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Abstract: We present in detail some of the challenges in developing reusable robotic software.  We base that on our 

experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the 

integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization, 

planning and execution.  CLARAty was adapted to a number of heterogeneous robots with different mechanisms and 

hardware control architectures.  In this paper, we also describe how we addressed some of these challenges in the 

development of the CLARAty software. 
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1. Introduction 

Within the NASA robotics community, and possibly 

within the research community, the majority of robotic 

software is designed and built from scratch for each new 

robot.  To date, it may have been easier and more cost 

effective to do so.  However, as robotic software gets 

more complicated and the time and effort to build 

reliable software increases, it becomes more important to 

develop reusable robotic software. 

 

Over the past decade, NASA, through its Mars 

Technology Program, developed a series of rovers to 

mature new algorithms for planetary surface exploration.  

The Jet Propulsion Laboratory (JPL) developed the 

Rocky series, where its fourth generation culminated in 

the successful Sojourner rover that landed on Mars in 

1997.  Following that, JPL developed the FIDO series, 

which were precursors to the Mars Exploration Rovers 

(MER), Spirit and Opportunity, that landed in 2004.   

 

NASA is interested in a reusable robotic framework to 

reduce the cost of integrating and testing new capabilities 

that are developed at various institutions.  JPL started the 

research and development of reusable robotic software 

back in 1996 with the development of the Rocky 7 rover.  

The first generation reusable software was developed 

using a component architecture based on ControlShell 

(Volpe, 1997).  The Rocky 8 software was, then, adapted 

to this architecture.  Due to limitations for supporting 

additional platforms and to find commonality in the 

development of robotic software among other centers, 

we developed the Coupled Layer Architecture for 

Robotic Autonomy (CLARAty, 2005). Started in 1999, 

CLARAty is the outcome of collaboration among JPL, 

Ames Research Center, and Carnegie Mellon (Volpe, 

2001).  In recent years, the University of Minnesota 

joined the team to develop the estimation framework.   

 

Given the heterogeneity of the NASA research rovers, it 

was incumbent upon us to provide a framework that did 

not require the redesign of existing hardware. 

Additionally it was necessary to support legacy 

algorithms with significant investments. 

 

While much of the context of this work focuses on 

robotic capabilities for planetary exploration, many of 

the challenges and approaches are more generally 

applicable. 

2. Related Work 

The development of general software architectures 

remains an active area of research in robotics (Coste-

Maniere, 2000). Much of the effort focuses on 

hierarchical or layered architectures although there is 

disagreement over how to decompose the hierarchy.  In 

the past, research focused on spatial or temporal 

hierarchies (Albus, 1991) and behavioral hierarchies 
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(Brooks, 1986).  More recently, the focus has been on 

functional decomposition into different layers 

implemented with data structures and algorithms 

specialized for particular classes of functionality (Coste-

Maniere, 2000).  The most popular of such approaches is 

the three-tiered architecture (Bonasso, 1997) that features 

a declarative planning layer, a procedural real-time 

behavioral layer and an intermediate executive layer that 

mediates between the two.  CLARAty decomposes 

robotic software into two layers: a decision layer and a 

functional layer.  This approach is similar to the three-

tiered architecture except that the planning and execution 

layers are combined in order to provide much tighter 

coordination between generation and execution of plans. 

A second difference between CLARAty and the three-

tiered architecture is that CLARAty’s robotic 

functionality can be accessed at different levels of 

abstraction.  A somewhat different two-layered approach 

is CIRCA (Musliner, 1993) in which a planner/scheduler 

periodically creates and downloads policies to be 

executed in hard real time by a reactive control system.  

Unlike the hierarchy used in CLARAty’s Functional 

Layer, the reactive layer in CIRCA has no internal 

structure, which makes it difficult to implement complex 

behaviors. 

 

Other efforts in the robotics community aim at 

standardizing interfaces to robot hardware and among 

control processes.  Probably the most visible effort is the 

Joint Architecture for Unmanned Systems (JAUS, 2005), 

which aims at providing standardized message passing 

interfaces for all of the military’s unmanned vehicles. 

JAUS was initially developed by the Department of 

Defense to ensure interoperability among a family of 

Unmanned Ground Vehicles.  Similar to CLARAty, 

JAUS defines interfaces that are independent of the 

integrated technology or the specific hardware platforms.  

While the goals of JAUS are similar to those of 

CLARAty, the approaches have significant differences. 

While the JAUS architecture uses a single-level 

message-set, CLARAty uses a multi-level abstraction 

model.    

 

Another effort that provides abstractions for robotic 

devices is Player/Stage (Gerkey, 2003).  Player/Stage is a 

device server that provides a flexible interface to a 

variety of sensors and actuators.  It is based on a 

client/server model that uses socket-based 

communications.  As a result, information exchange 

between components requires a serialization scheme, 

which can incur a significant cost for resource-

constrained robots.  Additionally, the current Player 

abstractions only address a limited set of capabilities 

primarily geared towards controlling commercial-off-

the-shelf robots with simple mobility mechanisms. 

 

The Foundation for Intelligent Physical Agents (FIPA) is 

a similar effort in the world of multi-agent systems.  

Unlike CLARAty, both FIPA and Player/Stage focus on 

the form of the interfaces and less on their content.  They 

are also aimed mainly at the lower-level control aspects, 

whereas CLARAty tries to address a more complex 

functional hierarchy. 

 

More recently, there have been several other related 

efforts driven by similar needs. We will only list two: 

The OROCOS project (OROCOS, 2005), which provides 

both hard real-time services and class libraries for 

robotic applications; and the OSCAR project (OSCAR, 

2005), which uses a similar object-oriented 

decomposition to that of CLARAty for analysis, control, 

and simulation of manipulators.   

3. Challenges  

Developing reusable robotic software is difficult 

primarily due to the variability in robotic platforms.  

Initially, one may assume that by concretely defining the 

content and rate of information flow among the various 

subsystems, one establishes a plug-and-play robotic 

architecture.  While defining the information and its flow 

is necessary, it is not sufficient.  The content and 

pathways of the information flow change with various 

device and system configurations, as well as with 

different application programs. Hence, the flow of 

information among sub-systems has to be both flexible 

and efficient.  To reuse software components across a 

wide range of systems, it is also important that 

components of a robotic system make no assumptions 

about their operational platforms.  Therefore, it is 

necessary to share configuration, kinematic, and dynamic 

information among components.   

 

This section presents four major challenges that stem 

from trying to: (i) control heterogeneous robots, (ii) 

integrate and interoperate new capabilities, (iii) adjust 

access levels, and (iv) implement a generic framework.  

In the next section, we will present some of the 

approaches that we used in CLARAty to overcome these 

challenges.  The list of challenges below is not intended 

to be exhaustive, but rather characteristic of the key 

challenges that we faced in standardizing the 

development of robotic software. 

3.1. Control Heterogeneous Robots 

Because there are no standard robotic platforms, any 

reusable framework must be sufficiently flexible to 

address the variations in robots.  Robotic systems present 

challenges due to differences in their physical 

capabilities, sensor configuration, and hardware control 

architectures. 

 

The first challenge comes from physical variability. 

Consider the example of mobile rovers.  Within this class 

of rovers, there are wheeled rovers, legged rovers, and 

rovers that are a hybrid of the two.  Even within the 

wheeled rover subclass, platforms have different 

mobility mechanisms and wheel configurations.   Some 

have four wheels while others have six or eight wheels.  

Some have all-wheels steering while others have only 
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front-wheels steering.  Figure 1 shows examples of 

various robots. 

  

Because of this physical variability, these robots possess 

different capabilities.  Fully-steerable (omni-directional) 

rovers can move laterally (crab) while partially-steerable 

(car-like) rovers have to use parallel parking maneuvers 

to obtain the same result.  For software to interoperate 

across such platforms, it has to provide a generic 

interface that handles these constraints.  

 

When crafting a generalized interface, it is often the case 

that neither the union of all possible capabilities nor the 

intersection of such capabilities (least common 

denominator) is satisfactory.   The solution often lies 

somewhere in between.  In some cases, it is necessary to 

split the interface into two distinct units and lose the 

ability to interoperate between the two.  This occurs 

when it is necessary to highlight the differences between 

platforms rather than their commonality.  Trying to find 

the single unified interface can sometimes lead to 

undesirable over generalizations.  

 

The second challenge comes from differences in sensor 

configurations.  One situation is where different sensors 

produce similar information, but have different physical 

constraints.  For instance, consider sensors that generate 

terrain data that is represented as three-dimensional point 

clouds.  To generate this data, one can either use a lidar 

or a stereo camera pair.  While both devices eventually 

generate point clouds, these two devices operate with 

different constraints and have different qualities.  A lidar 

requires a longer time to scan a scene but less time to 

generate the depth information, while the opposite is true 

for stereo.  These behavioral differences generate 

constraints on the operation of the vehicle.  Because of 

these variations in sensors, it is necessary for algorithms 

to interface to an appropriate abstraction of that sensor 

rather than to the actual sensor driver.   If a navigation 

algorithm that uses this data to find obstacles was 

interfaced to stereo cameras as opposed to point clouds, 

then it will not be possible to use this algorithm on rovers 

that use a lidar sensor in lieu of stereo cameras. 

 

Another situation is where similar data can be produced 

by either a single sensor or a suite of sensors.  For 

instance, consider inertial motion sensing.  Some robots 

may use individual gyroscopes and accelerometers in a 

unique configuration to measure the rover’s ego motions.  

Others may use an integrated Inertial Measurement Unit.  

In the first case, the hardware/software framework must 

ensure the synchronized acquisition and processing of 

these raw measurements, while in the second case, the 

interface to the IMU provides such capability.   

 

The third challenge comes from differences in hardware 

control architectures. On one end of the spectrum, there 

are robots that use a centralized processor to servo the 

motors, generate coordination trajectories, and run the 

application software.  Such systems often have signals 

mapped to memory registers in a centralized processor 

making the development of software relatively easy. 

However, they lack in modularity and are hard to extend.  

On the other end of the spectrum, there are systems that 

move as much of their controls as possible to firmware in 

embedded distributed nodes in order to reduce the load 

and real-time requirements on the central processor.   

Other systems fall somewhere within this spectrum.  

While each approach has its pros and cons, a general 

framework must handle these differences in hardware 

control architecture that has significant impact on 

information flow. 

 

In addition to these challenges that are found in both 

custom designed robots as well as commercial-off-the-

shelf robots, components that comprise a robotic system 

continue to change.  Image acquisition subsystems 

changed from analog cameras with centralized 

framegrabbers to distributed digital cameras connected to 

FireWire or USB buses.  Despite this, reusable robotic 

software must be sufficiently flexible to support such 

variations or rapidly adapt the software to handle them. 

3.2. Integrate and Interoperate New Capabilities 

The integration of algorithms is perhaps one of the most 

challenging elements in developing reusable robotic 

software.  The challenges stem from trying to integrate 

algorithms that use different representations of 

information and different architectures. 

 

The first challenge is in the multiple ways to represent 

similar information.  Consider, for instance, general 

transformations that connect one coordinate frame to 

another. Two ways for representing the orientation 

portion of these transformations are rotation matrices and 

quaternions. These representations have different 

characteristics in terms of efficiency and ease of 

use/understanding.  Conversion between them is both 

inefficient and error prone.   This is especially true when 

dealing with their covariances.  In addition, 
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Figure 1: The CLARAty Architecture 



YY 

transformations cannot be defined in isolation.  They 

require a context that defines the relationships between 

frames and whether those frames represent fixed or 

articulated connections.  Without agreement on these 

representations, algorithms will be required to deal with 

these conversions in an ad hoc manner, leading to 

loosely integrated and inefficient software.   

 

The second challenge stems from architectural 

mismatches.  One issue is with components that integrate 

orthogonal functionality into a single modular unit.  This 

introduces artificial coupling of functionalities driven by 

a specific implementation.  While such coupling may 

have some locally optimal performance, this often comes 

on the expense of global optimality.  

 

Another issue is with limitations of architectural 

frameworks.  Consider, for instance, a framework that 

does not time-stamp measurements collected from 

various devices.  Now consider an algorithm that collects 

data asynchronously and requires time-stamped 

measurements. If the underlying framework does not 

support time-stamped measurements, this results in an 

architectural mismatch.  Similar situations occur when an 

algorithm requires high bandwidth information that may 

not be available for certain platforms. Diagnostic and 

health monitoring software often requires information 

about all aspects of the system at all times, which in 

many cases, may be limited or not possible. 

 

The interoperation of algorithms necessitates 

components that produce a similar output even though 

they may use different underlying technologies.  The 

challenge is to provide a framework in which a developer 

can work on an individual technology component and 

see how it interacts with a complete robotic system, 

without having to understand the entire system. 

3.3. Adjust Access and Control Levels 

In any complex system, it is important to be able to 

access and independently test each subsystem.  

Characterizing the performance of individual subsystems 

requires a modular architecture that provides access at 

various levels of the architecture.  Also, interfacing with 

other systems requires adaptations at different levels of 

granularity.  This section covers both back-end and front-

end access. Back-end access is what gets adapted to 

hardware or simulation. Front-end access is what a client 

application uses to control the software. 

 

With respect to back-end access, consider the FIDO 

rover, which uses a central processor for the control and 

coordination of its motors.  The software framework 

must provide functionality for the servo control and 

trajectory generation for all motors.  In this case, the 

interface to hardware occurs at the low-level of digital 

and analog I/O.  However, in systems such as Rocky 8 or 

Rocky 7, which use micro-controllers for servo control 

and trajectory generation, the interface to hardware 

occurs through communication with motor controllers.   

Providing multi-level access also benefits interfacing the 

control software with simulation.  Some simulations may 

not have the level of fidelity to simulate real hardware.  

In such cases, a higher-level interface would be 

necessary and appropriate.  There are other cases where a 

higher-level interface is desirable to explore a larger set 

of scenarios without having to go through smaller steps 

of motion simulation.  For example, an interface between 

the control and simulation software at the locomotion 

level bypasses the lower level control and simulation of 

actual wheel motions.   

 

With respect to front-end access, client applications may 

need to access the system at different levels at different 

times.  For example, if the robotic arm has on-board 

autonomy for path planning, then one uses the high-level 

interface to define goal locations. However, in other 

situations where the arm has to be tele-operated, one 

needs to interface to lower-level motor velocities. 

3.4. Implement a Generic Software Framework 

Another major challenge stems from the inherent 

complexity and multi-disciplinary nature of the robotics 

domain.  Developing robotic capabilities for real systems 

is quite hard, but doing so with an overarching objective 

of supporting new platforms and algorithms that are not 

known a priori is a real challenge.  This process requires 

developers with both a depth of knowledge in robotics 

and breadth of experience and skills in the field.  

 

Developing a cross-cutting generic framework requires 

continuous refactoring of common elements across 

multiple disciplines.  There are shared capabilities 

among the vision, mobility, and manipulation domains.  

They all require coordinate transformations, math 

libraries, and information about the mechanisms they 

control.  Similarly, the science analysis and vision 

domains share abundant image processing infrastructure.   

 

To keep the complexity of systems manageable, and to 

simplify the testing and maintenance of the various 

packages, it is important to reduce code duplication as 

much as possible across domains.  This raises the 

question of when it is appropriate to encapsulate an 

algorithm vs. to refactor it using a common software 

framework.  The decision is often influenced by non-

technical factors involving the nature of the technology, 

the expertise necessary to re-implement the algorithm, 

the return of investment, and the long-term plan to 

support the algorithm as part of a common framework.  

Because any reusable robotic system is doomed to 

become enormous, it is strongly desirable to make the 

code repository complementary rather than duplicative. 

 

To support the integration of multiple algorithms and to 

support the adaptations of the framework to various 

robot platforms, it is necessary to have development 

tools and processes that support modularity.  Without the 

ability to check out and build parts of the generic robotic 

repository, it becomes too unwieldy to use.  The 
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repository tools will eventually need to be integrated 

with the build system in order to dynamically check-out 

and configure the system using different 

implementations of a given functionality.  For instance, 

consider rover navigation that can use one of three 

algorithms for estimating the rover pose: a wheel 

odometry pose estimator, a visual odometry pose 

estimator, or multi-sensor pose estimator. Depending on 

the desired configuration, the software check-out and 

build will be different for each of the three 

configurations. Automated tools are needed to provide 

such flexibility. 

 

In addition, there are many challenges in software 

engineering that any generic framework for robotics will 

have to address.  No matter what the approach used in 

the design, issues related to the flexibility, scalability of 

the approach, simplicity but not simplistic, extendibility, 

and long-term maintainability can only be judged over 

time.  The challenge is to find the delicate balance 

among the above. 

3.5. Address other Challenges 

Numerous other challenges remain in the development of 

a unified and reusable robotic framework, but it will 

suffice, here, to point to a few more. Some of these 

challenges include: dealing with system states especially 

ones that reside in hardware controllers where there is a 

cost associated retrieving state information; logging of 

information at all levels; dealing with measurement 

uncertainties; dealing with differences in data flow 

models among platforms; dealing with multiple clients; 

supporting real-time operations; addressing abstract time 

for real and simulated platforms; and addressing 

distributed computing nodes.  There are several 

additional social factors such as getting user buy-in, 

managing contributions from a distributed developer 

base, capturing feedback from the user community, and 

providing documentation, training and support.  

4. CLARAty 

CLARAty is a reusable robotic software framework to 

enable the integration of new capabilities onto various 

platforms.  We designed CLARAty to address the above 

challenges in software interoperability for rovers and 

manipulation platforms. CLARAty defines standard 

interfaces at different levels of abstractions for various 

devices and robotic algorithms.  It also provides 

candidate implementations for each algorithm as a 

starting point, though many algorithms were contributed 

through a competed program by robotic developers at 

universities and NASA centers.  In addition to interfaces 

and algorithms, CLARAty also provides adaptations of 

its device abstractions to custom and standard hardware 

and robotic platforms.  The CLARAty code base is 

designed with a modular structure to enable users to 

check out and work with only the parts of the software 

that meets their needs. The majority of the software is 

developed using object-oriented C++.   

 

In the following subsections, we will address the 

aforementioned challenges in an order that facilitates the 

description of some elements of CLARAty. 

4.1. Approach 

Because it is not realistic to expect a standard robotic 

platform any time soon, it becomes necessary to develop 

a software framework that would deal with the 

variability outlined in the previous section.  To do so, we 

analyzed in detail several existing robotic architectures 

and legacy implementations of several NASA robots, 

including Rocky 7, Rocky 8, FIDO, K9 and Dexter.  We 

also investigated the interactions between declarative 

model-based reasoning and these architectures. 

 

To meet the flexibility requirements for integrating 

different technologies, we developed CLARAty as a 

two-layer architecture with the top decision layer and a 

bottom functional layer.   The decision layer uses a 

declarative model-based approach to define activities.  

The input to this layer does not a priori specify the order 

of execution of activities.  Rather, activities are described 

with explicit system and mission constraints and a search 

engine orders these activities at runtime to provide a 

feasible plan.  The plan is then executed using an engine 

that is tightly integrated with the planner.  The functional 

layer, on the other hand, uses an object-oriented 

procedural approach where the sequence of execution is 

defined a priori and bounded by the software 

implementation.  Hence, the system does not have to 

search for a feasible plan before execution.    

 

We architected the functional layer to use a multi-level 

abstraction model with polymorphic interfaces to address 

the variability of robotic systems.  At the mission level, a 

robot can plan and execute a number of activities in 

different order. At this level, a declarative model 

dominates.  However, the choices for actions become 

limited and time-constrained as you go down the 

hierarchy.  At these levels, a procedural model 

dominates. Most robotic systems use both models 

(Coste-Maniere, 2000). Where one layer ends and 

another begins remains an active area of research.  

Current practice has drawn the line between the two 

models at a high level, however, in CLARAty, the 

decision layer can access the functional layer at different 

levels. 

 

To address challenges in software implementation, we 

leverage many well-known techniques developed by the 

software community, including object-oriented 

architecture, design patterns, generic programming and 

component-based architecture (Gamma, 95) (Garlan, 

1996). Our experience shows that an object-oriented 

framework provides the necessary levels of abstraction to 

deal with the variability among platforms and 

algorithms.  It also provides extendible interfaces, strong 

type checking, polymorphic behavior, and data 

encapsulation, which are all necessary elements for the 

robust development of complex robotic systems. Most 
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component interactions use method calls on class 

abstractions with only a few that use the more elaborate 

component-connector style interface.  The latter is 

primarily used when distributing computation across 

nodes is necessary (e.g. the interface between the 

decision and functional layers), which requires 

serialization and de-serialization of commands and 

information. Component-based architectures such as 

MDS (Dvorak, 1999) and ControlShell (Pardo-

Castellote, 1998) require additional frameworks for the 

explicit ordering and have coarser granularity for parallel 

execution of activities.  CLARAty, on the other hand 

uses the multi-threading model of its operating system to 

provide finer resolution on the scheduling and pre-

emption of activities. That requires though a multi-thread 

safe implementation of these algorithms.  

4.2. A Multi-level Abstraction Architecture 

The system is designed with abstractions at various 

levels from the low-level device abstractions to high-

level functional abstractions.  At the lowest levels are 

device abstractions that get adapted to various platforms.  

These include analog and digital I/O, motor, IMU, 

camera, and spectrometer abstractions.  At higher levels 

are abstractions that integrate various lower-level 

abstractions. Examples of these abstractions include 

locomotor, manipulator, pose estimator, navigator, and 

rover.  Higher-level abstractions provide interfaces for 

different robotic algorithms.  A more detailed description 

of the architecture and class abstractions can be found in 

Nesnas (Nesnas, 2003). 

 

In addressing architecture mismatches, there is often a 

fundamental tension between the desire to separate 

abstractions for conceptually distinct parts of the system 

and the reality of the coupling between hardware and 

software components. Consider, for instance, a camera 

that is powered by a power distribution subsystem. The 

camera device and the power subsystem have distinct 

functionality, and we would like to keep the 

implementation of their interfaces independent and 

modular.  However, at some point, a camera will have to 

be switched on/off.  So the question arises: should the 

user ask the power system to turn the camera on, or 

should the user ask the camera to switch itself on?  In the 

first case, the user has to know about the power system, 

and in the second case, the camera has to know about the 

power system. Neither case is ideal. For someone who 

cares only about images, the power system is a nuisance; 

for system designer, the dependency between the camera 

and the power system leads to a break in modularity.  We 

address this type of problem by using light-weight 

function objects (functors). An abstract power functor 

provides an interface to turn a device on/off and to 

measure its voltage and current draw. The power 

distribution system then creates these objects on request 

and gives them to devices as they are built. Some part of 

the initialization code, therefore, needs to know the 

coupling between the power distribution subsystem and 

the camera. However, using this approach, cameras are 

not aware of the underlying implementation of power 

switching, and users can now ask the camera directly to 

turn itself on or to report on its current draw. 

 

To operate the software on real and simulated platforms 

and to support “what if” planning scenarios, we separate 

mechanism models from their controls. To address the 

variability of different mechanisms, we use flexible 

abstractions that capture the model characteristics for use 

by various applications.  This modeling captures 

geometric information in order to support collision 

prediction and detection for safe robot operations.  

Typical robot applications require forward and inverse 

kinematics algorithms. We will provide generic solvers 

for the kinematics and inverse dynamics for the generic 

model framework.  Because some applications require 

high-speed robot motions with tight control loops, we 

support the overriding of the generic solvers with more 

efficient mechanism-specific implementations.  We 

define a set of abstractions to also describe the 

interactions and contacts of the mechanism with its 

environment.  For more details on the mechanism 

modeling in CLARAty, please refer to Diaz-Calderon 

(Diaz-Calderon, 2005).  

 

One of the main features of CLARAty is its ability to 

interoperate robotic algorithms.  There are many 

challenges that make this difficult, including the problem 

of making algorithms themselves generic in the first 

place.  At first, it may seem easy to provide a common 

API to a collection of, say, stereo algorithms: the primary 

interface takes a pair of images with their camera models 

and produces a disparity map. This seemingly abstract 

interface fails with the first step of most stereo 

algorithms, when images are rectified to remove lens 

distortion and ensure epipolar alignment. This is because 

legacy implementations of stereo algorithms typically 

perform rectification internally, and the algorithm for 

producing the rectification depends on the underlying 

implementation of the camera model.  There are several 

possibilities to make the stereo vision API truly generic: 

(i) pass in only rectified and aligned images to the stereo 

algorithm without needing to pass in camera models, or 

(ii) pass in images with their corresponding camera 

models, however, have the camera models implement 

rectification (both to remove lens distortion and epipolar 

align images).  Each of these implementations has its 

own drawbacks; the usual tradeoff is between simplicity 

and performance. Epipolar alignment is primarily useful 

for stereo, so making it a requirement on the camera 

model class is somewhat awkward and a burden to 

implementers of new models, such as push broom 

camera models. On the other hand, requiring the user to 

rectify  images before handing them to a stereo algorithm 

is also something of a burden, particularly if the user 

must take extra steps to keep the rectification efficient, 

for example when batch processing several image pairs 

that all have the same epipolar relationship.  In this case, 

we prefer the solution that keeps the interface generic. 

This means that more work is required when integrating 
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legacy algorithms into the system, and shows that the 

most abstract interface is not necessarily going to be the 

simplest. However, with a truly abstract interface to 

stereo algorithms, a user will be able to mix and match 

camera models and stereo implementations to find the 

best combination of components for a particular 

application. This flexibility, more than makes up for the 

additional complexity that the user must address. 

 

Autonomous navigation, which provides obstacle 

avoidance capabilities for mobile robots, uses many of 

the lower level capabilities, such as vehicle locomotor, 

point cloud sources, local and global path planners, and 

pose estimators.  First, a generic interface was designed 

that allows higher levels to invoke the navigation 

functionality in the same way, regardless of what 

algorithm is actually being used or which rover is being 

controlled.  This “navigation” interface basically 

indicates goal points (or, more generally, goal regions) 

that the robot must reach.  Navigation algorithms are 

then adapted to this framework to accept input from the 

CLARAty point cloud source and command the rover 

using the vehicle locomotor, a generic interface to a wide 

range of supported rovers.  More fundamentally, 

however, navigation algorithms that were adapted to 

CLARAty all had to be extended to plan generically for 

different rovers.  For instance, the algorithms all need to 

know the maximum steering angles to determine how 

tight turns can be made and the size of the rover to 

determine what distance between obstacles constitutes a 

safe passage.  This was accomplished with the 

mechanism model described above.  In addition, to 

support the Morphin algorithm (Urmson, 2003), the 

mechanism model class can perform a kinematic 

simulation of the rover.  This enables the algorithm to 

integrate costs along the rover’s path without having to 

know explicitly how the rover moves.  In current work, 

Carnegie Mellon is developing navigation algorithms 

that take vehicle dynamics into account, and we expect 

to extend the mechanism model to support dynamical 

simulation, as well. 

 

On the various access and integration levels, algorithms 

can be integrated into CLARAty in different ways.  

Some algorithms can be encapsulated behind the generic 

CLARAty APIs, while others can be refactored to 

leverage CLARAty’s data structures and generic classes 

that we believe may be useful for many different 

algorithms. Refactoring algorithms enables more 

efficient and consistent representation of the internals of 

an algorithm. For instance, the GESTALT (Goldberg, 

2002) algorithm that was flown on MER rovers was 

encapsulated into CLARAty while the Morphin 

algorithm was refactored. Currently, we are refactoring 

the Drivemaps algorithm.  The goal is to determine how 

much reuse can be made from algorithms that have 

fundamentally different approaches to the same problem.  

While complete reuse of the classes is unlikely, we have 

found that splitting the algorithms into terrain analysis 

and action selection components seems to be common 

amongst the algorithms that we have investigated to date. 

4.3. Empirical Results 

We have developed autonomous end-to-end rover 

capabilities such as autonomously placing an instrument 

on a target selected from 10 meters away.  Such 

capability integrates visual tracking of the designated 

target using multiple rover mounted cameras while 

navigating to the target location; assessing the safety of 

the target region; properly positioning the rover relative 

to the target for instrument deployment; deploying and 

placing the robotic arm that carries the science 

instrument on the target; acquiring the scientific data and 

simulating a downlink to Earth.  

 

We have deployed and extensively tested CLARAty on 

half a dozen robotic platforms.  Figure 1 shows a subset 

of these platforms, which include the custom Rocky 8, 

FIDO, Rocky 7, and K9 rovers, as well as the ATRV Jr. 

COTS platform.  These platforms have different mobility 

mechanisms and wheel configurations as well as 

different sensor suites, manipulators, end effectors, 

processors, motion control architectures and operating 

systems.  In addition to these real-platform adaptations, 

we have also adapted CLARAty to operate with the high-

fidelity ROAMS rover and terrain simulator (Jain, 2004). 

 

A large number of complex algorithms have been 

integrated into CLARAty and deployed on the above 

platforms. For autonomous navigation, we have 

integrated the GESTALT algorithm that is driving the 

MER rovers today on the Martian surface (Goldberg, 

2002), the Morphin algorithm that GESTALT was based 

on (Urmson, 2003), and the Drivemaps algorithm 

(Huntsberger, 2001).  In each case, the original 

implementation had to be modified and generalized in 

relatively minor ways to fit the CLARAty framework. 

For rover pose estimation, we have adapted five 

algorithms including the Sojourner algorithm (Mishkin, 

1998), the MER pose estimator algorithm, and a new 

algorithm that integrates all rover sensing modalities 

(Roumeliotis, 2002).  These algorithms all require data 

from different sensors, including wheel encoders, 

gyroscopes, IMUs, sun sensors and stereo cameras.  We 

also integrated three stereo vision algorithms, several 

visual target trackers, visual odometry, sensor-based 

manipulation, path planning, science analysis, and 

automated planning and scheduling.  Many of these 

algorithms have been tested on multiple platforms and as 

part of end-to-end capabilities.  

5. Conclusion 

Developing reusable robotic software presents many 

challenges.  These challenges stem from variability in 

robotic mechanisms, sensor configurations, and hardware 

control architectures.  They also stem from integrating 

new capabilities that use different representations of 

information or that have architectural mismatches with 

the reusable framework.  We found that multi-level 
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abstraction models, object-oriented methodologies and 

design patterns go a long way to address the extensive 

variability that is encountered in today’s robotic 

platforms.  We have learned that over-generalizing 

interfaces makes them harder to understand and use.  

There is a delicate balance between flexibility and 

simplicity. Performance cannot be compromised for the 

sake of flexibility and least common denominator 

solutions are often unacceptable.  It is necessary to have 

flexible development environments, tools, solid 

regression testing.  There is also no substitute for well-

documented products and development processes.  It 

would be highly desirable to standardize robotic 

hardware but that may not be feasible today.   
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