. Each candidate corresponds to a node (black boxes). Red broken arrows indicate 

incompatible directed edges due to the overlap between the corresponding nodes; blue solid arrows 

indicate compatible directed edges; and gray solid edges indicate the directed dummy edges that are added 

between every node and the dummy terminal (the rightmost gray node). The length of each edge is 

determined by its source node; and the optimal mapping corresponds to the longest path in the graph that 

involves no more than two edges. The 5th a demonstration of the CLAN output, 

which contains the two selected candidates and their corresponding genomic locations. 
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Tables
Table 1: Summary of the benchmark datasets 

 
Technology SRA Accession Ave. Read Len Num. Reads 

CLASH SRR959751 55 2,313,448 

hiCLIP ERR605257 196 2,331,483 

PARIS SRR3194440 100 2,476,786 

LIGR-Seq SRR3361013 102 2,223,699 

For each dataset, the first 2.5 million reads were initially selected for the analysis. 
corresponds to the number of reads survived after quality trimming. 

 

Table 2: Wall-clock running time and peak memory consumption of CLAN, BLASTN, and STAR 
 

Technology 
CLAN BLASTN STAR 

Time RAM Time RAM Time RAM 

CLASH 6m45s 37G 9m1s 4G 3m58s 29G 

hiCLIP 11m36s 37G 20h48m26s 11G 6m13s 29G 

PARIS 11m22s 37G 7h56m9s 26G 5m20s 29G 

LIGR-Seq 9m17s 37G 43h23m44s 13G 3m35s 29G 
All programs listed above were run with 8 threads. 
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Table 3: The predicted mRNA targets of miR-10a with >5 supporting duplex reads identified by CLAN 
re-analysis of the CLASH (SRR959751) dataset  

Target Chrom Start End Strand #Reads dG CLASH TargetScan 
RWDD2A chr6 83197331 83197369 + 521 -8.57 N N 

TNS1 chr2 217803240 217803277 - 385 -10.99 N N 
FAM126A chr7 22942310 22942345 - 119 -5.6 N N 

ASXL2 chr2 25741069 25741102 - 112 -5.38 N N 
RPRD1A chr18 35992097 35992142 - 89 -15.28 Y Y 

NEBL chr10 20784131 20784165 - 88 -10.49 N N 
CMYA5 chr5 79800208 79800241 + 50 -5.22 N N 
TRPM7 chr15 50557926 50557968 - 43 -6.82 Y N 
UCP3 chr11 74000325 74000358 - 36 -12.52 N N 

GATAD2B chr1 153805110 153805144 - 36 -12.69 N N 
DCUN1D5 chr11 103061765 103061800 - 14 -5.37 N N 

HLCS chr21 36751535 36751569 - 13 -8.03 N N 
WAC chr10 28621309 28621343 + 11 -9.17 N N 

BRWD3 chrX 80673236 80673271 - 9 -5.59 N N 
CTPS1 chr1 41012149 41012185 + 6 -6.38 N N 

number of duplex reads supporting the corresponding miRNA-mRNA 
 (kcal/mol) 

whether the interaction is included in the TargetScan database. 

 

.CC-BY-NC-ND 4.0 International licenseunder a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which wasthis version posted December 14, 2017. ; https://doi.org/10.1101/233841doi: bioRxiv preprint 

https://doi.org/10.1101/233841
http://creativecommons.org/licenses/by-nc-nd/4.0/


interacting RNAs
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RNA secondary structure

RNA−RNA interaction
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*sequencing

protected

protected
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CLAN unique: 350,803

All shared: 1,362,365

CLAN & BLAST: 350,803

BLAST unique: 50CLAN & STAR: 77,015

LIGR-Seq

Total mapped: 2,223,694 Total missed:5

CLAN unique: 2,195,838

All shared: 18,518
CLAN & BLAST: 73,110
BLAST unique: 3

CLAN & STAR: 25,969

CLASH

Total mapped: 2,313,438 Total missed:10

CLAN unique: 575,449

All shared: 455,498

CLAN & BLAST: 1,191,438

BLAST unique: 3
CLAN & STAR: 109,080

hiCLIP

Total mapped: 2,331,468 Total missed:15

CLAN unique: 755,198

All shared: 757,687
CLAN & BLAST: 931,829

CLAN & STAR: 32,072

PARIS

Total mapped: 2,476,786 Total missed:0

CLAN BLAST STAR
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GTCTACGGCCATACCACCCTGAACACGCCCGATGGAATTCTCGGG

ACTCGGTGTGGCTCGGTGGGTCTGGAATTCACGG

AGAGCGCAAGTACTCGGTGTGGATCGGTGGGTCTGGAATTCTCGGGTGCCAAGGTReference

Read

BLATSN prediction

CLAN prediction

(A)

(B)

BLATSN prediction 

(chr6:109,753,223-109,753,255)

CLAN

candidate

solutions chr6:109,753,223-109,753,255

chr14:33,081,157-33,081,186 chr10:75,916,870-75,916,857

Read
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AAAAAAAUCUAAUUCUACAGUCCGAUGAUGUUACUGCCA

|||||||

GUGUUUAAGCCUAGAUGUCCCAU

5’

5’3’

3’RWDD2A 3’UTR 

miR-10a dG = -8.57 kcal/mol

CUGCAGGGUCCCUGUGUUGGAAUUCUCCCUGGGGAACC

|||||||||

GUGUUUAAGCCUAGAUGUCCCAU

5’

5’3’

3’TNS1 3’UTR 

miR-10a dG = -10.99 kcal/mol

AGACUUGAAGAGUUGGAAUUCUCGGCAUUUAAAUGA

|||| |||||

GUGUUUAAGCC-UAGAUGUCCCAU

5’

5’3’

3’FAM126A 3’UTR 

miR-10adG = -5.60 kcal/mol

CUUGUUGAGCAAGGGGAGUGAAACCACAGAAACU

|||| 

GUGUUUAAGCCUAGAUGUCCCAU

5’

5’3’

3’ASXL2 3’UTR 

miR-10a dG = -5.38 kcal/mol

5’

5’3’

3’RPRD1A 3’UTR 

miR-10a dG = -15.28 kcal/mol

UUUGGCAGUUAAGCAGUGCCACACUACAGGGUAGAUAUGGUAAAUU

||||||||||

GUGUUUAAGCCUAGAUGUCCCAU

ACUAAGAUGUACGGGUCU-UGGGGAUAUCUGCCUUA

||||||| |||||

GUGUUUAAGCCUAGAUGUCCCAU

5’

5’3’

3’NEBL 3’UTR 

miR-10a dG = -10.49 kcal/mol

GUUAGAGUCUAUAAAGCCAGUCGUGUUAUGUGAA

|||||||

GUGUUUAAGCCUAGAUGUCCCAU

5’

5’3’

3’CMYA5 3’UTR 

miR-10a dG = -5.22 kcal/mol

GUAGCAGGACUCGGAAUUCU-CGGGAAAUUAUUAU

|||||  |||||  ||| ||||

GUGUUUA-AGCCU--AGAUGUCCCAU

5’

5’3’

3’UCP3 3’UTR 

miR-10a dG = -12.52 kcal/mol

CAUAUUCUUAAAAUGUGGAAUUCUCGGCCAGGUGCAGUGGCUC

|||| ||||| ||

GUGUUUAAGCCUAGAUGUC-CCAU

5’

5’3’

3’TRPM7 3’UTR 

miR-10adG = -6.82 kcal/mol

AAGCCUGGAGAGGGUACAGGGUGAUGGGUGAAGCC

||||    ||||||||

GUGUUUAAGCCU-AGAUGUCCCAU

5’

5’3’

3’GATAD2B 3’UTR 

miR-10a dG = -12.69 kcal/mol

CUAUAAAAGCUGCCAAGGUCUUAUGCAGAUGUCUUA

|||||   ||||

GUGUUUAAGCCUAGA---UGUCCCAU

5’

5’3’

3’DCUN1D5 3’UTR 

miR-10adG = -5.37 kcal/mol

GACUGGGGUGCGGGUGCACAGGUCGGGGGAGCACA

|||| |||||  |||||

GUGUUUAAGCCUAGAUGUCCCAU

5’

5’3’

3’HLCS 3’UTR 

miR-10a dG = -8.03 kcal/mol

AUGUUACUACAUUCUCGGAUGCUAACAUAAAUUUU

||||   |||||| || |||

GUGUUUAAGCCUA-GA-UGUCCCAU

5’

5’3’

3’WAC 3’UTR 

miR-10a dG = -9.17 kcal/mol

AGAAAUCAGGCUUGUGUUGGAAUUCUUCUCUAUAAU

||||||   ||||||

GUGUUUAAGCCUAGAUGUCCCAU

5’

5’3’

3’BRWD3 3’UTR 

miR-10adG = -5.59 kcal/mol

UGAGUUGGGGGGAAUUCU-CAGUGCCAACUGUGGCUGG

||||| |||     ||| |||

GUGUUUAAGCCU-----AGAUGUCCCAU

5’

5’3’

3’CTPS1 3’UTR 

miR-10a dG = -6.38 kcal/mol
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Pathway FDR Genes

Hippo signaling pathway(K) 5.15E-06
YWHAB,ACTG1,CTGF,SOX2,MYC,YWHAG,WNT

5A,CSNK1E,YWHAZ,CTNNA2

MAPK6/MAPK4 signaling(R) 5.34E-06
MYC,RAC1,PRKACA,UBB,UBC,IGF2BP1,RPS27

A,PAK2

Mitotic G2-G2/M phases(R) 5.34E-06
PRKACA,YWHAG,CSNK1E,DYNLL1,RBX1,DCTN

2,UBB,UBC,RPS27A,FGFR1OP

LKB1 signaling events(N) 1.71E-05YWHAB,MYC,PRKACA,YWHAG,YWHAZ,EZR

TCF dependent signaling in 

response to WNT(R)
1.88E-05

SOX2,MYC,WNT5A,CSNK1E,YWHAZ,RBX1,UBB,

UBC,RPS27A

Asparagine N-linked 

glycosylation(R)
2.16E-04

DYNLL1,DCTN2,GANAB,UBB,UBC,MLEC,RPS27

A,SPTBN1,CALR

DAP12 interactions(R) 5.97E-04
YWHAB,RAC1,PRKACA,RBX1,PDE1C,ADCY2,U

BB,UBC,RPS27A,SPTBN1

Wnt signaling pathway(K) 7.55E-04
MYC,RAC1,PRKACA,WNT5A,CSNK1E,RBX1,PP

ARD

Signaling by NOTCH1(R) 9.62E-04MYC,RBX1,UBB,UBC,RPS27A

Oncogene Induced 

Senescence(R)
1.35E-03UBB,UBC,RPS27A,SP1

(A) (B)
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ACCCTGTAGATCCGAATTTGTGAGGAATACTCGGGTGCCAAGGTCGTATGCCGTDuplex Read: 𝟏𝒔𝒕 BWT search𝟐𝒏𝒅 BWT search(𝒍 – 𝒒)𝒕𝒉 BWT search
…… 𝒊𝒕𝒉 BWT search ……

chr2:68-78

chr15:200-210

chr1:10-26

chr2:50-66

chrX:75-91

chr4:125-141

chr10:20-36

CCCTGTAGATCCGAATT-GTGAGGAATAC GTGCCAAGGTCGTATGC

CCCTGTAGATCCGAATTTGTGAGGAATAC
chr2:50-78 chr4:125-141

chr10:20-36

GTGCCAAGGTCGTATGC

CCCTGTAGATCCGAATTTGTGAGGAATAC
chr2:50-78 chr4:125-141

chr10:20-36

GTGCCAAGGTCGTATGC

TGAGGACTACTCGGGTGCCAAGGTC
chr11:631-655

chrX:289-313

GTAGATCCGAATTTGTGAGGAATAATCGGG
chr8:168-197

chr10:85-114

ACCCTGTAGATCCGAATTTGTGAGGAATACTCGGGTGCCAAGGTCGTATGCCGT
chr2:50-77 chr4:125-141

chr10:20-36

ACCCTGTAGATCCGAATT
TCCCTGTAGATCCGAATT

GGTGCCAAGGTCGTATGC
$GTGCCAAGGTCGTATGC

TGTGAGGAATAC
CGTGAGGAATAC Ref. Genome

Exhaustive

BWT Search

Record 

Maximal 

Seeds

Merge 

Seeds

Candidate

Layout

Mapping

Output
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