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We mainly focused on the magnetocapacitance e	ect of Fe3O4-PDMS nanocomposites. We also proposed the preparation method
and measured microstructures, magnetic properties, and magnetocapacitance value of the nanocomposites. �e magnetoca-
pacitance measurement results show that the nanocomposites have magnetocapacitance property, the magnetocapacitance with
magnetic 
eld depends on the magnetic property, and the value at the samemagnetic 
eld is increasing with the volume fraction of
Fe3O4 nanoparticles.�emagnetocapacitancemodel is proposed to explain this phenomenonby analyzing themagnetic interaction
between particles and the viscoelasticity of PDMS. We also calculated the theoretical capacitance value of all samples using the
magnetization of nanoparticles and mechanical parameters of PDMS. From the theoretical values, it is concluded that the model
we proposed can well explain the magnetocapacitance e	ect of Fe3O4-PDMS nanocomposites.

1. Introduction

Materials with magnetocapacitance e	ect are promising for
advanced applications in magnetic 
eld sensors, data storage,
and microwave communication devices [1–3]. Currently,
main attention has been paid to the magnetocapacitance
composites with magnetoelectric coupling, which consist of
piezoelectric phase and piezomagnetic or magnetostrictive
phase, such as CFMO-PBT, CFO-KNN, and Terfenol-D-
PZT [4–9]. Recently, magnetocapacitance nanocomposites
without magnetoelectric coupling composed of magnetic
nanoparticles and polymer have also been reported [10, 11].
However, most of the studies on the composite have focused
on the magnetocapacitance e	ect at radio frequencies [12]
and the variation of magnetocapacitance with magnetic 
eld
at lower frequency electric 
eld and the mechanism of
magnetocapacitance e	ect are rarely discussed. Further, this
magnetocapacitance e	ect is very signi
cant for designing
magnetic 
eld sensors and actuators with novel mechanism.

Fe3O4 nanoparticles have wide applications because of
their good electrical and magnetic characteristics, such as
drug delivery and magnetic resonance imaging (MRI) [13,
14]. �ere are also plenty of studies on synthesis and prop-
erties of the particles in recent papers [15–17]. Polydimethyl-
siloxane (PDMS) is mainly used in microuidic devices due
to its biocompatibility and easy fabrication [18, 19]. Recently,

researchers also have reported conducting property of the
composites with PDMS and silver or carbon nanoparticles
[20–22].

In this study, we investigated the magnetocapacitance
e	ect of Fe3O4 nanoparticles-PDMS composite at lower fre-
quency (200 kHz). Firstly, the composite preparationmethod
is introduced, and samples with di	erent volume fraction of
nanoparticles are prepared. �en. the variation of the com-
posite magnetocapacitance dependence of magnetic 
eld is

studied. Finally, the model of composite magnetocapacitance
e	ect is also analyzed.
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Table 1: Experimental compositions and volume fractions of
nanoparticles.

Sample number
Fe3O4 particle size

(nm)
Particle content

(vol%)

1 200 20

2 200 17

3 200 13

4 200 9

5 200 5

6 (Pure PDMS) — —

2. Experimental Section

In this experiment, Fe3O4 particles (200 nm, 99%) were used
(Beijing DK Nanotechnology, china). Sylgard 184 Silicone
from (DowCorning,MI,USA)was chosen as PDMSpolymer
matrix. All materials were used as received.

�e preparation procedure of Fe3O4-PDMS nanocom-
posite was as follows. First, Fe3O4 particles wereweighted and
mixed with alcohol, and then the suspension was sonicated
for about 10min. Amount of PDMS was added to the
suspension. A�er a stirring of about 15min, the mixture
was dried at 100∘C for 1 h in a vacuum for evaporating all
alcohol. �e curing agent was added with the ratio of 10 : 1 of
PDMS to curing agent and stirred for 10min.�e prepolymer
mixture was dropped into a square module with a size of
15mm × 15mm × 1.5mm, degassed at ambient temperature
under vacuum for 30min to remove any air bubbles, and
then cured for 2 h at 90∘C in air atmosphere. A�er curing,
the nanocomposite 
lm was peeled o	 from the module. �e
detail experimental compositions are shown in Table 1.

Microstructures of the prepared samples were examined
by scanning electron microscope (SEM, Quanta 250 FEG).
Magnetic properties of particles and nanocomposites were
investigated using superconducting quantum interference
device (SQUID, MPMS-XL-7) magnetometry. Elastic mod-
ulus of PDMS was measured by dynamic thermomechani-
cal analysis (DMA, SDTA861e) at ambient temperature. In
order to determine the magnetocapacitance properties of
the nanocomposite, the 
lm samples were fabricated to be
parallel plate capacitor with copper electrode and shielding
shell. �e magnetic 
eld dependence of the capacitance was
measured in the magnetic 
eld range of −10 Gs to 10 Gs at
the frequency of 200 kHz using an Agilent high-precision
LCR meter (HP4284A). �e magnetic 
eld was applied by
electromagnet (EMP3, East Changing Technologies). �e
scheme of the experimental setup is depicted in Figure 1.

3. Results and Discussion

3.1.�e Characterizations of Fe3O4 Particles and Fe3O4-PDMS
Nanocomposites. �e SEM micrographs of sample number 1
are shown in Figure 2. �e particles are equally distributed
in the composite materials with the average size of 200 nm.
Figure 3 shows magnetization at the room temperature as a

(d)

(b)

(a) (c)

LRC meter

Figure 1:�e scheme of the experimental setup: (a) nanocomposite;
(b) Cu electrode; (c) Cu shielding shell; (d) electromagnet.

Figure 2: Scanning electron microscope (SEM) photographs of
sample number 1.
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Figure 3: Variation ofmagnetization with appliedmagnetic 
eld for
200 nm Fe3O4 nanoparticles (Nps) and sample number 1 at ambient
temperature.
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Figure 4: Variation of magnetocapacitance with applied magnetic

eld for all samples. Inset: an ampli
cation of the curve for sample
number 1.

function of appliedmagnetic 
eld for 200 nmFe3O4 nanopar-
ticles and sample number 1. �ere is hysteresis present for
Nps and nanocomposites with the same coercivity of 90Oe,
which is consistent with ferrimagnetic behavior. When the
magnetic 
eld exceeds 2 kGs, their magnetization would be
saturated. However, the magnetic permeability and the satu-
ration magnetization of the nanocomposites are smaller than
that of the particles, because there is nonmagnetic material
in the nanocomposites. �erefore, we can conclude that the
magnetic properties of magnetocapacitance nanocomposites
depend on themagnetic properties ofmagnetic nanoparticles
in the nanocomposites.

3.2. Magnetocapacitance Properties of the Fe3O4-PDMSNano-
composites. For analyzing the magnetocapacitance e	ect of
nanocomposite, we have measured the magnetic 
eld depen-
dences of the capacitance of all samples at the frequency
of 200 kHz. During the measurements, the magnetic 
eld
and the electric 
eld are parallel. At one measurement, the
magnetic 
eld starts at 10 kGs and gradually decreases to−10 kGs (de
ned as decreasing cycle) and then gradually
increases to 10 kGs back (de
ned as increasing cycle).

Figure 4 shows the variation of di	erence capacitance
with applied magnetic 
eld. �e magnetocapacitance (MC)
e	ect is de
ned as [Cp(H) − Cp(0)], where Cp(H) and
Cp(0) are the capacitance at magnetic 
eld H and zero

eld. Here, magnetocapacitance was found to increase with
increasing the magnetic 
eld for all samples, which illus-
trates that Fe3O4-PDMS nanocomposites have magnetoca-
pacitance property. �e sample with higher volume fraction
of nanoparticles has bigger magnetocapacitance, and the
magnetocapacitance e	ect was not observed in the sample of
pure PDMS.When themagnetic 
eld exceeds 2 kGs, themag-
netocapacitance of all samples would be saturated. It can be
seen from the inset of Figure 4 that the magnetocapacitance

of the composite did not reach the minimum at zero 
eld,
but the magnetocapacitance minimum is at −90Gs when
the magnetic 
eld decreases from 10 kGs to −10 kGs and is
also at 90Gs when the magnetic 
eld increases from −10 kGs
to 10 kGs. It can be seen that the magnetocapacitance e	ect
for nanocomposite with magnetic 
eld is similar to that for
nanoparticles.

3.3. �e Magnetocapacitance E	ect Mechanism of Fe3O4-
PDMS Nanocomposite. �e capacitance dependence of the
magnetic 
eld is mainly induced by the magnetostriction
e	ect of Fe3O4-PDMS nanocomposite. We assumed that the
particles are completely equally distributed in the composites.
When the magnetic 
eld is applied to the composites, the
arrangement of particles and the attraction between particles
are directed along magnetic 
eld vector. Because of the sim-
ilarity between the magnetic nanoparticles and the magnetic
dipole, the strength of the magnetic attraction force is given
by

� = −3�0�22��4 , � = 43��3�. (1)

Here, � is the distance between the two particles dipole, � is
the radius of the particle, � is the magnetic induction of the
particle, and �0 is the permeability of vacuum.

Due to the viscoelasticity of PDMS which is the matrix of
the nanocomposite, the motion of particles in the composites
induced by applied magnetic 
eld depends on elastic force,
viscous force of PDMS, and the attraction force between
two adjacent particles. �e viscoelasticity of PDMS can be
depicted as Kelvin model which contains parallel spring and
damper.�e particles are supposed as spherical. According to
Stokes Law, the motion of dipoles with magnetic 
eld can be
described as follows:

�� 	2�	
2 + 6���	�	
 + ��2�� −  = −8��0�6�23�4 , (2)

in which ��, �, �, , and � are the mass of one particle, the
viscosity of PDMS, the elasticitymodulus of PDMS, themean
mutual distance between the two adjacent particles at zero

eld, and the distance between the two neighboring particles
with applying magnetic 
eld in the direction of magnetic

eld, respectively.

If the particles are completely equally distributed in the
composites, the mean mutual distance between the two
adjacent particles at zero 
eld is given by

 = 3√��	0� = 3√ 4�3Φ�, � = ��	0Φ(4/3) ��3 , (3)

in which � is the length of the sample, � is the width of the
sample, 	0 is the thickness of the sample at zero 
eld,Φ is the
volume fraction of the nanoparticles, and � is the number of
particles in the sample.
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�e distance � can be de
ned as

� =  + Δ, (4)

inwhichΔ is the distance variation between particles induced
by applied magnetic 
eld.

�erefore, (2) can be rewritten as follows by substituting
(4) for � in (2):

�� 	2Δ	
2 + 6���	Δ	
 + ��2�Δ = −8��0�
6�2

3( + Δ)4 . (5)

It is known that �� ≈ 2.09 × 10−17 kg and the 
rst
term of (5) becomes negligible with respect to the others. For
simplifying (5), we use Taylor expansion method to rewrite
the right part of the equation.�evariation distanceΔ is small
enough to make the higher order Taylor expansion terms be
also negligible. Accordingly, (5) becomes

6���	Δ	
 + ��2�Δ ≈ −8��0�
6�23 ( 14 − 45Δ) . (6)

If a stable compressive stress is applied, the variation of
the strain with time for PDMS has the creep property and Δ
is given by

Δ = 0 (
 = 0; � ̸= 0) . (7)

Using the initial condition (7), the solution of (6)
becomes

Δ = 8�0�4�232�0�4�2 − 3�4 (1 − �
((32�0�5�2−3���4)/18	�5)
) . (8)

�e number of each chained particle directed along the
magnetic 
eld on the sample thickness can be calculated by

�� = 	0 . (9)

When 
 ̸= 0, � ̸= 0, the thickness of the sample 	 can be
approximated as

	 = (�� − 1) ( + Δ) ≅ 	0 (1 + Δ ) for �� ≫ 1. (10)

On the other hand, the capacitance of the sample is

 = !0!� ��	 = !0!� ��	0 (
 + Δ) , (11)

where !0 is the dielectrical permittivity of the vacuum and !�
is the relative permittivity of sample.

When the magnetization of the particles is zero, the
capacity of the sample is

 0 = !0!� ��	0 . (12)

Equation (13) describing the variation of the capacitance
of the sample with the magnetization of particles and time
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Figure 5: Variation of experimental and theoretical capacitance
with magnetic 
eld for sample number 1. Le� inset: an ampli
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of experimental data. Right inset: an ampli
cation of theoretical
data.

of magnetic 
eld can be obtained by substituting (8) and (11)
into (12), as follows:

 =  0 (  + Δ)
=  0 ((32�0�2 − 3�( 4�3Φ)

4/3)
× (40�0�2 − 3�( 4�3Φ)

4/3

− 8�0�2�((32�0�2−3�(4/3Φ)4/3)/18	(4/3Φ)5/3)
)
−1) .
(13)

�erefore, we can conclude from (13) that the magneto-
capacitance variation of nanocomposites with magnetic 
eld
depends on the elastic module and the viscosity of PDMS;
it also depends on the magnetic property and the volume
fraction of nanoparticles.

We can know that elastic modulus of PDMS is 6.72Mpa
and viscosity is 5.09 × 103 Pa⋅s by using DMA. We can also
obtain the magnetic induction � of nanoparticles at di	erent
magnetic 
eld from the hysteresis loop of nanoparticles in
Figure 3. Accordingly, we can calculate the capacitance of
the samples with di	erent volume fraction of nanoparticles
at 
 = 10 s by using (13). Figure 5 shows the variation of
experimental and calculated capacitance value withmagnetic

eld for sample number 1. Figure 6 shows the variation
of calculated magnetocapacitance with applied magnetic

eld for samples with various volume fractions. It is clear
from these 
gures that the variation of experimental and
calculated capacitance value withmagnetic 
eld has the same
characteristic and the deviation between the experimental



Journal of Nanomaterials 5

20 vol% 9 vol%
17 vol% 5 vol%

13 vol% 0 vol%

Magnetic �eld (kGs)

0 5 10

0

2

4

6

8

10

12

14

16

−10 −5

C
p
(H

)
−
C
p
(0
)

(f
F

)

Figure 6: Variation of calculated magnetocapacitance with applied
magnetic 
eld for samples with various volume fraction.

and calculated capacitance value is smaller, which is caused
by the unknown measurement errors. In conclusion, the
proposed model can describe the magnetocapacitance e	ect
of Fe3O4-PDMS nanocomposites well.

4. Conclusions

In this paper, Fe3O4-PDMS nanocomposites are prepared.
�e morphology characteristics, magnetic property, and
magnetocapacitance e	ect are investigated. By analyzing
the viscoelasticity of PDMS and the magnetic interac-
tion between particles, the magnetocapacitance model of
nanocomposites is also proposed. �e particles are equally
distributed in the compositematerials with the average size of
200 nm.�e magnetic properties of nanocomposites depend
on the magnetic properties of nanoparticles. �e magne-
tocapacitance e	ects of nanocomposites are observed. �e
velocity, hysteresis, and saturation value of the variation of
the magnetocapacitance with applied magnetic 
eld depend
on the magnetic property and the volume fraction of Fe3O4
nanoparticles. �e magnetocapacitance model shows that
the variation of magnetocapacitance also depends on the
elastic module and the viscosity of PDMS. By comparing
the calculated value with experimental value, we demonstrate
that themodel canwell explain themagnetocapacitance e	ect
in Fe3O4-PDMS nanocomposites.
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