

XX

CLARAty: Challenges and Steps Toward Reusable Robotic Software

Issa A. Nesnas†; Reid Simmons‡, Daniel Gaines†, Clayton Kunz*, Antonio Diaz-Calderon†, Tara

Estlin†, Richard Madison†, John Guineau†, Michael McHenry†, I-hsiang Shu†; & David Apfelbaum‡

†Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA

†(firstname.lastname@jpl.nasa.gov)

‡Carnegie Mellon, Pittsburgh, PA, USA

*Ames Research Center, Mountain View, CA, USA

Abstract: We present in detail some of the challenges in developing reusable robotic software. We base that on our

experience in developing the CLARAty robotics software, which is a generic object-oriented framework used for the

integration of new algorithms in the areas of motion control, vision, manipulation, locomotion, navigation, localization,

planning and execution. CLARAty was adapted to a number of heterogeneous robots with different mechanisms and

hardware control architectures. In this paper, we also describe how we addressed some of these challenges in the

development of the CLARAty software.

 Keywords: Reusable robotic software, robotic framework, interoperable robotic software, robotic architecture, object-

oriented robotics

1. Introduction

Within the NASA robotics community, and possibly

within the research community, the majority of robotic

software is designed and built from scratch for each new

robot. To date, it may have been easier and more cost

effective to do so. However, as robotic software gets

more complicated and the time and effort to build

reliable software increases, it becomes more important to

develop reusable robotic software.

Over the past decade, NASA, through its Mars

Technology Program, developed a series of rovers to

mature new algorithms for planetary surface exploration.

The Jet Propulsion Laboratory (JPL) developed the

Rocky series, where its fourth generation culminated in

the successful Sojourner rover that landed on Mars in

1997. Following that, JPL developed the FIDO series,

which were precursors to the Mars Exploration Rovers

(MER), Spirit and Opportunity, that landed in 2004.

NASA is interested in a reusable robotic framework to

reduce the cost of integrating and testing new capabilities

that are developed at various institutions. JPL started the

research and development of reusable robotic software

back in 1996 with the development of the Rocky 7 rover.

The first generation reusable software was developed

using a component architecture based on ControlShell

(Volpe, 1997). The Rocky 8 software was, then, adapted

to this architecture. Due to limitations for supporting

additional platforms and to find commonality in the

development of robotic software among other centers,

we developed the Coupled Layer Architecture for

Robotic Autonomy (CLARAty, 2005). Started in 1999,

CLARAty is the outcome of collaboration among JPL,

Ames Research Center, and Carnegie Mellon (Volpe,

2001). In recent years, the University of Minnesota

joined the team to develop the estimation framework.

Given the heterogeneity of the NASA research rovers, it

was incumbent upon us to provide a framework that did

not require the redesign of existing hardware.

Additionally it was necessary to support legacy

algorithms with significant investments.

While much of the context of this work focuses on

robotic capabilities for planetary exploration, many of

the challenges and approaches are more generally

applicable.

2. Related Work

The development of general software architectures

remains an active area of research in robotics (Coste-

Maniere, 2000). Much of the effort focuses on

hierarchical or layered architectures although there is

disagreement over how to decompose the hierarchy. In

the past, research focused on spatial or temporal

hierarchies (Albus, 1991) and behavioral hierarchies

Nesnas, I. et al. / CLARAty: Challenges and Steps Toward Reusable Robotic Software, pp. xx - yy, International Journal

of Advanced Robotic Systems, Volume y, Number x (200x), ISSN 1729-8806

YY

(Brooks, 1986). More recently, the focus has been on

functional decomposition into different layers

implemented with data structures and algorithms

specialized for particular classes of functionality (Coste-

Maniere, 2000). The most popular of such approaches is

the three-tiered architecture (Bonasso, 1997) that features

a declarative planning layer, a procedural real-time

behavioral layer and an intermediate executive layer that

mediates between the two. CLARAty decomposes

robotic software into two layers: a decision layer and a

functional layer. This approach is similar to the three-

tiered architecture except that the planning and execution

layers are combined in order to provide much tighter

coordination between generation and execution of plans.

A second difference between CLARAty and the three-

tiered architecture is that CLARAty’s robotic

functionality can be accessed at different levels of

abstraction. A somewhat different two-layered approach

is CIRCA (Musliner, 1993) in which a planner/scheduler

periodically creates and downloads policies to be

executed in hard real time by a reactive control system.

Unlike the hierarchy used in CLARAty’s Functional

Layer, the reactive layer in CIRCA has no internal

structure, which makes it difficult to implement complex

behaviors.

Other efforts in the robotics community aim at

standardizing interfaces to robot hardware and among

control processes. Probably the most visible effort is the

Joint Architecture for Unmanned Systems (JAUS, 2005),

which aims at providing standardized message passing

interfaces for all of the military’s unmanned vehicles.

JAUS was initially developed by the Department of

Defense to ensure interoperability among a family of

Unmanned Ground Vehicles. Similar to CLARAty,

JAUS defines interfaces that are independent of the

integrated technology or the specific hardware platforms.

While the goals of JAUS are similar to those of

CLARAty, the approaches have significant differences.

While the JAUS architecture uses a single-level

message-set, CLARAty uses a multi-level abstraction

model.

Another effort that provides abstractions for robotic

devices is Player/Stage (Gerkey, 2003). Player/Stage is a

device server that provides a flexible interface to a

variety of sensors and actuators. It is based on a

client/server model that uses socket-based

communications. As a result, information exchange

between components requires a serialization scheme,

which can incur a significant cost for resource-

constrained robots. Additionally, the current Player

abstractions only address a limited set of capabilities

primarily geared towards controlling commercial-off-

the-shelf robots with simple mobility mechanisms.

The Foundation for Intelligent Physical Agents (FIPA) is

a similar effort in the world of multi-agent systems.

Unlike CLARAty, both FIPA and Player/Stage focus on

the form of the interfaces and less on their content. They

are also aimed mainly at the lower-level control aspects,

whereas CLARAty tries to address a more complex

functional hierarchy.

More recently, there have been several other related

efforts driven by similar needs. We will only list two:

The OROCOS project (OROCOS, 2005), which provides

both hard real-time services and class libraries for

robotic applications; and the OSCAR project (OSCAR,

2005), which uses a similar object-oriented

decomposition to that of CLARAty for analysis, control,

and simulation of manipulators.

3. Challenges

Developing reusable robotic software is difficult

primarily due to the variability in robotic platforms.

Initially, one may assume that by concretely defining the

content and rate of information flow among the various

subsystems, one establishes a plug-and-play robotic

architecture. While defining the information and its flow

is necessary, it is not sufficient. The content and

pathways of the information flow change with various

device and system configurations, as well as with

different application programs. Hence, the flow of

information among sub-systems has to be both flexible

and efficient. To reuse software components across a

wide range of systems, it is also important that

components of a robotic system make no assumptions

about their operational platforms. Therefore, it is

necessary to share configuration, kinematic, and dynamic

information among components.

This section presents four major challenges that stem

from trying to: (i) control heterogeneous robots, (ii)

integrate and interoperate new capabilities, (iii) adjust

access levels, and (iv) implement a generic framework.

In the next section, we will present some of the

approaches that we used in CLARAty to overcome these

challenges. The list of challenges below is not intended

to be exhaustive, but rather characteristic of the key

challenges that we faced in standardizing the

development of robotic software.

3.1. Control Heterogeneous Robots

Because there are no standard robotic platforms, any

reusable framework must be sufficiently flexible to

address the variations in robots. Robotic systems present

challenges due to differences in their physical

capabilities, sensor configuration, and hardware control

architectures.

The first challenge comes from physical variability.

Consider the example of mobile rovers. Within this class

of rovers, there are wheeled rovers, legged rovers, and

rovers that are a hybrid of the two. Even within the

wheeled rover subclass, platforms have different

mobility mechanisms and wheel configurations. Some

have four wheels while others have six or eight wheels.

Some have all-wheels steering while others have only

XX

front-wheels steering. Figure 1 shows examples of

various robots.

Because of this physical variability, these robots possess

different capabilities. Fully-steerable (omni-directional)

rovers can move laterally (crab) while partially-steerable

(car-like) rovers have to use parallel parking maneuvers

to obtain the same result. For software to interoperate

across such platforms, it has to provide a generic

interface that handles these constraints.

When crafting a generalized interface, it is often the case

that neither the union of all possible capabilities nor the

intersection of such capabilities (least common

denominator) is satisfactory. The solution often lies

somewhere in between. In some cases, it is necessary to

split the interface into two distinct units and lose the

ability to interoperate between the two. This occurs

when it is necessary to highlight the differences between

platforms rather than their commonality. Trying to find

the single unified interface can sometimes lead to

undesirable over generalizations.

The second challenge comes from differences in sensor

configurations. One situation is where different sensors

produce similar information, but have different physical

constraints. For instance, consider sensors that generate

terrain data that is represented as three-dimensional point

clouds. To generate this data, one can either use a lidar

or a stereo camera pair. While both devices eventually

generate point clouds, these two devices operate with

different constraints and have different qualities. A lidar

requires a longer time to scan a scene but less time to

generate the depth information, while the opposite is true

for stereo. These behavioral differences generate

constraints on the operation of the vehicle. Because of

these variations in sensors, it is necessary for algorithms

to interface to an appropriate abstraction of that sensor

rather than to the actual sensor driver. If a navigation

algorithm that uses this data to find obstacles was

interfaced to stereo cameras as opposed to point clouds,

then it will not be possible to use this algorithm on rovers

that use a lidar sensor in lieu of stereo cameras.

Another situation is where similar data can be produced

by either a single sensor or a suite of sensors. For

instance, consider inertial motion sensing. Some robots

may use individual gyroscopes and accelerometers in a

unique configuration to measure the rover’s ego motions.

Others may use an integrated Inertial Measurement Unit.

In the first case, the hardware/software framework must

ensure the synchronized acquisition and processing of

these raw measurements, while in the second case, the

interface to the IMU provides such capability.

The third challenge comes from differences in hardware

control architectures. On one end of the spectrum, there

are robots that use a centralized processor to servo the

motors, generate coordination trajectories, and run the

application software. Such systems often have signals

mapped to memory registers in a centralized processor

making the development of software relatively easy.

However, they lack in modularity and are hard to extend.

On the other end of the spectrum, there are systems that

move as much of their controls as possible to firmware in

embedded distributed nodes in order to reduce the load

and real-time requirements on the central processor.

Other systems fall somewhere within this spectrum.

While each approach has its pros and cons, a general

framework must handle these differences in hardware

control architecture that has significant impact on

information flow.

In addition to these challenges that are found in both

custom designed robots as well as commercial-off-the-

shelf robots, components that comprise a robotic system

continue to change. Image acquisition subsystems

changed from analog cameras with centralized

framegrabbers to distributed digital cameras connected to

FireWire or USB buses. Despite this, reusable robotic

software must be sufficiently flexible to support such

variations or rapidly adapt the software to handle them.

3.2. Integrate and Interoperate New Capabilities

The integration of algorithms is perhaps one of the most

challenging elements in developing reusable robotic

software. The challenges stem from trying to integrate

algorithms that use different representations of

information and different architectures.

The first challenge is in the multiple ways to represent

similar information. Consider, for instance, general

transformations that connect one coordinate frame to

another. Two ways for representing the orientation

portion of these transformations are rotation matrices and

quaternions. These representations have different

characteristics in terms of efficiency and ease of

use/understanding. Conversion between them is both

inefficient and error prone. This is especially true when

dealing with their covariances. In addition,

Pt Cloud

Acquire ImageGoto Target 1

Explore Site

Go to Target 3
Deploy

Instrument

Acquire &

Analyze

Navigator

Morphin

Rover

Target Tracker

Falcon

Locomotor

R8 Model
Pose Estimator

Stereovision

Motor
IMU

Camera

R8 Motor
ISIS

1394 Cam

SAPP
JPL V

Functional

Layer

Decision

Layer

Declarative Activity

Class Abstraction

Swappable Algorithm or

Robot Adaptation

Rocky 8

ATRV Jr.
Rocky 7

ROAMS

Pt Cloud

Acquire ImageGoto Target 1

Explore Site

Go to Target 3
Deploy

Instrument

Acquire &

Analyze

Navigator

Morphin

Rover

Target Tracker

Falcon

Locomotor

R8 Model
Pose Estimator

Stereovision

Motor
IMU

Camera

R8 Motor
ISIS

1394 Cam

SAPP
JPL V

Functional

Layer

Decision

Layer

Declarative Activity

Class Abstraction

Swappable Algorithm or

Robot Adaptation

Rocky 8

ATRV Jr.
Rocky 7

ROAMS

Figure 1: The CLARAty Architecture

YY

transformations cannot be defined in isolation. They

require a context that defines the relationships between

frames and whether those frames represent fixed or

articulated connections. Without agreement on these

representations, algorithms will be required to deal with

these conversions in an ad hoc manner, leading to

loosely integrated and inefficient software.

The second challenge stems from architectural

mismatches. One issue is with components that integrate

orthogonal functionality into a single modular unit. This

introduces artificial coupling of functionalities driven by

a specific implementation. While such coupling may

have some locally optimal performance, this often comes

on the expense of global optimality.

Another issue is with limitations of architectural

frameworks. Consider, for instance, a framework that

does not time-stamp measurements collected from

various devices. Now consider an algorithm that collects

data asynchronously and requires time-stamped

measurements. If the underlying framework does not

support time-stamped measurements, this results in an

architectural mismatch. Similar situations occur when an

algorithm requires high bandwidth information that may

not be available for certain platforms. Diagnostic and

health monitoring software often requires information

about all aspects of the system at all times, which in

many cases, may be limited or not possible.

The interoperation of algorithms necessitates

components that produce a similar output even though

they may use different underlying technologies. The

challenge is to provide a framework in which a developer

can work on an individual technology component and

see how it interacts with a complete robotic system,

without having to understand the entire system.

3.3. Adjust Access and Control Levels

In any complex system, it is important to be able to

access and independently test each subsystem.

Characterizing the performance of individual subsystems

requires a modular architecture that provides access at

various levels of the architecture. Also, interfacing with

other systems requires adaptations at different levels of

granularity. This section covers both back-end and front-

end access. Back-end access is what gets adapted to

hardware or simulation. Front-end access is what a client

application uses to control the software.

With respect to back-end access, consider the FIDO

rover, which uses a central processor for the control and

coordination of its motors. The software framework

must provide functionality for the servo control and

trajectory generation for all motors. In this case, the

interface to hardware occurs at the low-level of digital

and analog I/O. However, in systems such as Rocky 8 or

Rocky 7, which use micro-controllers for servo control

and trajectory generation, the interface to hardware

occurs through communication with motor controllers.

Providing multi-level access also benefits interfacing the

control software with simulation. Some simulations may

not have the level of fidelity to simulate real hardware.

In such cases, a higher-level interface would be

necessary and appropriate. There are other cases where a

higher-level interface is desirable to explore a larger set

of scenarios without having to go through smaller steps

of motion simulation. For example, an interface between

the control and simulation software at the locomotion

level bypasses the lower level control and simulation of

actual wheel motions.

With respect to front-end access, client applications may

need to access the system at different levels at different

times. For example, if the robotic arm has on-board

autonomy for path planning, then one uses the high-level

interface to define goal locations. However, in other

situations where the arm has to be tele-operated, one

needs to interface to lower-level motor velocities.

3.4. Implement a Generic Software Framework

Another major challenge stems from the inherent

complexity and multi-disciplinary nature of the robotics

domain. Developing robotic capabilities for real systems

is quite hard, but doing so with an overarching objective

of supporting new platforms and algorithms that are not

known a priori is a real challenge. This process requires

developers with both a depth of knowledge in robotics

and breadth of experience and skills in the field.

Developing a cross-cutting generic framework requires

continuous refactoring of common elements across

multiple disciplines. There are shared capabilities

among the vision, mobility, and manipulation domains.

They all require coordinate transformations, math

libraries, and information about the mechanisms they

control. Similarly, the science analysis and vision

domains share abundant image processing infrastructure.

To keep the complexity of systems manageable, and to

simplify the testing and maintenance of the various

packages, it is important to reduce code duplication as

much as possible across domains. This raises the

question of when it is appropriate to encapsulate an

algorithm vs. to refactor it using a common software

framework. The decision is often influenced by non-

technical factors involving the nature of the technology,

the expertise necessary to re-implement the algorithm,

the return of investment, and the long-term plan to

support the algorithm as part of a common framework.

Because any reusable robotic system is doomed to

become enormous, it is strongly desirable to make the

code repository complementary rather than duplicative.

To support the integration of multiple algorithms and to

support the adaptations of the framework to various

robot platforms, it is necessary to have development

tools and processes that support modularity. Without the

ability to check out and build parts of the generic robotic

repository, it becomes too unwieldy to use. The

XX

repository tools will eventually need to be integrated

with the build system in order to dynamically check-out

and configure the system using different

implementations of a given functionality. For instance,

consider rover navigation that can use one of three

algorithms for estimating the rover pose: a wheel

odometry pose estimator, a visual odometry pose

estimator, or multi-sensor pose estimator. Depending on

the desired configuration, the software check-out and

build will be different for each of the three

configurations. Automated tools are needed to provide

such flexibility.

In addition, there are many challenges in software

engineering that any generic framework for robotics will

have to address. No matter what the approach used in

the design, issues related to the flexibility, scalability of

the approach, simplicity but not simplistic, extendibility,

and long-term maintainability can only be judged over

time. The challenge is to find the delicate balance

among the above.

3.5. Address other Challenges

Numerous other challenges remain in the development of

a unified and reusable robotic framework, but it will

suffice, here, to point to a few more. Some of these

challenges include: dealing with system states especially

ones that reside in hardware controllers where there is a

cost associated retrieving state information; logging of

information at all levels; dealing with measurement

uncertainties; dealing with differences in data flow

models among platforms; dealing with multiple clients;

supporting real-time operations; addressing abstract time

for real and simulated platforms; and addressing

distributed computing nodes. There are several

additional social factors such as getting user buy-in,

managing contributions from a distributed developer

base, capturing feedback from the user community, and

providing documentation, training and support.

4. CLARAty

CLARAty is a reusable robotic software framework to

enable the integration of new capabilities onto various

platforms. We designed CLARAty to address the above

challenges in software interoperability for rovers and

manipulation platforms. CLARAty defines standard

interfaces at different levels of abstractions for various

devices and robotic algorithms. It also provides

candidate implementations for each algorithm as a

starting point, though many algorithms were contributed

through a competed program by robotic developers at

universities and NASA centers. In addition to interfaces

and algorithms, CLARAty also provides adaptations of

its device abstractions to custom and standard hardware

and robotic platforms. The CLARAty code base is

designed with a modular structure to enable users to

check out and work with only the parts of the software

that meets their needs. The majority of the software is

developed using object-oriented C++.

In the following subsections, we will address the

aforementioned challenges in an order that facilitates the

description of some elements of CLARAty.

4.1. Approach

Because it is not realistic to expect a standard robotic

platform any time soon, it becomes necessary to develop

a software framework that would deal with the

variability outlined in the previous section. To do so, we

analyzed in detail several existing robotic architectures

and legacy implementations of several NASA robots,

including Rocky 7, Rocky 8, FIDO, K9 and Dexter. We

also investigated the interactions between declarative

model-based reasoning and these architectures.

To meet the flexibility requirements for integrating

different technologies, we developed CLARAty as a

two-layer architecture with the top decision layer and a

bottom functional layer. The decision layer uses a

declarative model-based approach to define activities.

The input to this layer does not a priori specify the order

of execution of activities. Rather, activities are described

with explicit system and mission constraints and a search

engine orders these activities at runtime to provide a

feasible plan. The plan is then executed using an engine

that is tightly integrated with the planner. The functional

layer, on the other hand, uses an object-oriented

procedural approach where the sequence of execution is

defined a priori and bounded by the software

implementation. Hence, the system does not have to

search for a feasible plan before execution.

We architected the functional layer to use a multi-level

abstraction model with polymorphic interfaces to address

the variability of robotic systems. At the mission level, a

robot can plan and execute a number of activities in

different order. At this level, a declarative model

dominates. However, the choices for actions become

limited and time-constrained as you go down the

hierarchy. At these levels, a procedural model

dominates. Most robotic systems use both models

(Coste-Maniere, 2000). Where one layer ends and

another begins remains an active area of research.

Current practice has drawn the line between the two

models at a high level, however, in CLARAty, the

decision layer can access the functional layer at different

levels.

To address challenges in software implementation, we

leverage many well-known techniques developed by the

software community, including object-oriented

architecture, design patterns, generic programming and

component-based architecture (Gamma, 95) (Garlan,

1996). Our experience shows that an object-oriented

framework provides the necessary levels of abstraction to

deal with the variability among platforms and

algorithms. It also provides extendible interfaces, strong

type checking, polymorphic behavior, and data

encapsulation, which are all necessary elements for the

robust development of complex robotic systems. Most

YY

component interactions use method calls on class

abstractions with only a few that use the more elaborate

component-connector style interface. The latter is

primarily used when distributing computation across

nodes is necessary (e.g. the interface between the

decision and functional layers), which requires

serialization and de-serialization of commands and

information. Component-based architectures such as

MDS (Dvorak, 1999) and ControlShell (Pardo-

Castellote, 1998) require additional frameworks for the

explicit ordering and have coarser granularity for parallel

execution of activities. CLARAty, on the other hand

uses the multi-threading model of its operating system to

provide finer resolution on the scheduling and pre-

emption of activities. That requires though a multi-thread

safe implementation of these algorithms.

4.2. A Multi-level Abstraction Architecture

The system is designed with abstractions at various

levels from the low-level device abstractions to high-

level functional abstractions. At the lowest levels are

device abstractions that get adapted to various platforms.

These include analog and digital I/O, motor, IMU,

camera, and spectrometer abstractions. At higher levels

are abstractions that integrate various lower-level

abstractions. Examples of these abstractions include

locomotor, manipulator, pose estimator, navigator, and

rover. Higher-level abstractions provide interfaces for

different robotic algorithms. A more detailed description

of the architecture and class abstractions can be found in

Nesnas (Nesnas, 2003).

In addressing architecture mismatches, there is often a

fundamental tension between the desire to separate

abstractions for conceptually distinct parts of the system

and the reality of the coupling between hardware and

software components. Consider, for instance, a camera

that is powered by a power distribution subsystem. The

camera device and the power subsystem have distinct

functionality, and we would like to keep the

implementation of their interfaces independent and

modular. However, at some point, a camera will have to

be switched on/off. So the question arises: should the

user ask the power system to turn the camera on, or

should the user ask the camera to switch itself on? In the

first case, the user has to know about the power system,

and in the second case, the camera has to know about the

power system. Neither case is ideal. For someone who

cares only about images, the power system is a nuisance;

for system designer, the dependency between the camera

and the power system leads to a break in modularity. We

address this type of problem by using light-weight

function objects (functors). An abstract power functor

provides an interface to turn a device on/off and to

measure its voltage and current draw. The power

distribution system then creates these objects on request

and gives them to devices as they are built. Some part of

the initialization code, therefore, needs to know the

coupling between the power distribution subsystem and

the camera. However, using this approach, cameras are

not aware of the underlying implementation of power

switching, and users can now ask the camera directly to

turn itself on or to report on its current draw.

To operate the software on real and simulated platforms

and to support “what if” planning scenarios, we separate

mechanism models from their controls. To address the

variability of different mechanisms, we use flexible

abstractions that capture the model characteristics for use

by various applications. This modeling captures

geometric information in order to support collision

prediction and detection for safe robot operations.

Typical robot applications require forward and inverse

kinematics algorithms. We will provide generic solvers

for the kinematics and inverse dynamics for the generic

model framework. Because some applications require

high-speed robot motions with tight control loops, we

support the overriding of the generic solvers with more

efficient mechanism-specific implementations. We

define a set of abstractions to also describe the

interactions and contacts of the mechanism with its

environment. For more details on the mechanism

modeling in CLARAty, please refer to Diaz-Calderon

(Diaz-Calderon, 2005).

One of the main features of CLARAty is its ability to

interoperate robotic algorithms. There are many

challenges that make this difficult, including the problem

of making algorithms themselves generic in the first

place. At first, it may seem easy to provide a common

API to a collection of, say, stereo algorithms: the primary

interface takes a pair of images with their camera models

and produces a disparity map. This seemingly abstract

interface fails with the first step of most stereo

algorithms, when images are rectified to remove lens

distortion and ensure epipolar alignment. This is because

legacy implementations of stereo algorithms typically

perform rectification internally, and the algorithm for

producing the rectification depends on the underlying

implementation of the camera model. There are several

possibilities to make the stereo vision API truly generic:

(i) pass in only rectified and aligned images to the stereo

algorithm without needing to pass in camera models, or

(ii) pass in images with their corresponding camera

models, however, have the camera models implement

rectification (both to remove lens distortion and epipolar

align images). Each of these implementations has its

own drawbacks; the usual tradeoff is between simplicity

and performance. Epipolar alignment is primarily useful

for stereo, so making it a requirement on the camera

model class is somewhat awkward and a burden to

implementers of new models, such as push broom

camera models. On the other hand, requiring the user to

rectify images before handing them to a stereo algorithm

is also something of a burden, particularly if the user

must take extra steps to keep the rectification efficient,

for example when batch processing several image pairs

that all have the same epipolar relationship. In this case,

we prefer the solution that keeps the interface generic.

This means that more work is required when integrating

XX

legacy algorithms into the system, and shows that the

most abstract interface is not necessarily going to be the

simplest. However, with a truly abstract interface to

stereo algorithms, a user will be able to mix and match

camera models and stereo implementations to find the

best combination of components for a particular

application. This flexibility, more than makes up for the

additional complexity that the user must address.

Autonomous navigation, which provides obstacle

avoidance capabilities for mobile robots, uses many of

the lower level capabilities, such as vehicle locomotor,

point cloud sources, local and global path planners, and

pose estimators. First, a generic interface was designed

that allows higher levels to invoke the navigation

functionality in the same way, regardless of what

algorithm is actually being used or which rover is being

controlled. This “navigation” interface basically

indicates goal points (or, more generally, goal regions)

that the robot must reach. Navigation algorithms are

then adapted to this framework to accept input from the

CLARAty point cloud source and command the rover

using the vehicle locomotor, a generic interface to a wide

range of supported rovers. More fundamentally,

however, navigation algorithms that were adapted to

CLARAty all had to be extended to plan generically for

different rovers. For instance, the algorithms all need to

know the maximum steering angles to determine how

tight turns can be made and the size of the rover to

determine what distance between obstacles constitutes a

safe passage. This was accomplished with the

mechanism model described above. In addition, to

support the Morphin algorithm (Urmson, 2003), the

mechanism model class can perform a kinematic

simulation of the rover. This enables the algorithm to

integrate costs along the rover’s path without having to

know explicitly how the rover moves. In current work,

Carnegie Mellon is developing navigation algorithms

that take vehicle dynamics into account, and we expect

to extend the mechanism model to support dynamical

simulation, as well.

On the various access and integration levels, algorithms

can be integrated into CLARAty in different ways.

Some algorithms can be encapsulated behind the generic

CLARAty APIs, while others can be refactored to

leverage CLARAty’s data structures and generic classes

that we believe may be useful for many different

algorithms. Refactoring algorithms enables more

efficient and consistent representation of the internals of

an algorithm. For instance, the GESTALT (Goldberg,

2002) algorithm that was flown on MER rovers was

encapsulated into CLARAty while the Morphin

algorithm was refactored. Currently, we are refactoring

the Drivemaps algorithm. The goal is to determine how

much reuse can be made from algorithms that have

fundamentally different approaches to the same problem.

While complete reuse of the classes is unlikely, we have

found that splitting the algorithms into terrain analysis

and action selection components seems to be common

amongst the algorithms that we have investigated to date.

4.3. Empirical Results

We have developed autonomous end-to-end rover

capabilities such as autonomously placing an instrument

on a target selected from 10 meters away. Such

capability integrates visual tracking of the designated

target using multiple rover mounted cameras while

navigating to the target location; assessing the safety of

the target region; properly positioning the rover relative

to the target for instrument deployment; deploying and

placing the robotic arm that carries the science

instrument on the target; acquiring the scientific data and

simulating a downlink to Earth.

We have deployed and extensively tested CLARAty on

half a dozen robotic platforms. Figure 1 shows a subset

of these platforms, which include the custom Rocky 8,

FIDO, Rocky 7, and K9 rovers, as well as the ATRV Jr.

COTS platform. These platforms have different mobility

mechanisms and wheel configurations as well as

different sensor suites, manipulators, end effectors,

processors, motion control architectures and operating

systems. In addition to these real-platform adaptations,

we have also adapted CLARAty to operate with the high-

fidelity ROAMS rover and terrain simulator (Jain, 2004).

A large number of complex algorithms have been

integrated into CLARAty and deployed on the above

platforms. For autonomous navigation, we have

integrated the GESTALT algorithm that is driving the

MER rovers today on the Martian surface (Goldberg,

2002), the Morphin algorithm that GESTALT was based

on (Urmson, 2003), and the Drivemaps algorithm

(Huntsberger, 2001). In each case, the original

implementation had to be modified and generalized in

relatively minor ways to fit the CLARAty framework.

For rover pose estimation, we have adapted five

algorithms including the Sojourner algorithm (Mishkin,

1998), the MER pose estimator algorithm, and a new

algorithm that integrates all rover sensing modalities

(Roumeliotis, 2002). These algorithms all require data

from different sensors, including wheel encoders,

gyroscopes, IMUs, sun sensors and stereo cameras. We

also integrated three stereo vision algorithms, several

visual target trackers, visual odometry, sensor-based

manipulation, path planning, science analysis, and

automated planning and scheduling. Many of these

algorithms have been tested on multiple platforms and as

part of end-to-end capabilities.

5. Conclusion

Developing reusable robotic software presents many

challenges. These challenges stem from variability in

robotic mechanisms, sensor configurations, and hardware

control architectures. They also stem from integrating

new capabilities that use different representations of

information or that have architectural mismatches with

the reusable framework. We found that multi-level

YY

abstraction models, object-oriented methodologies and

design patterns go a long way to address the extensive

variability that is encountered in today’s robotic

platforms. We have learned that over-generalizing

interfaces makes them harder to understand and use.

There is a delicate balance between flexibility and

simplicity. Performance cannot be compromised for the

sake of flexibility and least common denominator

solutions are often unacceptable. It is necessary to have

flexible development environments, tools, solid

regression testing. There is also no substitute for well-

documented products and development processes. It

would be highly desirable to standardize robotic

hardware but that may not be feasible today.

6. Acknowledgments

We would like to acknowledge the contributions of

former principal investigator Richard Volpe and former

lead engineers Anne Wright and Max Bajracharya. We

would also like to acknowledge the contributions of

Wonsoo Kim, Hari Nayar, Stergios Roumeliotis, Babak

Sapir, Chris Urmson, Richard Petras, Dan Clouse, Randy

Sargent, Ron Garrett, Marsette Vona, Caroline

Chouinard, and Darren Mutz. The work described in this

paper was carried out at the Jet Propulsion Laboratory,

California Institute of Technology, NASA Ames

Research Center, and Carnegie Mellon under a contract

to the National Aeronautics and Space Administration.

7. References

Albus, J. (1991). Outline for a Theory of Intelligence,

IEEE Transactions on Systems, Man and Cybernetics,

21:3, pp. 473-509, 1991.

Bonasso, R.P.; Firby; Gat, G.; Kortenkamp, D.; Miller,

D.; & Slack, M. (1997). Experiences with an

Architecture for Intelligent, Reactive Agents, Journal

of Experimental and Theoretical Artificial

Intelligence, 9:2, 1997.

Brooks, R. (1986). A Robust Layered Control System for

a Mobile Robot. IEEE Journal of Robotics and

Automation, RA-2:1, 1986.

Coste-Maniere & E.; Simmons, R. (2000). Architecture,

the Backbone of Robotic Systems. IEEE Conference

on Robotics and Automation, San Francisco CA.

CLARAty (2005), http://claraty.jpl.nasa.gov

Diaz-Calderon, A.; Nesnas, I.; Kim, W.S.; & Nayar, H.

(2005). Towards a Unified Representation of

Mechanisms for Robotic Control Software. Submitted

to the Int’l Journal of Advanced Robotic Systems.

Dvorak, D; Rasmussen, R.; Reeves, G.; & Sacks, A.

(1999). Software architecture themes in JPL's

Mission Data System, Proc. of the AIAA Guidance,

Navigation, and Control Conference, Portland, OR.

FIPA (2005). Foundation for Intelligent Physical Agents,

http://www.fipa.org/.

Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J.

(1995) Design Patterns, Elements of Reusable

Object-Oriented Software, Addison-Wesley

Professional Computing Series.

Garlan, D. & Shaw, M. (1996). Software Architecture:

Perspectives on an Emerging Discipline, Prentice

Hall.

Gerkey, B.; Vaughan, B.; & Howard, A. (2003). The

Player/Stage Project: Tools for Multi-Robot and

Distributed Sensor Systems, International Conference

on Advanced Robotics, pages 317-323, Portugal.

Goldberg, S.; Maimone, M.; & Matthies, L. (2002).

Stereo Vision and Rover Navigation Software for

Planetary Exploration, Proceedings of the IEEE

Aerospace Conference, pp 2025-2036.

Huntsberger, T.; Aghazarian, H.; et.al. (2002). Rover

Autonomy for Long Range Navigation and Science

Data Acquisition on Planetary Surfaces, IEEE

International Conference on Robotics and

Automation, Washington, DC, pp. 3161-3168

Jain, A.; Balaram, J.; Cameron, J.; Guineau, J.; Lim, C.;

Pomerantz, M.; & Sohl, G. (2004). Recent

Developments in the ROAMS Planetary Rover

Simulation Environment. IEEE Aerospace

Conference, Montana, 2004.

JAUS (2005). Joint Architecture for Unmanned Systems

Reference Architecture, Version 3.0, http://www.

jauswg.org/.

Kapoor, C; & Tesar, D. (1998). A Reusable Operational

Software Architecture for Advanced Robotics, CSIM-

IFToMM Symposium on theory and Practice of

Robots and Manipulators, Paris, France.

Mishkin, A.; Morrison, J.; Nguyen, T., Stone H.;

Cooper, B.; & Wilcox, B. (1998) Experiences with

Operations and Autonomy of the Mars Pathfinder

Microrover, IEEE Aerospace Conference, Colorado.

Musliner, D.; Durfee, E. & Shin, K. (1993) IRCA: A

Cooperative Intelligent Real-Time Control

Architecture. IEEE Transactions on Systems, Man

and Cybernetics, 23:6, 1993.

Nesnas, I.A., Wright, A., Bajracharya, M., Simmons, R.,

Estlin, T., Kim, W.S. (2003) CLARAty: An

Architecture for Reusable Robotic Software, SPIE

Aerosense Conference, Florida.

OROCOS (2005) http://www.orocos.org/

Pardo-Castellote, G.; Schneider, S.; Chen, V.; and

Wang, H. (1998) ControlShell: A software

architecture for complex electromechanical systems,

Int’l Journal of Robotics Research, 17(4).

Roumeliostis, S.; Johnson, A.; & Montgomery, J. (2002)

Augmenting Inertial Navigation with Image-Based

Motion Estimation. IEEE International Conference on

Robotics and Automation, Washington D.C.

Simmons, R.; & Krotkov, E. (1995). Experience with

Rover Navigation for Lunar-Like Terrains,

Conference on Intelligent Robots and Systems.

Volpe, R.; Nesnas, I.A.; Estlin, T.; Mutz, D.; Petras, R.;

& Das, H. (2001) The CLARAty Architecture for

Robotic Autonomy. IEEE Aerospace Conference,

Montana,

Volpe, R.; Balaram, J.; Ohm, T.; & Ivlev, R. (1997).

Rocky 7: A Next Generation Mars Rover Prototype.

Journal of Advanced Robotics, 11(4).

