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ABSTRACT
Estimates of the Hubble constant, H0, from the local distance ladder and the cosmic
microwave background (CMB) are discrepant at the ∼3-σ level, indicating a potential
issue with the standard ΛCDM cosmology. Interpreting this tension correctly requires
a model comparison calculation which depends on not only the traditional ‘n-σ’ mis-
match but also the tails of the likelihoods. Determining the form of the tails of the
local H0 likelihood is impossible with the standard Gaussian or least-squares approx-
imation, as it requires using non-Gaussian distributions to faithfully represent anchor
likelihoods and model outliers in the Cepheid and supernova (SN) populations, and
simultaneous fitting of the complete distance-ladder dataset to ensure correct propaga-
tion of uncertainties. We have hence developed a Bayesian hierarchical model (BHM)
that describes the full distance ladder, from nearby geometric-distance anchors through
Cepheids to SNe in the Hubble flow. This model does not rely on any of the underlying
distributions being Gaussian, allowing outliers to be modeled and obviating the need
for any arbitrary data cuts. Sampling from the full ∼3000-parameter joint posterior
distribution using Hamiltonian Monte Carlo and marginalizing over the nuisance pa-
rameters (i.e., everything bar H0), we find H0 = (72.72 ± 1.67) km s−1 Mpc−1 when
applied to the outlier-cleaned Riess et al. (2016) data, and (73.15± 1.78) km s−1 Mpc−1

with SN outliers reintroduced (the pre-cut Cepheid dataset is not available). Our high-
fidelity sampling of the low-H0 tail of the distance-ladder posterior allows us to apply
Bayesian model comparison to assess the evidence for deviation from ΛCDM. We set
up this comparison to yield a lower limit on the odds of the underlying model be-
ing ΛCDM given the distance-ladder and Planck Collaboration (2016b) CMB data.
The odds against ΛCDM are at worst 10:1 when considering the outlier-free distance-
ladder data, or 7:1 when the SNe outliers are included and modeled, both consider-
ably less dramatic than näıvely implied by the 2.8-σ discrepancy. These odds become
∼60:1 when an approximation to the more-discrepant Planck Collaboration (2016c)
likelihood is included. The code used in this analysis is made publicly available at
https://github.com/sfeeney/hh0.

Key words: keyword1 – keyword2 – keyword3

1 INTRODUCTION

The current expansion rate of the Universe is parametrized
by the Hubble constant, denoted H0 = 100 h km s−1 Mpc−1,
with h ≃ 0.7. As it characterizes both the overall extra-
Galactic distance scale and the current age of the Universe,
the Hubble constant is one of the most important observable

⋆ E-mail: sfeeney@simonsfoundation.org (SMF)

quantities in cosmology, and so considerable resources have
been devoted to measuring H0 as precisely as possible using
a variety of independent methods.

One appealingly direct route to measuring H0 is to
exploit local geometric distance measurements to calibrate
brighter objects with known luminosity distances, working
up through the distance ladder to objects with cosmological
redshifts (see, e.g., Freedman et al. 2001, Riess et al. 2009,
Riess et al. 2011, Freedman et al. 2012 and Riess et al. 2016,
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and Freedman & Madore 2010 for a review). By combining
absolute distance measurements of NGC 4258, the Large
Magellanic Cloud (LMC) and Milky Way (MW) Cepheids
with observations of Cepheids in NGC 4258 and more dis-
tant galaxies in which supernovae (SNe) have been identi-
fied, Riess et al. (2016) (hereinafter R16) have determined
that H0 = (73.24±1.74) km s−1 Mpc−1. This 2.4% relative un-
certainty uncertainty includes both the random ‘statistical’
contribution from measurement errors and the finite sam-
ple sizes along with the systematic contribution that arises
from, e.g., imperfect knowledge about the Cepheid period-
luminosity-metallicity (P-L-Z) relationship. The most im-
portant aspect of this (and any other) local H0 measurement
is that all the sources involved are within ∼ 1 Gpc, and so
constitute a measurement of the current expansion rate of
the Universe that is almost completely independent of the
cosmological expansion history.

It is also possible to measure – or at least extrapo-
late – a value for H0 from cosmological (i.e., higher red-
shift) measurements if certain assumptions are made about
the cosmological model. The most precise cosmological es-
timates of H0 at present are based on cosmic microwave
background (CMB) observations, which measure an angular
scale for the peaks in the power spectrum that are asso-
ciated with known physical scales at recombination. This
can then be linked to the current expansion rate by ei-
ther assuming or inferring the cosmological expansion his-
tory in the time since recombination. Adopting the stan-
dard spatially-flat ‘ΛCDM’ model, in which the cosmologi-
cal expansion is dominated by a cosmological constant and
cold dark matter, the Planck Collaboration (2016c) used
systematics-cleaned large-scale polarization CMB measure-
ments to obtain H0 = (66.93 ± 0.62) km s−1 Mpc−1.

That the locally-measured and CMB-derived estimates
of H0 agree to within ∼ 7% is a remarkable success for mod-
ern observational cosmology, but the quoted uncertainties
are considerably smaller than this difference, implying dis-
crepancy at the 3.4-σ level. This disagreement could indicate
new physics beyond ΛCDM (see, e.g., Planck Collaboration
2016b for a discussion), but of course there remains the pos-
sibility that the explanation is more prosaic, and that there
is instead a problem with the assumptions leading to one (or
both!) of these two estimates. Reanalyses of the cosmolog-
ical data have focused on Planck’s consistency, both inter-
nally and with external datasets (Spergel et al. 2015; Addi-
son et al. 2016), identifying splits in the data that produce
conflicting cosmological conclusions (though see also Planck
Collaboration 2016a). One aspect of the local estimates that
has come under scrutiny is the treatment of the Cepheid
data: Efstathiou (2014) argued that an improved approach
to outlier rejection applied to the Riess et al. (2011) data
produced a lower estimate of H0 = (72.5 ± 2.5) km s−1 Mpc−1,
reducing the disagreement to 1.9-σ; and Cardona et al.
(2016) used a heavier-tailed distribution to model the in-
trinsic width of the P-L-Z relation to obviate the need for
outlier removal, leading to results that are consistent with
those obtained by R16. More recently, Zhang et al. (2017)
introduced a formalism for blind inference of H0, minimiz-
ing human-induced bias in the analysis at the cost of a
∼30% increase in the uncertainty on H0. The estimate of
H0 obtained by applying this method to the Riess et al.
(2011) data remained significantly higher than the Planck

value, implying that the discrepancy is not a product of hu-
man biases. Varying the treatment of Cepheid extinction
and colours (Follin & Knox 2017) and replacing the optical
SNe photometry with near-infrared observations (Dhawan
et al. 2017) similarly yield H0 estimates consistent with R16.
Rigault et al. (2015) found that the dependence of SN lu-
minosity on local star-formation rate could bias H0 high by
almost 3 km s−1 Mpc−1, thus apparently explaining much of
the tension; however, a similar analysis with a larger SN
sample, selected using the same cuts employed in cosmolog-
ical analyses, found no significant effect (Jones et al. 2015).
Cosmic variance has also been investigated as a potential ex-
planation for the different H0 estimates, and while this does
have an effect it is too small to provide an explanation (Wu
& Huterer 2017).

Another possible resolution is more purely statistical in
nature, as the figures given above – particularly the mea-
sure of discrepancy – implicitly assume Gaussian statistics
for the two H0 estimates, leaving interpretation of the de-
rived discrepancy measure open to error. Another signifi-
cant statistical limitation of the R16 approach is that the
Cepheid and SN data are processed separately, whereas the
structure of the distance ladder means that there is potential
for significant shrinkage (i.e., reduction in uncertainties) if
a global approach is adopted (see also Zhang et al. (2017)).
These issues are addressed in this paper, starting with a
purely statistical demonstration that the significance of the
apparent discrepancy is driven by the strength of the tails
of the (posterior) distributions of the two H0 measurements
(Section 2), not just the separation between the peaks, and
hence that the correct assessment of any discrepancy re-
quires knowledge of these full distributions. The rest of the
paper describes a fully Bayesian formalism for inferring the
local value of H0, which requires the development of a gen-
erative hierarchical model for the MASER, Cepheid and SN
data that can incorporate outliers (Section 3). The existing
analysis methods are cast as special cases of our formalism
(Section 4), but a sophisticated sampling approach is neces-
sary to utilize the full model (Section 5). The R16 sample
(Section 6) is used as the basis for simulations (Section 7)
and then analyzed in full (Section 8). Our conclusions and
possible extensions to this work are then summarized (Sec-
tion 9).

2 HUBBLE CONSTANT DISCREPANCIES

The most important question to be addressed here is sta-
tistical in nature: how probable is it that the ΛCDM model
can be rejected given that the Hubble constant inferred from
cosmological datasets by assuming ΛCDM differs from the
locally measured expansion rate? The data on the local ex-
pansion rate, dl, can be summarized by the estimated value
ĥl = 0.7324 and its associated uncertainty of σl = 0.0174 from
R16; the cosmological data, dc, can be summarized by the
implied estimate ĥc = 0.6693 and its associated uncertainty
of σc = 0.0062 from the Planck Collaboration (2016c).1 The

1 For brevity and clarity, in this section we use the dimension-
less quantity h rather than H0. When discussing simulations and
results, we will revert to H0.
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fact that
��ĥl − ĥc

��
(
σ2

l
+ σ2

c

)1/2
≃ 3.4, (1)

leads to the statement that there is a 3.4-σ discrepancy.
But, reported in this way, the quantification of the putative
discrepancy is heuristic in nature; what is really needed is
statement of how probable it is, given the available data and
other assumptions, that these two values are inconsistent.

A tempting – and commonly used – option would be to
apply a classical hypothesis test, adopting the null hypoth-
esis Λ, that ΛCDM holds and so the standard analysis of a
cosmological dataset would yield a valid estimate of h. The
(two-tailed) p-value corresponding to 3.4σ is an apparently
decisive 0.00067, well below the 5% threshold often used to
denote a ‘significant’ result, although obviously less than the
more stringent 5-σ level that is the standard for a detection
in, e.g., particle physics. However, this value is potentially
misleading for two distinct reasons: it rests on the assump-
tion that the tails of the two sampling distributions (i.e.,
the likelihoods) are Gaussian; and, more fundamentally, in-
terpretation of the p-value is made difficult by the fact it is
calculated under the assumption that the null hypothesis is
true. The quantitative effect of this is to penalize the null hy-
pothesis too strongly in most cases. This is straightforward
to show theoretically if the sampling distribution is (close to
being) Gaussian, (e.g., Berger & Delampady 1987) and has
also been observed empirically in numerous cases (Johnson
2013).

Both of these issues can be addressed by using the for-
malism of Bayesian model comparison to assess the relative
support for two distinct models: Λ, in which ΛCDM holds,
and so analysing a CMB dataset in the standard way would
yield an estimate of H0 that is consistent with the local value;
and Λ̄, in which some other process influences the expansion
history and so the standard analysis of CMB data would
yield an estimate of H0 that does not correspond to the cur-
rent expansion rate. Bayes’s theorem, combined with the law
of total probability, implies that the (posterior) probabilities
of the two models are

Pr(Λ̄|dl, dc) =

[
1 +

1 − π
Λ̄

π
Λ̄

Pr(dl, dc |Λ)

Pr(dl, dc |Λ̄)

]−1

, (2)

Pr(Λ|dl, dc) = 1 − Pr(Λ̄|dl, dc), (3)

where π
Λ̄

is the prior probability ascribed to the Λ̄ model,
dl and dc are the local and cosmological datasets, and
Pr(dl, dc |Λ) and Pr(dl, dc |Λ̄) are the (marginal2) likelihoods
under the two models. Both models have unspecified pa-
rameters: they share h, the true value of Hubble’s constant
that gives the current expansion rate of the Universe; but Λ̄
has a second parameter, here denoted as ∆, which is defined
as how much the estimated value of Hubble’s constant in-
ferred by assuming ΛCDM would differ from the true value.
So perfect cosmological data would yield ĥc = h + ∆, and
so comparing the local measurements with the Planck data
näıvely implies that ∆ ≃ −0.06.

2 The marginal likelihood is also referred to as the model-
averaged likelihood or, particular in astronomy, as the (Bayesian)
evidence.

The marginal likelihood of each model is obtained by
integrating over its parameters:

Pr(dl, dc |Λ) =

∫ ∞

0
dh Pr(h|Λ)Pr(dl |h)Pr(dc |h), (4)

where Pr(h|Λ) is the prior distribution for h; and

Pr(dl, dc |Λ̄)

=

∫ ∞

0
dh

∫ ∞

−∞
d∆Pr(h,∆|Λ̄)Pr(dl |h)Pr(dc |h + ∆) (5)

=

∫ ∞

0
dh Pr(h|Λ̄)Pr(dl |h)

∫ ∞

−∞
d∆Pr(∆|Λ̄)Pr(dc |h + ∆),

where the second expression follows from assuming that
the prior on h and ∆ can be factorized as Pr(h,∆|Λ̄) =

Pr(h|Λ)Pr(∆|Λ̄). Assuming that the prior on h is the same
for the two models is reasonable scientifically and convenient
mathematically as it means that Λ and Λ̄ are nested models,
with Λ being reproduced within Λ̄ by setting ∆ = 0. As Λ̄ has
more flexibility it inevitably provides a better optimal fit to
the data than Λ; but this also means it is less predictive than
the simpler Λ model. The trade-off between these two effects
is captured by the Bayes factor, B = Pr(dl, dc |Λ)/Pr(dl, dc |Λ̄),
although the main focus here will be on the posterior prob-
ability of Λ as defined in Eq. (3).

Evaluating Pr(Λ|dl, dc) is dependent on several distinct
inputs: a value for π

Λ̄
; forms for the parameter prior distri-

butions, Pr(h|Λ) and Pr(∆|Λ̄); and forms for the likelihoods
Pr(dl |h) and Pr(dc |h + ∆). The main focus of this paper is
the actual form of these likelihoods as implied by the avail-
able measurements, so generic, but plausible, assumptions
are made for the other inputs. In this case adopting differ-
ent values of π

Λ̄
could be used to state a degree of faith

in the standard cosmological model, with the required level
of evidence in favour of model Λ̄ being raised or lowered
accordingly.

There is no compelling form for the parameter prior
distributions, but whatever forms are adopted should encode
what is known about these quantities while being sufficiently
generic that minimal extra information is injected into the
problem. As h is common to both models, the values adopted
for its prior centre and width have only a minor effect on
the calculation, provided that Pr(h|Λ) is reasonably constant
over the range 0.65<∼ h <∼ 0.75 demanded by the data. That
can be achieved here by adopting priors of the form

Pr(h|Λ) = N(h; hπ, σ
2
h
), (6)

where N(x; µ, σ2) is the standard normal distribution
(Eq. A2) in x with mean µ and variance σ2. The default
option is to take hπ ≃ 0.7 and σh ≃ 0.06, where the prior
sensitivity can still be checked by adopting other values for
these two parameters. Conversely, ∆ is allowed to be non-
zero only in Λ̄, and its prior should therefore be chosen with
a little more care. In the limit of a completely uninformative
(i.e., broad) prior on ∆, Λ̄ is unpredictive, and its posterior
probability will tend to zero, independent of the data. If the
prior width is extremely small (and the prior is centered
on ∆ = 0), Λ̄ and Λ become indistinguishable. If, instead,
the prior is chosen such that the observed ∆ is likely, Λ̄ will
be favoured over Λ. This suggests casting Λ̄ as a designer
model: selecting a prior on ∆ of

Pr(∆|Λ̄) = N(∆; 0, σ2
∆
), (7)

MNRAS 000, 1–23 (2017)
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with σ∆ = 0.06 ≃ | ĥc − ĥl | to maximize the probability of the
alternative model (assuming we have no preference for the
sign of the difference between local and cosmological expan-
sion rates). Following this logic, we set πΛ = 0.5 (and hence
π
Λ̄
= 0.5 as well), the smallest value this should take, given Λ

is the de facto null model. That leaves the main focus on the
likelihoods, with results given for both the generic/simple
Gaussian assumption (Section 2.1) and heavier-tailed distri-
butions (Section 2.2).

2.1 Gaussian likelihoods

The default interpretation of the two primary Hubble con-
stant measurements is that the likelihoods are Gaussian, so
that Pr(dl |h) = N(ĥl; h, σ2

l
) and Pr(dc |h) = N(ĥc; h + ∆, σ2

c ),

where ĥl and σl are implicitly dependent on dl and ĥc and
σc are, similarly, dependent on dc. These Gaussian local and
cosmological likelihoods are plotted in Fig. 1 as solid purple
and dot-dashed gray lines, respectively. Inserting these ex-
pressions into Eq. (4) yields the marginal likelihood for the
simpler model as

Pr(dl, dc |Λ) =

∫ ∞

0
dh N(h; hπ, σ

2
h
)N(ĥl; h, σ2

l
)N(ĥc; h, σ2

c )

=

1

2π

1
√
σ2
h
σ2

l
+ σ2

h
σ2

c + σ
2
l
σ2

c

×

exp




−
1

2



(
hπ − ĥl

)2

σ2
h
+ σ2

l
+

σ2
h
σ2

l

σ2
c

+

(
hπ − ĥc

)2

σ2
h
+ σ2

c +
σ2
h
σ2

c

σ2
l

+

(
ĥl − ĥc

)2

σ2
l
+ σ2

c +
σ2

l
σ2

c

σ2
h






. (8)

For the more complicated model the marginal likelihood is,
from Eq. (5),

Pr(dl, dc |Λ̄) =

∫ ∞

0
dh N(h; hπ, σ

2
h
)N(ĥl; h, σ2

l
)×

∫ ∞

−∞
d∆N(∆; 0, σ2

∆
)N(ĥc; h + ∆, σ2

c )

=

1

2π

1
√
σ2
h
σ2

l
+ σ2

h

(
σ2

c + σ
2
∆

)
+ σ2

l

(
σ2

c + σ
2
∆

) ×

exp




−
1

2



(
hπ − ĥl

)2

σ2
h
+ σ2

l
+

σ2
h
σ2

l

σ2
c+σ

2
∆

+

(
hπ − ĥc

)2

σ2
h
+ σ2

c + σ
2
∆
+

σ2
h

(
σ2

c+σ
2
∆

)

σ2
l

+

(
ĥl − ĥc

)2

σ2
l
+ σ2

c + σ
2
∆
+

σ2
l

(
σ2

c+σ
2
∆

)

σ2
h






. (9)
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Figure 1. Example likelihoods used in pedagogical model com-
parison calculations: Gaussian local h measurement (purple
solid), Gaussian MASER distance (yellow long-dash), student-t
local h measurement with ν = 10 (pink short-dash) and Planck

CMB estimate (gray dot-dash).

These marginal likelihoods combine to give the Bayes factor

B =

√√√√√
σ2

c + σ
2
∆

σ2
c

σ−2
h
+ σ−2

l
+

(
σ2

c + σ
2
∆

)−1

σ−2
h
+ σ−2

l
+ σ−2

c

×

exp




−
1

2



−σ2
∆
σ2
h
σ2

l

(
hπ − ĥl

)2

σ2
c

(
σ2

c + σ
2
∆

) (
σ2
h
+ σ2

l
+

σ2
h
σ2

l

σ2
c

) (
σ2
h
+ σ2

l
+

σ2
h
σ2

l

σ2
c+σ

2
∆

) +

σ2
∆

(
1 +

σ2
h

σ2
l

) (
hπ − ĥc

)2

(
σ2
h
+ σ2

c +
σ2
h
σ2

c

σ2
l

) (

σ2
h
+ σ2

c + σ
2
∆
+

σ2
h

(
σ2

c+σ
2
∆

)

σ2
l

) +

σ2
∆

(
1 +

σ2
l

σ2
h

) (
ĥl − ĥc

)2

(
σ2

l
+ σ2

c +
σ2

l
σ2

c

σ2
h

) (

σ2
l
+ σ2

c + σ
2
∆
+

σ2
l

(
σ2

c+σ
2
∆

)

σ2
h

)






.

(10)

At first glance, these equations show that the marginal
likelihoods and Bayes factor depend solely, but rather
opaquely, on the prior widths and tensions between the val-
ues of h preferred by the prior and two likelihoods. In the
asymptotic regime that σh is much larger than σl, σc and
the differences between means, however, these forms simplify
greatly. The Bayes factor in particular becomes independent
of the prior on h, depending only on the tension between the
two measurements, their uncertainties, and the width of the
prior on ∆ as

B ≃

√√√
σ2

l
+ σ2

c + σ
2
∆

σ2
l
+ σ2

c

exp




−
1

2



σ2
∆

σ2
l
+ σ2

c + σ
2
∆

(
ĥl − ĥc

)2

σ2
l
+ σ2

c






.

(11)

The dependence of Pr(Λ|dl, dc) on the ‘tension’, | ĥc −
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P
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Λ
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c
)
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Figure 2. Top: posterior probability of our standard model, Λ,
versus ‘tension’ for increasingly heavy-tailed likelihoods (coloured
solid lines) and Gaussian MASER distance likelihood (gray dot-
dashed line). Bottom: as above, but plotted as a function of the
width of the prior on the difference between the local and cosmo-
logical h values.

ĥl |/(σ
2
c +σ

2
l
)1/2, is plotted in the top panel of Fig. 2 in dark

blue, assuming the prior choices detailed above. The tension
is varied by adjusting the mean of the cosmological likeli-
hood, keeping all other parameters fixed. Picking out the
observed tension between R16 and the Planck Collabora-
tion (2016c), 3.4, we see this corresponds to a Bayes factor of
0.017. The dependence of the model probability on the width
of the ∆ prior is plotted in the bottom panel of Fig. 2, with
the minimum in probability clearly located at prior widths
roughly equal to the observed discrepancy, corresponding
to the Λ̄ model designed to do just this. We would there-
fore state that the minimum posterior probability of Λ is
0.017 given these data. If instead we compare R16 with the
h estimated by the Planck Collaboration (2016b) – a ten-
sion of 2.8 – we find a Bayes factor of 0.12, or a minimum
model probability of 0.10. Though these model probabilities
strongly disfavour the standard model (by odds ratios of 1:60
and 1:10, respectively), they are much less extreme than the
corresponding p-values would suggest. Additionally, these
probabilities have a clear and unambiguous interpretation.

2.2 Non-Gaussian likelihoods

There is no fundamental reason why the h-dependence of ei-
ther the local or cosmological likelihood should be precisely
Gaussian. Deviations from Gaussianity in Pr(dl |h) for h ≃ ĥc

or in Pr(dc |h+∆) for h+∆ ≃ ĥl would affect the values of the
marginal likelihoods and hence the posterior probabilities of
the two models. To illustrate this we consider two plausible
examples of non-Gaussian likelihoods: that resulting from
a Gaussian uncertainty in the distance to a single anchor
(Section 2.2.1); and a generic heavy-tailed distribution (Sec-
tion 2.2.2).

2.2.1 Gaussian MASER distance

A concrete motivating example for a non-Gaussian form of
the local Hubble constant constraints would come about if
the distance ladder had just a single rung, in the slightly
artificial form of MASER with a perfectly known cosmo-
logical redshift. It is reasonable to assume that the mea-
surements of the MASER result in a likelihood of the
form Pr(dl |DM) = N(D̂M; D, σ2

M
), where the MASER dis-

tance estimate D̂M and the uncertainty σ2
M

are both im-
plicitly functions of the local data, dl. Given the known
(cosmological) redshift, zM, the natural estimate of h would
be ĥM = c zM/(H100 D̂M), with the associated uncertainty
σ̂h = σM/(c zM/H100), where H100 = 100 km s−1 Mpc−1. But
the MASER likelihood, treated as a function of h, would
not be Gaussian, instead having the form

Pr(dl |h) =
1

(2π)1/2 σM

exp



−
1

2

(
1/ĥ − 1/h

)2

σ̂2
h



(12)

∝ N(1/ĥM; 1/h, σ̂2
h
).

This likelihood is plotted as a yellow dashed line in Fig. 1,
choosing σ̂h such that the resultant h distribution’s variance
matches σ2

l
. The resulting skew towards higher values of h

results in an increased discrepancy between the local and
cosmological measurements, despite the fact that ĥl and σl

are unchanged. This effect is highlighted in Fig. 2, in which
the posterior probability of Λ is lower for the Gaussian DM

likelihood than the Gaussian ĥl likelihood except when the
local and cosmological estimates differ by less than 1-σ.

2.2.2 Heavy-tailed distribution

It is also instructive to consider a more generic heavy-tailed
distribution for the measurement of h. One flexible option is
a scaled and translated student-t distribution, T(x; µ, σ, ν),
defined in Eq. (A1). The likelihoods for the two datasets
are now Pr(dl |h) = T(ĥl; h, σl, νl) and Pr(dc |h,∆) = T(ĥc; h +

∆, σc, νc), where νl and νc encode how much heavier the tails
of the two likelihoods are relative to the idealized normal
model discussed in Section 2.1 (and recovered if ν → ∞).
An example likelihood with ν = 10 is plotted in Fig. 1 as a
pink short-dashed line. The standard deviation of this like-
lihood is only 11% larger than a Gaussian with the same
scale, but it predicts extreme events should occur with sig-
nificantly higher frequency. The marginal likelihoods must
now be calculated numerically, but this is simple within this
two-dimensional setup.
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The results of adopting this model are shown in Fig. 2
for a range of νl = νc = ν values, demonstrating in par-
ticular the expected effect that the null hypothesis, model
Λ, is much less strongly disfavoured if the likelihoods are
heavy-tailed. Taking the current tension between the local
and cosmological h estimates as an example, we see that Λ
is 15 times more probable if the two likelihoods are student-
t with ν = 2 than if they are Gaussian. The tails of the
local and cosmological h likelihoods play a critical role in
understanding the true tension between datasets. Assessing
this discrepancy therefore requires a method of calculating
these full distributions, rather than assuming them to be
Gaussian.

3 A GENERATIVE MODEL OF LOCAL
DISTANCE LADDER DATA

Motivated by the above demonstration that any assessment
of discrepancy between the local and cosmological estimates
of H0 is dependent on knowing the full form of the likeli-
hoods, we set about developing a method to determine this
for the local distance ladder. There are a number of options
for which rungs are used, but here we focus on the combi-
nation of MASERs, Cepheids and SNe used by Riess et al.
(2009, 2011, 2016) to estimate H0. Before even considering
how such a complicated dataset might be analyzed to esti-
mate H0, an important first step is to describe the links be-
tween the underlying parameters, observable quantities and
actual measured data. In statistical terms this means devel-
oping a generative model which, if it incorporated accurate
descriptions of all the relevant phenomena, could be used
to generate a realistic dataset that, in particular, predicts
outliers as well as the core distributions. Such a model must
hence describe both the relevant astrophysical objects and
the various measurement processes.

Such a model is inevitably complicated, and we start
by listing all the relevant quantities3 in Table 1. The links
between these quantities are illustrated, in the form of a di-
rected acyclic graph, in Fig. 3. The nodes of the graph consist
of: the observed data (double circles); the model parameters
describing individual objects (single circles); the astronom-
ical populations (blue and red rectangles); and, ultimately,
the cosmological parameters, including H0. The links be-
tween these quantities are, in general, stochastic, and so de-
scribed by probability distributions (orange rectanges) that
describe both astrophysical phenomena (most obviously the
intrinsic scatter of the Cepheid P-L-Z relationship) and mea-
surement processes.

Visualizing the distance ladder in this way is enlighten-
ing for two distinct reasons. Reading the model ‘forwards’
(i.e., starting at the top of Fig. 3 and moving down) reveals
the data generation process, starting with global parameters,
moving through populations to individual objects and then
finally to actual measured quantities. This is the generative
model for the data, which could be used to create simula-
tions. Reading the model ‘backwards’ (i.e., starting with the
data at the bottom and moving upwards) demonstrates the

3 The notation used here differs from that adopted by R16 as

additional parameters are required here. Both our notation and
that used by R16 are listed in Table 1.

structure of the data analysis task that allows the global pa-
rameters of interest to be inferred from the measurements
of the anchors, Cepheids and SNe. This provides the basis
for the Bayesian formalism described in Section 5.

The distance ladder has three main components:

(i) Objects with geometrical distance measurements, or
anchors (the left-most of the three blue rectangles in Fig. 3).
Three types of anchors are employed in R16’s preferred
analysis: the absolute distance to NGC 4258 inferred from
MASER measurements by Humphreys et al. (2013); paral-
laxes of 15 Milky Way Cepheids (van Leeuwen et al. 2007;
Riess et al. 2014; Casertano et al. 2016); and the absolute
distance to the LMC, derived from detached eclipsing binary
observations (Pietrzyński et al. 2013).

(ii) The periods, metallicities and (average) apparent We-
senheit magnitudes (Madore 1982) of a large number of
Cepheids in galaxies which are either anchors or which
host a Type Ia SN (the middle of the three blue rectan-
gles in Fig. 3). Observing these Cepheid properties allows
inference of their luminosity (and hence distance) via the
Cepheid period-luminosity relationship (Leavitt 1908; Leav-
itt & Pickering 1912) or Leavitt Law, which has since been
extended to (potentially) also include metallicity depen-
dence (Freedman & Madore 2011).

(iii) Type Ia SNe in both the Cepheid host galaxies and
more distant galaxies in the Hubble flow (the right-most
of the three blue rectangles in Fig. 3). The final catalogue
represents a set of SNe with cosmological redshifts and peak
magnitudes calibrated to one or more absolute distance mea-
sures. Comparing the redshift measurements of these galax-
ies with their SN distances yields a tight bound on the Hub-
ble constant.

At the heart of the distance ladder lie a small number
of equations. The distance, di , and parallax, πi , of the ith

anchor host are related to its distance modulus, µi , by

µi = 5 log10

(
di

pc

)
− 5 = −5 log10

( πi
arcsec

)
− 5 − ∆MLK

i (13)

where ∆MLK
i

is a bias correction proposed by Lutz & Kelker
(1973) to account for the preferential scattering of distant
stars into parallax surveys. The distance modulus relates a
source’s apparent and absolute magnitudes via µ = m − M.

The observed correlation between the period, pi j , metal-

licity, Zi j , and apparent magnitude, mc
i j
, of the j th Cepheid

in the ith host can be written as

mc
i j = µi + Mc

+ sp log10(pi j ) + sZ log10 Zi j (+∆mcal
i ), (14)

where Mc is the absolute magnitude of a Cepheid with a
one-day period and solar metallicity, and ∆mcal

i
is an arti-

ficial zero-point offset potentially introduced by observing
Cepheids in different hosts with different instruments. The
observed scatter around Equation 14 is typically assumed
to be normally distributed around zero with standard devi-
ation σint, c, though the presence of outliers (e.g., crowded
or anomalous Cepheids) may alter the precise form of this
distribution. If sigma clipping is employed to remove out-
liers, this distribution should strictly be truncated. We do
not include a break in the period slope (Ngeow & Kanbur
2005; Kodric et al. 2015) in this analysis, as R16 find no
evidence for this; it is simple to add if required.
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c

ij, s
p, sZ ,M c, σint, c)

Pr(µ) Pr(M s)

x̂s

i x̂s

iẐc
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Ẑc

ij

βs

Pr(ms

i|µi, x
s

i, c
s

i,M
s, αs, βs, σint, s) Pr(ms

i|z
s

i , x
s

i, c
s

i,M
s, αs, βs, H0, q0, σ

int, s)

µi

m̂c

ij

Pr(d̂i|µi, σdi)

m̂s

im̂s

i

Pr(Zc)

H0

mc

ij

Pr(pc) Pr(zs)

Pr(mc

ij|µi, p̂
c

ij, Ẑ
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The dependence of the brightness of a Type Ia SNe on
its light-curve shape (xs

i
) and colour (cs

i
) is captured4 by the

Tripp relation (Phillips 1993; Tripp 1998),

ms
i = µi + Ms

+ αsxs
i + β

scs
i , (15)

where Ms is the standard absolute magnitude of Type Ia
SNe. As with the Cepheids, the intrinsic scatter around this
relation is modeled as a normal distribution with standard
deviation σint, s. For a Hubble flow SN with cosmological
redshift zs

i
, we can finally relate the distance modulus to

redshift, and hence make contact with cosmological quanti-
ties, using the expansion

µi = 5 log10

{
c zs

i

H0 Mpc

[
1 +

1

2
(1 − q0)z

s
i−

1

6

(
1 − q0 − 3q2

0 + j2
0

)
(zs
i )

2

]}
+ 25, (16)

where q0 is the deceleration parameter, j0 is the jerk (fixed
to unity by the assumption of a flat ΛCDM cosmology), and
c is the speed of light.

The rungs of the distance ladder are climbed through
Equations 13-16: geometrical distance measurements, con-
verted to distance moduli, calibrate the standard absolute
magnitudes of nearby Cepheids and more-distant SNe, re-
ducing the uncertainty on the Hubble Constant derived from
SNe at cosmological distances. An important part of this
scheme is the handling of uncertainties, which come from
both stochastic astrophysical processes and measurement
errors. Our aim is to include all these sources of uncer-
tainty in our final inference for H0, but before describing our
scheme for doing this it is important to review the existing
approaches for obtaining local H0 estimates.

4 EXISTING ALGORITHMS FOR
ESTIMATING H0

Two main attempts have been made at estimating H0 from
the R16 dataset: that used by R16 themselves (Section 4.1);
and the modification proposed by Cardona et al. (2016) (Sec-
tion 4.2). The method adopted by Efstathiou 2014 and ap-
plied to the Riess et al. (2011) data differed from that of R16
primarily in regards outlier removal, but it has the same in
statistical structure, so is effectively described in Section 4.1
as well; moreover, the updated method of R16 does not rely
so heavily on the removal of outliers. Zhang et al. (2017) has
also recently addressed some issues of the outlier removal ap-
proach of Riess et al. (2011), arguing that the freedom in the
precise cuts made results in an increased systematic uncer-
tainty; however, this algorithm is yet to be applied to the
R16 dataset.

4.1 Riess et al. (2016) approach

The original work of Riess et al. (2009, 2011, 2016) casts the
distance ladder as a linear regression problem, employing
least-squares solutions to estimate the maximum-likelihood
values of the parameters of interest and their covariance. To

4 In its simplest form: see, e.g., Marriner et al. (2011), Shariff

et al. (2016) and Mandel et al. (2016) for extensions.

Table 1. Model parameters, data and constants.

quantity R16 definition

µi µ0, i distance modulus of ith host

d̂i - measured distance of anchor

σdi
- uncertainty in anchor distance

π̂i - measured parallax of anchor

σπi
- uncertainty in anchor parallax

∆MLK
i

- bias in parallax anchor magnitude

p̂c
i j

Pi j measured period of jth Cepheid in ith host

Ẑc
i j

(O/H)i j measured metallicity ([O/H]) of jth Cepheid

in ith host

mc
i j

mW
H, i j

apparent magnitude of jth Cepheid in ith host

m̂c
i j

- measured apparent magnitude of jth Cepheid

in ith host

σmc
i j

- uncertainty in apparent magnitude of jth

Cepheid in ith host

sp bW log-period slope of Cepheid Leavitt Law

sZ ZW log-metallicity slope of Cepheid Leavitt Law

Mc MW
H,1

absolute magnitude of solar-metallicity

Cepheid with one-day period

σint, c σint intrinsic scatter about Cepheid Leavitt Law

νc - degrees of freedom in heavy-tailed scatter

about Cepheid Leavitt Law

tc - peak density of student-t distribution with νc

relative to Gaussian with same location/scale

∆mcal
i

∆zp offset between ground- and space-based

magnitudes

ms
i

m0
x, i

peak apparent magnitude of SN in ith host

m̂s
i

- estimated peak apparent magnitude of SN in

ith host

xs
i

- light-curve stretch of SN in ith host

x̂s
i

- estimated light-curve stretch of SN in ith host

cs
i

- light-curve colour of SN in ith host

ĉs
i

- estimated light-curve colour of SN in ith host

Σi - covariance matrix of ith SN’s estimated light-

curve parameters

zs
i

zi redshift of ith galaxy

ẑs
i

- measured redshift of ith galaxy

σzs
i

- uncertainty in measured redshift of ith galaxy

αs - light-curve stretch coefficient in SN Tripp

relation

βs - light-curve colour coefficient in SN Tripp

relation

Ms M0
x absolute magnitude of Type Ia SN

σint, s - intrinsic scatter about SN Tripp relation

νs - degrees of freedom in heavy-tailed scatter

about SN Tripp relation

ts - peak density of student-t distribution with νs

relative to Gaussian with same location/scale

q0 q0 deceleration parameter

q̂0 - measured deceleration parameter

σq0
- uncertainty on q0 measurement

∆q0 difference between local and cosmological q0

H0 H0 Hubble constant

Ĥ0 - measured Hubble constant

Σcos - covariance matrix of joint H0 − q0 constraints

∆H0 difference between local and cosmological H0

speed up the analysis, the Hubble flow SNe are processed
independently from the Cepheids. The SN data are summa-
rized by the intercept of their magnitude-log-redshift rela-
tion,

ax = log10

{
c z

km s−1

[
1 +

1

2
(1 − q0)z−

1

6

(
1 − q0 − 3q2

0 + j0

)
z2

]}
−

ms
i

5
, (17)

using a (potentially biased: see Kelly 2007; March et al. 2011;
Mandel et al. 2016) χ2-minimization formalism which also
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estimates the parameters of the Tripp relation, including
the intrinsic scatter (Marriner et al. 2011). The anchor and
Cepheid-host data are input into a generalized least-squares
(GLS) solution to Equations 14 and 15 (and a handful of
constraint equations) to estimate the standardized SN abso-
lute magnitude. The Hubble constant is then given in terms
of these two quantities as

H0 = 10(M
s
+5ax+25)/5. (18)

There are a number of approximations and assumptions
in this analysis that might affect the accurate estimation of
the tails of the H0 posterior. Implicit in the GLS framework
is the assumption that the data and quantities of interest
are distributed normally and related linearly. As a result,
measurements of anchor distances and parallaxes (which,
in the case of the MASER measurements, are already non-
Gaussian) must be converted to Gaussian uncertainties on
distance moduli. Furthermore, though the framework pro-
duces Gaussian constraints on log10 H0, uncertainties on H0

are quoted with symmetric error bars, implying a Gaussian
posterior on H0. With good data, the assumptions implicit
in this framework should not bias the central value, but esti-
mating tension between datasets requires precise knowledge
of the tails of the posteriors, where deviations from Gaus-
sianity are important. In this case, employing the ‘correct’
log-normal posterior for H0 instead of the Gaussian approxi-
mation exacerbates the tension between local measurements
and the value extrapolated from Planck: the Planck Collab-
oration (2016c) value is 1.7 times less likely in a log-normal
posterior than the equivalent Gaussian.

The GLS framework is further restricted in its ability to
cope with uncertainties in the independent variables and pa-
rameters affecting the observation covariance matrix. In the
former case, one must either neglect uncertainties in certain
variables or convert them into uncertainties on dependent
variables assuming some set of fiducial parameter values. In
the latter case, estimating parameters such as the Cepheids’
intrinsic scatter (if desired) requires the analysis to be it-
erated to convergence. Iteration is also employed to remove
Cepheid outliers via sigma clipping; again, this modifies the
tails of joint posterior, whose accurate determination is criti-
cal to the estimation of tension between datasets. Efstathiou
(2014) investigated modifications to this outlier rejection al-
gorithm, replacing galaxy-by-galaxy rejection with a global
version, though neither the core least-squares estimator nor
the findings were significantly different. R16 use supplemen-
tary Cepheid observations and simulations to improve tar-
geted (as opposed to statistical) outlier identification, reduc-
ing the fraction of outliers considerably, but sigma clipping
is still used to remove the 2–5% of the Cepheid population
deemed to be atypical; sigma clipping is also used to remove
outliers in the SN dataset.

Finally, the compression of the Hubble flow SNe data
into a single estimated intercept, ax , introduces two further
approximations. First, the covariance between the intercept
and the low-redshift SNe’s Tripp-relation parameters is ne-
glected: the complete set of SNe should strictly be standard-
ized simultaneously with the rest of the model in order to
capture the correct correlation structure. Second, the de-
celeration parameter is fixed when calculating the intercept,
and the degeneracy between q0 and H0 is therefore neglected
in the inference of H0. While R16 provide a heuristic esti-

mate of the impact of varying q0 on their uncertainties, there
is also an associated shift in the best-fit value of H0 that is
not accounted for. In addition, the value chosen for q0 is
derived from a ΛCDM-specific SN analysis (Betoule et al.
2014) that includes some SNe in common with those used
by R16; this introduces complicated dependence on the cos-
mological model that must be accounted for very carefully.
Combined with the fact that simultaneous inference of the
Cepheid and SN parameters holds the promise for decreased
uncertainties (due to shrinkage; see also Zhang et al. (2017)),
there is a strong motivation for developing a method that
goes beyond the propagation of uncertainties in the form of
parameter covariances.

The restrictions and approximations in the GLS solu-
tion can be highlighted by comparing its graphical represen-
tation (Fig. 4) with that of the ‘complete’ model (Fig. 3).
Data that are assumed to be measured without uncertainty
(in this case, the Cepheid periods and metallicities) are
colour-coded green, and non-stochastic parameters – that
are either fixed (σint, c and σint, s) or determined by other
parameters (H0)—are plotted with small filled circles. Note
that the Cepheid-host SNe are characterized by only their
magnitudes, whose uncertainties contain the errors on their
stretches and colours. All conditional distributions in Fig. 4
are taken to be Gaussians, and all population-level parame-
ter priors, though not explicitly specified, are improper uni-
form distributions. As we shall see, all of these restrictions,
approximations and assumptions can be removed or handled
in a more generic fashion by employing a Bayesian hierar-
chical model.

4.2 Cardona et al. (2016) approach

Cardona et al. (2016) adopt a Bayesian approach to inferring
the distance ladder parameters, exploring the full posterior
distribution (rather than estimating uncertainties from the
curvature at the posterior maximum, as is effectively done by
R16). They also introduce ‘hyper-parameters’ to re-weight
the contributions of each object to the likelihood, and allow
the Cepheid intrinsic scatter to be sampled and marginal-
ized (though the Hubble flow SNe data are still reduced to
an intercept). This is, in essence, a Bayesian hierarchical
model with pre-marginalization, although it is not explicitly
described as such. The implicit network has the same struc-
ture as that used in R16 (Fig. 4), differing only through the
sampling of σint, c from a log-uniform prior and the use of a
Gaussian prior on sZ .

Cardona et al. (2016) focus on improving the treatment
of outliers in the Cepheid population. As an alternative to
outlier rejection, the authors propose rescaling the magni-
tude uncertainty of the j th Cepheid (in the ith host) by a
factor αi j ∼ U(0, 1), such that σ2

mc
i j

→ σ2
mc

i j

/αi j ; similar fac-

tors are included in the Cepheid-host SN magnitude likeli-
hoods and anchor distance-modulus likelihoods. This rescal-
ing factor is pre-marginalized, resulting in non-Gaussian
likelihoods that have the same form as a student-t distri-
bution with two degrees of freedom (cf. Eq. A1). Although
boosting the tails of the likelihood to account for outliers
is well-motivated, there is no particular reason that mea-
surements should be rescaled individually, or that the prior
on the rescaling should take its given form. It is perhaps

MNRAS 000, 1–23 (2017)



10 S. M. Feeney et al.

0 ≤ j < nc
i
s 0 ≤ j < nc

i
s

0 ≤ i < nch, anc nch, anc ≤ i < nch, tot

Pr(µ)

m̂s

i

Pr(M s)

H0

mc

ij

Ẑc
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Figure 4. The Bayesian network equivalent of the R16 generalized least squares estimator for the analysis of the anchor, Cepheid
and compressed SN data. Green double circles represent data measured without uncertainty, filled black circles indicate non-stochastic
variables.

better motivated to consider approaches that model outliers
(or systematic errors) at a population level, for example by
fitting multiple Cepheid populations in a mixture model (fol-
lowing, e.g., Hogg et al. 2010), or using non-Gaussian likeli-
hoods whose parameters are linked at the population level:
either by error-rescaling factors common to measurements
made on the same instrument or in similar epochs (e.g., La-
hav et al. 2000) or, more simply, modifying the form of the
scatter around the Cepheid P-L-Z relation. Finally, we note
that the Cepheid catalogue released by R16 and processed
by Cardona et al. (2016) has had outliers removed by sigma
clipping, so the full power of this method to mitigate outliers
in the R16 Cepheids has not yet been demonstrated.

5 BAYESIAN PARAMETER INFERENCE

In statistical terms, the task of inferring the Hubble con-
stant using the diverse astronomical data described in Sec-
tion 3 is a conceptually straightforward case of parameter
estimation, albeit with a large number of nuisance param-
eters. Bayesian inference provides a coherent formalism for
this which can incorporate all the relevant information that
is available while forcing all assumptions to be made explicit.

5.1 The posterior distribution of H0

The primary output of this calculation will be the (posterior)
probability distribution Pr(H0, θ |d), which encodes the full
state of knowledge about H0 and the other astrophysical pa-
rameters, θ (i.e., all the unobserved quantities that describe
the anchors, the Cepheids, the SNe and their host galaxies,

and the cosmological model, as defined in Table 1) given the
available data, d (i.e., all the measured values for the vari-
ous anchors, Cepheids and SNe, again defined in Table 1).
Bayes’s theorem, combined with the law of total probability,
then allows the posterior distribution to be written as

Pr(H0, θ |d) =
Pr(H0, θ)Pr(d |H0, θ)∫

Pr(H ′
0
, θ ′)Pr(d |H ′

0
, θ ′) dH ′

0
dθ ′
, (19)

where Pr(H0, θ) encodes any prior/external information
about H0 and θ and Pr(d |H0, θ) is the probability of obtaining
the measured data given a set of parameter values (i.e., the
likelihood). The denominator in Eq. (19) is, in this param-
eter estimation context, just a normalizing constant which
has no dependence on either H0 or θ; it is hence only the
parameter-dependence of the two terms in the numerator
that is important.

The joint posterior distribution Pr(H0, θ |d) is difficult to
manipulate in its full form as there are so many parame-
ters, but integrating over θ produces the marginal posterior
distribution of the Hubble constant,

Pr(H0 |d) =

∫
Pr(H0, θ

′′)Pr(d |H ′′
0
, θ ′′) dθ ′′

∫
Pr(H ′

0
, θ ′)Pr(d |H ′

0
, θ ′) dH ′

0
dθ ′
. (20)

Fortunately, the integrals in the numerator and denominator
can be evaluated accurately provided only that it is possi-
ble to generate a large number of samples from the joint
distribution Pr(H0, θ |d).

5.2 Bayesian hierarchical model

The starting point for adapting this general formalism to
the specific problem of estimating H0 is to list all of the
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quantities that are relevant to this problem, as already set
out in Table 1. Global parameters (e.g. those describing
the Cepheid P-L-Z relationship) require prior distributions,
which in all cases are taken to be as uninformative as pos-
sible: this is a data-rich problem in which it is the implica-
tions of the specific anchor, Cepheid and SN measurements
that are of interest. The prior distributions adopted here are
listed in Table 2.

The next step is to make explicit all the direct rela-
tionships between the quantities defined in Table 1, as it
is these which combine to determine the form of the likeli-
hood, Pr(d |H0, θ). The full model is illustrated in Fig. 5, from
which it is clear that most pairs of quantities are not linked
directly, with a multi-layered structure that is characteris-
tic of a Bayesian hierarchical model (BHM). This structure
notwithstanding, all the data and parameters are linked in-
directly, which is why a joint analysis of the anchor, Cepheid
and SN data is required to obtain a posterior distribution
for H0 that incorporates all relevant sources of uncertainty.
Perhaps most interesting is the longest chain of links, from
the nearest anchor distance, d̂0, through the entire network
to H0. Any uncertainty in d̂0 will hence increase the uncer-
tainty on H0, although it is only this qualitative statement
that can be made at this point: the magnitude and form of
this dependence depends on the nature of the links.

Each of the inter-parameter links in Fig. 5 is encoded
by a probability distribution relating the value of the quan-
tity at the head of the arrows to the quantities at the tails.
(In some cases a deterministic approximation can be made;
this can still be cast in a probablistic form by using delta-
function distributions.) It is at this stage that many of the
implicit model assumptions – most obviously that certain
distributions are normal, rather than having heavier tails –
must be made explicit. The full list of relationships used here
is given in Table 2 along with the global-parameter priors;
they are also indicated within orange rectangles in Fig. 5.

The BHM has a number of important features that en-
sure a number of potential statistical problems are dealt with
automatically. We consider the complete dataset simultane-
ously, fitting the SN Tripp relation concurrently with the
Cepheid Leavitt Law5, taking account of redshift measure-
ment errors and peculiar velocity uncertainties, correlations
between the estimated magnitudes, stretches and colours
of the Hubble flow SNe, and uncertainty in the measured
value of the deceleration parameter, q0. Fitting the SN pop-
ulation using a BHM removes the bias injected by the χ2-
minimization routines popular in the literature (see Kelly
2007; March et al. 2011; Mandel et al. 2016 for discussion).
In the vanilla version of the BHM, the scatter about the
Cepheid Leavitt and SN Tripp relations is taken to be Gaus-
sian. This is a significant assumption, given that consider-
able pre-processing is typically performed to remove outliers
from the Cepheid and SN populations. Though R16 use sup-
plementary Cepheid observations and simulations to reduce
the number of Cepheid outliers, sigma clipping is still em-
ployed in both the Cepheid and SN selection. As such, we
also consider a modified BHM in which the Cepheid and

5 The blind analysis pipeline of Zhang et al. (2017), published as
this manuscript was finalized, also performs a global fit for the

combined Cepheid and SNe data.

SN scatters are modeled using a student-t distribution with
degrees of freedom inferred from the data.6 Varying the de-
grees of freedom interpolates between Gaussian (in the limit
of infinite degrees of freedom) and significantly heavy-tailed
scatter distributions, allowing the data to indicate whether
outliers are present in the Cepheids and/or SNe. We use a
bespoke prior for these parameters to allow the sampler to
explore distributions with a broad range of kurtosis values.
The kurtosis of the student-t distribution is not defined over
the full range of allowed degrees of freedom, so we instead
use the ratio of the peak density of the student-t to that of
a Gaussian with the same location and scale, denoted t. We
adopt a prior that is uniform in t, the derivation of which is
covered in detail in Appendix A. Provided the outliers are
well characterized by the model, this approach has two dis-
tinct advantages over sigma clipping: first, hard-earned but
discrepant data are not discarded but instead appropriately
down-weighted before use; second, no likelihoods are artifi-
cially truncated, allowing accurate and robust evaluation of
the tails of the H0 posterior.

In the basic version of the BHM, all data, including geo-
metric anchor measurements, are taken to be observed with
Gaussian uncertainties. This departs from previous work,
which assumes the distance moduli (which are not directly
measured) are subject to Gaussian uncertainties. As the
shape of the anchor likelihood(s) propagates through to the
inference on H0, we would expect our model to yield a more
appropriate estimate of the tail of the H0 posterior. Using
distances and parallaxes as data rather than distance moduli
means we can also sample from non-Gaussian anchor like-
lihoods if merited: for example, the MASER distance con-
straint derived from a model of the MASER motion has
a mildly non-Gaussian form (Humphreys et al. 2013; Riess
et al. 2016). Approximating the MASER distance posterior
as a three-component Gaussian mixture, we can estimate
the impact of this non-Gaussian anchor measurement on H0.
More exciting is to exploit this structure to connect to other
BHMs performing, for example, more accurate inference of
parallax measurements (Sesar et al. 2016), though this is left
to future work.

The BHM described above is realistic, but there are
some aspects of it which could be improved or extended
if the data demanded it. First, as R16 do not provide un-
certainties on the Cepheid periods and metallicities, we are
forced to model the distributions between the measured and
true periods and metallicities as delta functions. Second, in
order to minimize deviations from the R16 dataset we re-
tain their model of the Cepheid-host SNe magnitudes, i.e.,
they are assumed to have been pre-corrected based on their
stretch and colour, with the uncertainties on stretch and
colour propagated to the magnitude; in effect, we partially
decouple the Cepheid-host and Hubble flow SNe.

6 An alternative approach would be to model the contaminated
Cepheids and SNe as multiple-component mixtures, each with
their own Gaussian scatter and absolute magnitude. We have im-
plemented such a model, but our selected sampler can not reliably
sample the resulting multimodal posterior and its strict relabeling
degeneracies.
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Table 2. Probability distributions. The shorthand functions used derive from Equations 14-16 and are defined at the foot of the table.

distribution form process

Pr(µ) U(5, 40) prior on Cepheid/SN host distance moduli

Pr(sp ) N(sp ;−5, 52) prior on log-period slope of Cepheid luminosities

Pr(sZ ) N(sZ ; 0, 52) prior on log-metallicity slope of Cepheid luminosities

Pr(Mc) N(Mc; 0, 202) prior on standard Cepheid absolute magnitude

Pr(σint, c) N(σint, c; 0.1, 0.22) × Θ(σint, c − 0.01) × Θ(3 − σint, c) prior on intrinsic scatter in Cepheid Leavitt Law

Pr(∆mcal
i

) N(∆mcal
i

; 0, 0.032) prior on ground-to-space magnitude offset

Pr(Ms) N(Ms;−20, 102) prior on standard SN absolute magnitude

Pr(σint, s) N(σint, s; 0.1, 0.22) × Θ(σint, s − 0.01) × Θ(3 − σint, s) prior on intrinsic scatter of SNe around Tripp relation

Pr(xs) N(xs; 0, 22) prior on SN stretches

Pr(cs) N(cs; 0, 22) prior on SN colours

Pr(αs) N(αs;−0.1, 0.52) prior on SN stretch coefficient

Pr(βs) N(βs; 3, 32) prior on SN colour coefficient

Pr(z) U(0.01, 0.15) prior on SN redshift distribution

Pr(H0) N(H0; 70, 202) prior on Hubble Constant

Pr(q0) N(q0;−0.5, 12) × Θ(q0 + 5) × Θ(1 − q0) prior on deceleration parameter

Pr(mc
i j

|µi, p̂
c
i j
, Ẑc

i j
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i j
;µi +Mc
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i
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, αs, βs), (σint, s)2) intrinsic scatter about Hubble flow SN Tripp Relation
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di
) anchor distance measurement

Pr(π̂i |µi, σπi
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−(µi+∆M
LK
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+5)/5

, σ2
πi

) anchor parallax measurement

Pr(m̂c
i j

|mc
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, σmc
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) N(m̂c
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;mc

i j
, σ2
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i j

) measurement of Cepheid apparent magnitude

Pr(m̂s
i
|ms

i
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i
) N(m̂s

i
;ms
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, σ2
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i

) measurement of Cepheid-host SN apparent magnitude
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i
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i
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}, Σi ) correlated SALT-2 estimates of SNe observables

Pr(ẑs
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i
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i
, σ2

zs
i

) SN redshift measurement

Pr(q̂0 |q0, σq0
) N(q̂0;−0.5575, 0.0512) Betoule et al. (2014) estimate of deceleration parameter

Pr(tc) U(0, 1) prior on degrees of freedom in Cepheid scatter

Pr(ts) U(0, 1) prior on degrees of freedom in SN scatter

Pr(mc
i j

|µi, p̂
c
i j
, Ẑc

i j
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i j
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i j
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, Ẑc

i j
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i
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Pr(ms
i
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i
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i
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Pr(∆H0) N(∆H0; 0, 62) prior on difference between local and cosmological H0

Pr(∆q0) N(∆q0; 0, 0.52) prior on difference between local and cosmological q0
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5.3 Hamiltonian Monte Carlo sampling scheme

Having set out the form of the model and the distributions
defining its links, we are faced with the choice of how to
sample from it to estimate the joint posterior. As stated
earlier, the sparse structure of the model suggests Gibbs
sampling could be well suited to the task; however, given
the large number of parameters involved, we instead em-
ploy Hamiltonian Monte Carlo sampling (Duane et al. 1987;
Neal 2012). Hamiltonian (or hybrid) Monte Carlo (HMC),
is a sampling method designed to avoid the random walk
behaviour which hinders other Markov chain Monte Carlo
(MCMC) techniques in high-dimension or highly degenerate
settings. It operates by simulating a physical system gov-
erned by Hamiltonian dynamics, modeling samples as parti-
cles moving through parameter space with potential energy
equal to the negative logarithm of the posterior. This re-
quires a momentum variable to be sampled for each particle:
at each iteration, a new momentum is proposed and used to
move the particle through parameter space using a time-
discretized form of Hamilton’s equations. The new position
is then accepted in a Metropolis accept/reject step based on
the ratio of the evolved and initial Hamiltonians. Though
sampling the momenta doubles the number of unknown vari-
ables in the sampling problem, modifying the particles’ ki-
netic energies allows the sampler to propose large steps in
parameter space, enabling rapid posterior exploration.

Sampling efficiently with HMC requires a significant
amount of fine-tuning. Calculating the Hamiltonian requires
evaluation of the derivative of the log posterior with respect
to the parameters of interest, a potentially error-prone oper-
ation when no analytical form exists. The particles’ dynam-
ics are evolved by solving Hamilton’s equations with time
discretized: this requires the number of discrete time steps
and their duration to be specified. Furthermore, in defin-
ing the momentum of each particle a mass must be chosen.
Much of the art of HMC rests in tuning these parameters.
We use the Stan package (Stan Development Team 2016a)
to optimize these choices for us. Provided with a descrip-
tion of the model in its scripting language, Stan tunes the
required parameters on the fly and uses auto-differentiation
to calculate machine-precision posterior derivatives. Trans-
lating the model into Stan’s scripting language (Stan De-
velopment Team 2016b) is (modulo modifications for op-
timization) as simple as specifying the analytic form of
every link between a probability distribution and a vari-
able, latent or otherwise, in Figure 5, as provided in Ta-
ble 2. Where reasonable, priors have been chosen to to be
weakly informative normal distributions to aid sampling:
Stan works best without sharp limits. The Stan model code
and Python driver used in this analysis are publicly available
at https://github.com/sfeeney/hh0.

6 DATA SELECTION

R16 produced H0 estimates for a comprehensive set of an-
chor combinations, further varying the Cepheid and SN
counts by changing the outlier-rejection method and allowed
redshift range, respectively. Here, for clarity, we compare
to two R16 settings. In the first, simple setting, we con-
sider a single distance anchor: the MASER in NGC 4258.

We also process R16’s preferred anchor combination, em-
ploying three anchors: the NGC 4258 MASER, the LMC
detached-eclipsing-binary distance and the set of 15 Milky
Way Cepheids with parallax measurements. In both cases,
we consider 19 galaxies containing a population of Cepheids
and a Type Ia SN, and Hubble flow SNe in the redshift range
0.0233 < z < 0.15. We bolster the Cepheid sample by includ-
ing the set of Cepheids measured in M31 (Riess et al. 2012;
Kodric et al. 2015; Wagner-Kaiser et al. 2015), which has
not hosted an observed Type Ia SN. This calibration-only
Cepheid host is not depicted in Fig. 5, but appears in the
model as a simplified version of a Cepheid/SN host. In total,
the R16 data contain 1486 and 2276 Cepheids in the one-
and three-anchor cases respectively; note that these have al-
ready had outliers removed via sigma clipping on a galaxy-
by-galaxy basis, limiting any investigation into alternative
outlier-mitigation mechanisms.

The Hubble flow SNe are sourced from catalogues com-
piled by Riess et al. (1999); Jha et al. (2006); Hicken et al.
(2009, 2012); Guy et al. (2010); Stritzinger et al. (2011); Rest
et al. (2014) and Sako et al. (2014), and calibrated according
to Scolnic et al. (2015) and Scolnic & Kessler (2016)7. Cuts
are applied matching those used by R16, namely:

• SN colors are required to fall in the range |cs | < 0.3;
• Stretches must be |xs | < 3 and estimated with an un-

certainty of < 1.5;
• The light curve must have a fit probability of greater

than 0.001, a peak time with uncertainty less than two days,
and a peak magnitude with uncertainty less than 0.2 mag-
nitudes.

We apply an additional cut, requiring that the covariance
matrix, Σi , of the light curve parameters be positive definite.
After cutting, R16 reject SN outliers via a χ2-minimization
algorithm sketched out in Marriner et al. (2011). We analyze
both the clean and contaminated catalogues in this work,
considering 214 and 229 SNe, respectively.

7 ANALYSIS OF SIMULATED DATA

In order to isolate the statistical aspects of this issue it
is instructive to work with simulated data, in which the
complicated real world issues of systematics and outliers
can be ignored. We construct our simulations to match the
data selections discussed above, modeling both the one- and
three-anchor settings using the same distances and uncer-
tainties; for one-anchor simulations the anchor is therefore
the MASER distance to NGC 4258; the three-anchor case
contains a mixture of parallax and distance measurements.
In addition to the anchors, we simulate 20 Cepheid hosts, 19
containing a SN, matching Cepheid counts to R16 and tak-
ing the true host distance moduli to be the values estimated
by R16’s preferred analysis (see Riess et al. 2016, Table 5).

The priors from which simulated Cepheid and SN ob-
servables are drawn are chosen for simplicity rather than
to reproduce the R16 dataset with perfect fidelity. The
Cepheids’ periods are taken as log-distributed in the range

7 Available for download from http://kicp.uchicago.edu/

~dscolnic/Supercal/supercal_vH0.fitres.
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5 < p̂c
i j
< 60 days, and their metallicities as Gaussian-

distributed with mean and standard deviation matching that
of the R16 sample (8.86 and 0.153, respectively)). Follow-
ing R16, we assume the periods and metallicities have no
uncertainties, though modeling such uncertainties is a sim-
ple extension to the hierarchical model. We adopt the fol-
lowing values for the parameters of the Cepheid P-L-Z re-
lation ({sp, sZ,Mc} = {−3.05,−0.25,−3.09}), which is used
to define the Cepheid absolute magnitudes. Intrinsic scat-
ter in the relation is injected by drawing random deviates
from the appropriate distribution: a zero-mean Gaussian
with σint, c

= 0.065 initially; a student-t distribution with
νc = 2 when generating outliers. Finally, simulated Cepheid
apparent magnitudes are produced by combining the abso-
lute magnitudes with host distance moduli and Gaussian
measurement uncertainties (σmc

i j
= 0.276 to match that of

the R16 sample).
The nearby and Hubble flow SNe are simulated slightly

differently, reflecting the different observables one must
model to match the R16 data. The Cepheid-host SNe are as-
signed apparent magnitudes using their host distance moduli
assuming a SN absolute magnitude of Ms

= −19.2, then nois-
ily ‘observed’ with Gaussian magnitude uncertainties with
σms

i
= 0.064. Zero-point offsets of 0.01 magnitudes are added

to selected hosts’ Cepheids and SNe to match R16 obser-
vations. Redshifts for the Hubble flow SNe are drawn uni-
formly in the range selected by R16 (0.0233 < z < 0.15),
before adding Gaussian uncertainties due to measurement
(σ = 10−5) and peculiar velocities (σ = 250 kms−1/c). True
colour and stretch parameters for each SN are drawn from
Gaussian distributions with moments matching those of the
sample used by R16; these are then combined with the
true redshifts, SN absolute magnitude and random deviates
drawn from an intrinsic scatter distribution (either a zero-
mean normal distribution with σint, s

= 0.1 or, if outliers
are desired, a student-t distribution with νs = 2) to gener-
ate true apparent magnitudes. This process requires the SN
colour and stretch coefficients to be specified, along with the
Hubble constant and the deceleration parameter. We take
the SN coefficients to be 3.1 and -0.14 (see, e.g., Scolnic &
Kessler 2016), respectively, and the deceleration parameter
to be -0.5575 (Betoule et al. 2014); the ground truth H0

value varies with the setting considered. The final simulated
SN catalogue is produced by generating correlated Gaus-
sian uncertainties on the SN apparent magnitudes, colours
and stretches using the average correlations of the R16 SN
dataset, mimicking the effects of estimating these param-
eters from SN lightcurves with using SALT-2 (Guy et al.
2007).

7.1 Simple model tests

We begin with an investigation into how the choice of an-
chor distance parametrization affects the final posterior on
H0. As direct comparison to the GLS method is particu-
larly instructive in this setting, we simplify the model follow-
ing R16, replacing the simulated Hubble flow SN portion of
the BHM with a single parameter, ax ∼ N(0.71273, 0.001762).
Initially, as a basic test of the sampler’s performance we fur-
ther simplify the problem, modifying the BHM to sample
from Gaussian uncertainties on the anchor distance moduli,

and converting the simulated anchor measurements accord-
ingly. In this setting, we should expect the BHM and GLS
posteriors to match identically, at least in the limit of infinite
samples.

The H0 posterior estimated from a single-anchor simu-
lation by the simplified BHM (using four chains each com-
prising 50,000 samples) is shown as a purple solid line in
the left panel of Fig. 6. Overlaid are the log-normal poste-
rior as estimated by the GLS solution (dashed yellow) and
the approximated Gaussian constraint as typically quoted
(short-dashed pink). The agreement between the sampled
posterior and the analytic log-normal distribution produced
by the GLS is excellent, with only slight deviations in the
high H0 tail; in all cases, the ground truth value of H0 is
within the 68% credible interval. The bias on the credible
intervals injected by approximating the posterior as Gaus-
sian is small but clear, with an overall shift of probability
density to lower values of H0.

Reverting the BHM to use an anchor uncertainty that
is Gaussian in distance and processing the same simulation
skews the H0 posterior to even higher values, as shown in the
centre panel of Fig. 6. This is a simple consequence of the
non-linearity of the d → µ transform: the distance modulus
likelihood becomes skewed towards lower values, which in
turn boosts the high H0 tail. Replacing the anchor distance
likelihood with our fit to the non-Gaussian MASER distance
posterior of R16 has the opposite effect, pushing the sam-
pled posterior back into agreement with the log-normal GLS
posterior (Fig. 6 right panel). This coincidence arises as the
MASER distance posterior is close to, but not exactly, log-
normal in distance. As asserted earlier, the posterior peak is
effectively independent of the method and model used. From
these tests, it is clear that in order to accurately resolve the
tails of the H0 posterior it is important to model the anchor
uncertainties (and, on a simpler level, the logarithmic nature
of the GLS constraints) correctly.

7.2 Outlier tests

Having established good agreement between the simpli-
fied BHM and the GLS estimator, we now investigate the
full complexity of the hierarchical model by fitting simu-
lations containing Cepheid and SN outliers. Here, we con-
sider the R16 three-anchor setting, simulating and sampling
the SNe and adding intrinsic scatter to the Cepheid and
SNe magnitudes drawn from a student-t distribution (with
νc = νs = 2), mimicking the heavy tails injected by outlying
observations. The resulting sample of Cepheids is plotted
in Fig. 7, with stars deemed as outliers by the R16 sigma-
clipping algorithm indicated. Even though Stan samples a
total of 3,213 parameters in this setting, generating four
chains of 50,000 samples (plus another 50,000 ‘warmup’ sam-
ples) each takes roughly 8 hours on four 3.4 GHz Intel Xeon
cores. From these chains, Stan estimates that roughly 30,000
independent samples have been taken from the H0 posterior,
20,000 from νs and 2100 from νc. The SN scatter distribu-
tion is better sampled as the SN intrinsic scatter scale, σint, s,
is comparable to the observation uncertainties; the Cepheid
observation uncertainties tend to swamp the intrinsic scat-
ter. The resulting marginalized posteriors for H0, along with
the Student shape parameters tc and ts, are plotted in the
left panel of Fig. 8. The t = 0 limit corresponds to extremely
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Figure 6. Posteriors on H0 for one-anchor simulation. Purple posteriors are produced by BHMs sampling an anchor likelihood that is
Gaussian in distance modulus (left) and distance (centre), and non-Gaussian in distance (right). Log-normal posteriors from the R16

GLS method are plotted as yellow long-dashed lines; approximated Gaussian posteriors (as typically quoted in the literature) are plotted
as pink short-dashed lines; these curves are the same in each panel. Overlaid as a grey line is the ground truth H0 value for the simulation.
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Figure 7. Cepheid period-luminosity relation for simulation with
heavy-tailed intrinsic scatter. Cepheids rejected by the R16 sigma-
clipping algorithm are plotted with open circles.

heavy-tailed distributions (ν → 0), and t = 1 corresponds
to Gaussian intrinsic scatter (ν → ∞). The posteriors on tc

and ts are clearly peaked away from one, and so the BHM
correctly reflects the fact that the intrinsic scatter distribu-
tions are non-Gaussian in this case; we note that this is, of
course, a function of the noise level and number of sources.
For all parameters shown in Fig. 8 the ground truth values
are well within the 68% credible intervals; the largest dis-
crepancy found for a population-level parameter is for sp,
whose peak is ∼ 1.5 − σ from the ground truth.

In order to determine the impact of mismodeling the
data – or, more accurately, incorrectly assuming that out-
liers are present – we also generate a simulation with Gaus-
sian intrinsic scatter and infer its properties assuming the
scatter is student-t. The results are shown in the right-hand
panel of Fig. 8. The posteriors for tc and ts now peak at
(or very close to) one, clearly indicating the Gaussianity of
the simulated data. Most importantly, the inference on H0

in this setting is unbiased, and the precision is unaffected.

8 ANALYSIS OF OBSERVATIONS

8.1 Outlier-clipped data

We examine the three-anchor, outlier-clipped R16 dataset
using three variants of the BHM. In the first case, we use our
vanilla version, sampling anchor likelihoods that are Gaus-
sian in distance or parallax, respectively. The posterior on H0

derived from 200,000 total samples from the Bayesian hierar-
chical model is plotted as a purple solid line in the left panel
of Fig. 9. Overlaid as a yellow dashed line is the log-normal
posterior produced by the generalized least-squares estima-
tor. Finally, the posteriors estimated by R16 and the Planck
Collaboration (2016b) are overplotted as grey dashed and
dot-dashed lines, respectively: we compare to the Planck
Collaboration (2016b) results throughout the following dis-
cussion as the MCMC samples from the Planck Collabo-
ration (2016c) are not yet available. This has the effect of
reducing the tension between the local and cosmological es-
timates to 2.8-σ: still highly significant according to its p-
value of 0.0051.

The estimates of H0 we obtain using both the GLS
approach and the vanilla Bayesian hierarchical model are
roughly 0.6 km s−1 Mpc−1 (i.e., ∼1/3 of the uncertainty) lower
than the fiducial value reported by R16. Approximately half
of this discrepancy (0.36 km s−1 Mpc−1) can be traced to a
0.5% change in the treatment of the coherent velocity cor-
rections applied to obtain the final results presented in R16,
but the remaining difference is unexplained (A. Riess, pri-
vate communication). As our main aim in this paper is to
explore the effects of the statistical approach on the poste-
rior distribution in H0 we adopt our GLS estimate of (72.63
± 1.68) km s−1 Mpc−1 as our baseline point of comparison.

The final posterior constraint on H0 from the vanilla
version of the BHM is (72.72 ± 1.67) km s−1 Mpc−1, as
compared to the result from Planck’s temperature, large-
scale LFI polarization and lensing data of 67.81 ± 0.92

km s−1 Mpc−1 (Planck Collaboration 2016b): we find that the
BHM H0 posterior drops to 1.1×10−2 of its maximum at the
central Planck value. This compares well with the density
of the GLS posterior (1.3 × 10−2) but is almost twice that
of the R16 posterior (5.6 × 10−3). As the widths of these
posteriors are roughly the same, the Planck H0 value is ap-
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Figure 8. Posteriors on H0 and kurtosis measures of Cepheid (tc) and SN (ts) intrinsic scatter distributions for three-anchor simulations
with heavy-tailed (left) and Gaussian (right) scatter. The kurtosis measure, t(ν), is the ratio of the peak density of a student-t with
degrees of freedom ν to that of a Gaussian with the same location and scale. Dashed grey lines indicate ground-truth parameter values.
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Figure 9. Posteriors on H0 for the three-anchor R16 dataset, normalized to a peak density of one. Purple posteriors are produced by

variants of the BHM: (left) sampling Gaussian anchor likelihoods (in distance/parallax) and Gaussian intrinsic scatter distributions;
(centre) as previous, but substituting the non-Gaussian MASER likelihood; and (right) modeling the intrinsic scatters using student-t

distributions. Log-normal posteriors from our implementation of the GLS method are plotted as yellow long-dashed lines; log-normal
posteriors quoted by R16 are plotted as grey short-dashed lines. The posterior extrapolated from the Planck Collaboration (2016b) data
assuming a ΛCDM cosmology is plotted as grey dot-dashed lines.

proximately twice as likely in our BHM analysis than R16
would conclude, though we stress that this is driven by the
discrepancy between the central values of the analyses.

In the second BHM variant, we instead model the
MASER as having a non-Gaussian likelihood. Using this
variant we obtain the H0 posterior as plotted in the cen-
tre panel of Fig. 9. As in simulations (Section 7.2), using
the non-Gaussian MASER likelihood pushes the posterior
back toward the GLS solutions; however, the posterior con-
straints are stable at (72.72 ± 1.68) km s−1 Mpc−1, and the
BHM H0 posterior is 1.2×10−2 of its maximum at the Planck
best-fit value. This insensitivity to the functional form of the
MASER likelihood is perhaps unsurprising, as in this setting
we are effectively using 17 anchor likelihoods, reducing the
dependence of the H0 constraint on any individual anchor.

It is also instructive to examine the dependence of our
H0 constraints on the deceleration parameter, q0. In the left
panel of Fig. 10 we show the joint and marginal posteriors
on H0 and q0 estimated by our vanilla BHM including the
ΛCDM-specific Betoule et al. (2014) constraint on q0 (as em-
ployed by R16); the Planck Collaboration (2016b) posteriors
are overlaid in yellow. In the right panel, we remove the Be-
toule et al. (2014) constraint, treating q0 as a nuisance pa-
rameter constrained weakly by the distance ladder data and
its broad (truncated Gaussian) prior. The degeneracy this
opens up does not affect the precision of the H0 constraint
significantly, but the mean-posterior value increases by 1
km s−1 Mpc−1to (73.70± 1.77) km s−1 Mpc−1. While removing
the observational q0 constraint from the analysis may seem
somewhat extreme, its cosmological model dependence, cou-
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Figure 10. H0 and q0 posteriors derived by the BHM from the three-anchor R16 dataset (purple) with (left) and without (right) a tight
ΛCDM-dependent q0 constraint (Betoule et al. 2014). Posteriors extrapolated from the Planck Collaboration (2016b) data assuming a
ΛCDM cosmology are plotted in yellow dot-dashed. Overlaid as a pink dashed line is the log-normal H0 constraint produced by the GLS
fit from the local distance ladder.

pled with the fact it is derived using at least some of the same
data as used in R16, calls into question its general applicabil-
ity. This strongly motivates extending the current BHM to
include the Betoule et al. (2014) dataset to better constrain
q0 in a model-independent fashion, although this is left for
future work. In the following, we remove the Betoule et al.
(2014) constraint in order to make conservative statements,
independent of any cosmological model.

Having established the insensitivity of the parameter
constraints to the form of the MASER likelihood, we turn
towards the question of model selection. We are now able to
quantify the discrepancy between local measures of the ex-
pansion and their expectations from the CMB using model
selection. As the distance ladder data are sensitive to, and
Planck makes firm predictions for, both the expansion rate
and deceleration, we must include both parameters in our
model selection analysis. We therefore compare two models:
one in which the cosmological and local H0 and q0 are iden-
tical (denoted Λ following the notation of Section 2), and
a second (denoted Λ̄) in which the cosmological values dif-
fer by ∆H0 and ∆q0. Note that the simple model is nested
within the complex model at ∆H0 = ∆q0 = 0: this is a simple
extension to the one-additional-dimensional example of Sec-
tion 2. As the models are nested, we can simply adapt the
BHM (as shown in Fig. 11) to estimate the joint posterior
of ∆H0 and ∆q0, then compare the posterior to the prior at
∆H0 = ∆q0 = 0 to obtain the Bayes factor for the two models
via the Savage-Dickey Density Ratio (SDDR; Dickey 1971),
which gives the Bayes factor between the models in terms of
a posterior density ratio as

Pr(dl, dc |Λ)

Pr(dl, dc | |Λ̄)
=

Pr(∆H0,∆q0 |dl, dc, Λ̄)

Pr(∆H0 |Λ̄)Pr(∆q0 |Λ̄)

����
∆H0=∆q0=0

. (21)

We exploit two Planck datasets in our model-selection
analysis. We take the less-discrepant but complete Planck

Collaboration (2016b) release as our standard, as its MCMC
chains are available for download. Using these chains, we
summarize the Planck Collaboration (2016b) joint posterior
on H0 and q0 as a strongly correlated bivariate Gaussian,
centred on (67.81 km s−1 Mpc−1, −0.5381), with standard de-
viations of (0.92 km s−1 Mpc−1, 0.0184) and a correlation co-
efficient of −0.99. Ideally, we would repeat the analysis us-
ing the more-recent, and more-discrepant, Planck Collabo-
ration (2016c) intermediate release; however, these MCMC
chains have not been made public. Instead, we approximate
the Planck Collaboration (2016c) posterior by applying a
N(τ; 0.055, 0.0092) prior to the public Planck Collaboration
(2016b) likelihood (A. Riess, private communication). Com-
bining this τ prior with the “TT,TE,EE+lowP” likelihood
and sampling using CosmoMC (Lewis & Bridle 2002; Lewis
2013), we obtain an H0-q0 posterior well approximated by a
bivariate Gaussian with mean (66.74 km s−1 Mpc−1, -0.5155),
standard deviations (0.62 km s−1 Mpc−1, 0.0132) and corre-
lation coefficient -0.994.8 While the conclusions we derive
using this second Planck dataset are necessarily approxi-
mate, they provide a useful guide to the impact of the latest
Planck observations.

Bayesian model comparison results are strongly depen-
dent on the adopted parameter priors, which is a potential
concern when considering phenomenological models such as
the more complex model Λ̄ above. Following Section 2, we
select these priors to construct a lower bound on the proba-

8 The means and standard deviations from the correspond-
ing Planck Collaboration (2016c) “TTTEEE+SIMlow” analysis

are H0 = (66.93±0.62) km s−1 Mpc−1 and q0 = −0.5197±0.0131. Our
approximated Planck H0 constraint is slightly more discrepant

from R16 than the Planck Collaboration (2016c) estimate, and
the resulting odds ratios are therefore slightly more harsh on

ΛCDM than those we would obtain using the true posteriors.
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Figure 11. Extension to Bayesian hierarchical model to allow se-
lection between models in which the local and cosmological Hub-
ble (H0) and deceleration (q0) parameters are the same or differ
by ∆H0 and ∆q0, respectively. Dashed lines indicate connections
to the Hubble flow SN portion of the hierarchical model used for
inference of the local data only (Fig. 5).

bility of the simple model (Λ) subject to the chosen form of
the extended model (Λ̄). We restrict ourselves to consider-
ing models predicting symmetric (Gaussian) deviations away
from the true values of H0 and q0. To construct our lower
bound, we first set the prior probabilities of the two models
to 0.5, the harshest penalty one should apply to a concor-
dance model. Second, we choose the standard deviation of
the Gaussian priors on ∆H0 and ∆q0 to be 6.0 km s−1 Mpc−1

and 0.5, respectively, creating a model designed to explain
the discrepancies in the data. We use the same standard
deviations for the Gaussian priors on the true underlying
values of H0 and q0: the results should be independent of
the precise choice for priors this broad; we centre the priors
on 70 km s−1 Mpc−1 and −0.7.

Applying the SDDR to the outputs of our BHM given
the above prior choices, we find the Bayes factor to be
0.11± 0.01 using the standard Planck Collaboration (2016b)
likelihood. We would therefore state that (assuming equal
a priori model probabilities) an extended model of the
form considered here is at most nine times more likely
than ΛCDM to be the true model, given the CMB and
distance-ladder data. Swapping in our approximation to the
more-discrepant Planck Collaboration (2016c) likelihood,
this odds ratio decreases significantly, yielding an odds ra-
tio of 0.016 ± 0.005 or roughly 1:60. While still strongly in
favour of the extended model, these probability ratios are
significantly less extreme than the corresponding p-values
would suggest, and, most critically, have a clear interpre-
tation. Furthermore, the framework is simple to apply to
constraints from physically motivated models.

8.2 Analysis including SN outliers

In our final analysis, we reintroduce the SN outliers to the
high-redshift dataset and use the heavy-tailed intrinsic scat-
ter distributions in our hierarchical model. While the R16
dataset containing Cepheid outliers is not available, we can
still model the Cepheid intrinsic scatter as heavy-tailed as a
test of both data and model. Given the results derived from
similar simulations (Section 7.2), we expect in this case that
the posterior would peak at tc = 1, corresponding to the
Gaussian limit that νc → ∞.

This is indeed the case, as demonstrated in the
marginalized posteriors shown inthe left panel of Fig. 12.
The posterior of tc peaks at a value of 0.98, with a 95% pos-
terior lower limit of 0.94: the Cepheid scatter distribution is
very close to Gaussian. This is especially clear when com-
pared to the SNe, for which ts = 1 is strongly disfavoured
(we find a νs = 2.9 ± 0.8). Turning to the H0 posterior (see
also Fig. 9, right panel), we see a small but distinct shift to
higher values of H0 when modeling outliers instead of remov-
ing them, more in line with the findings of R16 and Cardona
et al. (2016): the posterior is (73.15±1.78) km s−1 Mpc−1. The
posterior is also slightly broader, with slower-than-Gaussian
decay in the tails, but the Planck best-fit H0 value is still
less likely than previously found: the BHM H0 posterior is
8.9 × 10−3 of its maximum at the Planck H0.

The impacts of removing the Betoule et al. (2014) q0

constraint can be seen in the right panel of Fig. 12. The
intrinsic scatter distributions inferred from the data do not
change, but the H0 posterior shifts to even higher values,
with (74.02 ± 1.86) km s−1 Mpc−1. In terms of model selec-
tion, using the SDDR we find that the Bayes factor be-
tween ΛCDM and the extended model is now 0.15 ± 0.01

using the standard Planck Collaboration (2016b) likelihood,
or 0.016± 0.005 using our approximation to the Planck Col-
laboration (2016c) likelihood. If the two models are equally
likely a priori, the extended model is no more than seven or
sixty times more likely than ΛCDM to describe the CMB
and distance-ladder data, including outliers, depending on
whether the standard or latest Planck data are employed.

9 CONCLUSIONS

We have used Bayesian inference to assess the apparent dis-
crepancy between the value of the Hubble constant obtained
from local distance ladder measurements and that implied
by the Planck CMB data. The correct interpretation of the
apparently significant 2.8 to 3.4-σ discrepancy requires a
model comparison calculation, from which it is clear that
the critical quantity is not simply the difference between
the two quoted H0 estimates: the result depends on the tails
of the likelihoods from the two data-sets. In this particu-
lar situation the fact that the cosmological estimate of H0

has a smaller uncertainty means that it is the low-H0 tail
of the local distance ladder likelihood that is critical. Tak-
ing a model-comparison approach does not penalize the null
model (that there is no discrepancy) as strongly as, e.g.,
using overly-punitive p-values; but to make any quantita-
tive statements requires the full likelihood from the local
distance ladder, as opposed to a Gaussian or least squares
approximation.
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Figure 12. Posteriors on H0, q0 and the shapes of the Cepheid (tc) and SN (ts) intrinsic scatter distributions (purple) for the three-

anchor R16 dataset including SN outliers, with (left) and without (right) a tight ΛCDM-dependent q0 constraint (Betoule et al. 2014).
Taken to be student-t distributions, the intrinsic scatters are Gaussian in the limit t → 1. The log-normal H0 constraint derived from the

GLS fit is overlaid as a pink dashed line. Posteriors extrapolated from Planck Collaboration (2016b) data assuming a ΛCDM cosmology
are plotted in yellow dot-dashed.

We have hence reframed the local distance ladder as
a BHM, in which all components are simultaneously and
self-consistently inferred. By using HMC, as implemented in
Stan, we are not restricted to Gaussian/normal assumptions,
allowing us to use heavy-tailed distributions (specifically the
student-t distribution) to obtain robust inferences even in
the presence of outliers. Using simulations, we analyze the
performance of the model and sampler in a controlled set-
ting, compare with existing generalized least squares tech-
niques, and investigate extensions to the model to account
for outliers in the Cepheid and SN populations. We have
avoided rerunning the analysis with different models, an-
chors, redshift ranges, etc. (cf. R16 and the blind analysis
of Zhang et al. 2017), to gauge any systematic effects, as by
modeling the outlier population we have attempted to re-
move data cuts from the analysis. Most of these other choices
could be coded into a hierarchical model (although the pri-
ors on data selection would be challenging to formulate),
something which is left to future work.

When applied to distance ladder data that have been
cleaned of outliers (using the sigma-clipping techniques of
R16), we find a slight (−0.6 km s−1 Mpc−1) discrepancy be-
tween our posterior constraint of H0 = (72.72 ± 1.67)
km s−1 Mpc−1 and that of R16: this is not present in com-
parisons between the two algorithms in simulations. Our H0

posterior drops to 1.1×10−2 of its maximum at Planck’smost
likely value of 67.81 km s−1 Mpc−1. When we reintroduce SN
outliers to the dataset (the Cepheid outliers are not avail-
able) and allow both Cepheids and SNe to have heavy-tailed
scatter about their Leavitt and Tripp laws, respectively, the
posterior constraint on H0 shifts upwards to (73.15 ± 1.78)

km s−1 Mpc−1, which is much closer to that of R16. Although
the resulting posterior is also slightly broader, it drops to
8.9×10−3 of its maximum at Planck’s central H0 value. Vari-
ations in SN outlier mitigation can, therefore, affect our in-
ference on H0 non-trivially, but not enough to explain the
discrepancy with the Planck data. The tension between the
local estimate of H0 and the value extrapolated from Planck

assuming a flat ΛCDM cosmology persists when the tails of
the local H0 posterior are accurately characterized.

We also note the dependence of this tension on the treat-
ment of the deceleration parameter, q0, a nuisance parame-
ter that is typically fixed when inferring H0. The above re-
sults allow q0 to vary, but only within observational bounds
derived assuming a flat ΛCDM cosmology that in turn makes
use of an overlapping SN dataset. Removing this observa-
tional constraint opens a degeneracy with H0, shifting the
mean posterior values up to (73.70 ± 1.77) km s−1 Mpc−1, or
(74.02 ± 1.86) km s−1 Mpc−1 if the (SN) outliers are included
and fit with heavy-tailed intrinsic scatter distributions.

We quantify the tension between the local and cosmo-
logical expansion measurements in a principled fashion using
Bayesian model comparison, with parameter priors chosen to
minimize the posterior of the null model, Λ (i.e., that ΛCDM
holds). We compare against a designer model, Λ̄ in which the
cosmological H0 and q0 are allowed to differ from their local
counterparts on a scale set by the observed discrepancies. We
find Bayes factors of 0.11±0.01 and 0.15±0.01 between these
models when using the standard (less-discrepant) Planck
Collaboration (2016b) likelihood, depending on whether SNe
outliers are cleaned or modeled. This indicates that the de-
signer model is at most nine times more likely than ΛCDM to
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be the true model, given the CMB and outlier-free distance-
ladder data, and no more than seven times more likely than
ΛCDM when SNe outliers are included and modeled. While
the more-discrepant Planck Collaboration (2016c) likelihood
is not publicly available, we are able to approximate it us-
ing a tight prior on τ. Doing so reduces the Bayes fac-
tors for both outlier-mitigation techniques considerably to
0.016 ± 0.005, implying that the designer model is at most
sixty times more likely than ΛCDM when the latest Planck
data are considered.

An important feature of the hierarchical model pre-
sented here is that it can easily be made more realistic or
extended to include more datasets. The most obvious next
step would be to include the colour and light-curve shape of
the Cepheid-host SNe (as in Zhang et al. (2017)), and hence
fully couple the nearby and Hubble flow SNe. Replacing the
generic heavy-tailed likelihood with physical models of the
Cepheid and SN outliers would improve the model’s fidelity
and make better use of existing data. Extending the redshift
range of the model would allow simultaneous constraints of
H0 and the deceleration parameter, and modifying the Tripp
relation would probe the robustness of the resulting conclu-
sions. More locally, the Cepheid portion would be reinforced
by allowing for errors in the periods and metallicities. While
the model was designed explicitly for the task of analyz-
ing the local distance ladder, it could easily be adapted to
a variety of structurally similar problems in astronomy. A
particular promising avenue would be to use it to link pop-
ulations at different distances in the Gaia data, for which
similar models have already been deployed (e.g., Sesar et al.
2016).
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APPENDIX A: STUDENT-T DISTRIBUTION
AS A MODEL FOR OUTLIERS

One of the fundamental principles of Bayesian inference, and
of this calculation in particular, is that the data under con-
sideration be predicted by a model, rather than processed
or modified in any way. One potential difficulty in imple-
menting this principle is that real datasets contain outliers:
a small fraction of measurements that are very different from
the main population, and hence anomalous. These are typi-
cally described as cases where the measurement process has
gone wrong, although it is really more correct to say that
the model is inadequate, being incapable of predicting some-
thing that actually occurs with sufficient frequency to be
observed even in a typical dataset.

It is also possible for the outliers to be independent of
any measurement, as is the case here for some SNe and, in
particular, for the small number of Cepheids which lie away
from the main population in period-luminosity(-metallicity)
space. The treatment of these objects in efforts to mea-
sure H0 has was sufficiently prominent in Riess et al. (2011)
that this was the main focus of the reanalysis by Efstathiou
(2014); and one of the main changes described by R16 is the
much lower fraction of outliers removed from the Cepheid
data.

Ideally, however, there would be no outlier removal, and
instead the adopted model would be able to generate fully
realistic data, including outliers at the appropriate frequency
and with the observed properties. This typically means re-
placing normal distributions (often chosen because of their
numerical convenience, although potentially motivated by
the central limit theorem or maximum entropy consider-
ations) with distributions that have heavier tails. The in-
evitable result is that the inference calculation becomes nu-
merically more complicated, to a degree which often out-
weighs the conceptual simplicity of having (or at least aim-
ing to have) a model which can generate the full dataset.

A flexible choice for a heavy-tailed distribution is the
Student-t distribution, defined in scaled and translated form
by the density

T(x; µ, σ, ν) =
Γ

(
ν+1

2

)

(π ν)1/2 Γ
(
ν
2

)
σ

[
1 +

(x − µ)2

ν σ2

]−(ν+1)/2

, (A1)

where Γ(t) =
∫ ∞

0
dx xt−1 e−x is the Gamma function, the peak

of the distribution is at x = µ, the width of the distribu-
tion scales with σ ≥ 0, and ν > 0 controls the shape of the
distribution, with heavier tails for lower values of ν. The
wings of the Student distribution are sufficiently broad that
its nth moment is only defined if ν > n, so that for ν ≤ 2

the Student distribution has no formal variance, and for

ν ≤ 1 it does not have a mean either. Most importantly,
limν→∞ T(x; µ, σ, ν) = N(x; µ, σ2), where

N(x; µ, σ2) =
1

(2π)1/2 σ
exp

[
−

1

2

( x − µ

σ

)2
]
, (A2)

which is a Gaussian distribution of mean µ and variance σ2.
This means that if the Student distribution is used to model
a dataset for which there are no outliers the possibility of a
normal model is retained.

The values of µ and σ are linked to the core of the pop-
ulation being modeled; it is the value of ν which determines
the prevalence of outliers. In general this is not likely to be
known (or derivable) a priori, implying that ν is a param-
eter to be inferred from the data. An immediate corrollary
of this is that a prior distribution, Pr(ν), for ν is required.
While there is no compelling form for this prior, it is clear
that the Gaussian (ν → ∞) limit should neither be precluded
(in which case heavy tails would be enforced even if the data
did not demand it) nor strongly favoured (as would be the
case if an improper uniform for ν were adopted). It is also
useful that very heavy-tailed distributions, with ν < 1 be in-
cluded, although there is an expectation that such models,
which are effectively dominated by outliers, would be ruled
out by most useful datasets.

A number of possible priors have been explored with
the aim of satisfying at least some of these (or similar) re-
quirements:

• A sensible starting point is to choose a prior on ν such
that the kurtosis of the resulting student-t distributions is
uniformly sampled; however, the kurtosis of the standard
student-t distribution is 6/(ν − 4), which is only defined for
ν > 4. The implied (Pareto) prior, Pr(ν) = Θ(ν− νmin)/(ν−4)2

requires νmin > 4, omitting a potentially important region
of parameter space. Rubio & Steel (2014) suggest bypass-
ing this issue by using a different kurtosis measure (based
on the ratio of the mode of the distribution to its lower in-
flection point). The resulting prior has a somewhat involved
functional form, but the concept of using a prior uniform in
some heuristic for the kurtosis is a promising avenue.

• Juárez & Steel (2010) adopted a Gamma distribution
with shape 2 and rate 0.1, with Pr(ν) ∝ Θ(ν) ν2 e−ν/10, which
has since been advocated for by the Stan community. How-
ever, this choice of prior results in a somewhat arbitrary
focus on ν ≃ 10 which is not justified by any obvious under-
lying argument.

• Ding (2014) used a Gamma distribution with shape 1
and rate 0.1, which reduces to an exponential distribution
with Pr(ν) ∝ Θ(ν) e−0.1ν . While this prior produces more low-
ν draws than the Juárez & Steel (2010) prior, the exponential
suppression for ν much larger than the inverse rate renders
the Gaussian limit unattainable in practice.

Motivated in part by the shortcomings of the above pri-
ors, we advocate a different option here, which is to choose
a prior on ν such that the resultant distribution of peak
heights is uniform: the peak height is, in essence, a heuris-
tic for the kurtosis of the sampled distributions. This allows
the full range of shapes, including the Gaussian limit, but
included in such a way that it is not strongly favoured. The
peak density of the student-t distribution, relative to the
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Gaussian limit, is

t =
T(x; µ, σ, ν)

N(x; µ, σ2)
=

21/2
Γ

(
ν+1

2

)

ν1/2 Γ

(
ν
2

) =



(
π
2
ν

)1/2
if ν ≪ 1;

1 − 1
4ν

if ν ≫ 1.
(A3)

We plot the relationship between ν and t in the left panel
of Fig. A1.

The prior distribution in ν that produces a uniform
distribution of t between 0 and 1 is then given by apply-
ing a Jacobian transformation to obtain Pr(ν) ∝ Θ(ν) |dt/dν |.
Unfortunately, the gamma function does not have a simple
derivative, so this distribution cannot be written down, al-
though Eq. (A3) implies that the asymptotic forms of the
prior should be Pr(ν) ∝ ν−1/2 if ν ≪ 1 and Pr(ν) ∝ ν−2 if
ν ≫ 1 (which matches the Pareto prior discussed above). A
simple, continuous, density that satisfies these requirements
is

Pr(ν) ∝
Θ(ν)

[
(ν/ν0)

1/(2 a)
+ (ν/ν0)

2/a
]a , (A4)

where taking ν0 ≃ 0.55 and a ≃ 1.2 results in a peak height
distribution that is within a few percent of being uniform.
We plot this prior along with the gamma and exponential
distributions of Juárez & Steel (2010) and Ding (2014) in
the right panel of Fig. A1. In Fig. A2, we plot student-t
distributions corresponding to quantiles of the three priors,
indicating how well each prior samples the range of possible
heavy-tailed distributions. Solid curves are plotted for the
10th, 20th, . . ., 80th, and 90th percentiles, and dashed lines in-
dicate the 0.1st and 99.9th percentiles; the curves are coloured
by increasing ν. The tendency of the gamma and exponen-
tial priors to favour near-Gaussian distributions is clear, as
is the uniform sampling of peak heights achieved by the prior
described by Eq. (A4). We use this prior extensively in Sec-
tions 7 and 8 to model the Cepheid and SN populations,
although its utility is not limited to this particular problem.

This paper has been typeset from a TEX/LATEX file prepared by
the author.

MNRAS 000, 1–23 (2017)



24 S. M. Feeney et al.

10-5 10-4 10-3 10-2 10-1 100 101 102 103

ν

0.0

0.2

0.4

0.6

0.8

1.0

t

10-4 10-3 10-2 10-1 100 101 102 103 104

ν

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

101

102

103

P
r(

ν)

Pr(ν) =Γ(ν; 2, 0. 1)

Pr(ν) = 0. 1 exp(− 0. 1ν)

Pr(t) =Θ(t)Θ(1− t)

Figure A1. Left: relationship between our student-t kurtosis heuristic – the peak density of the student-t distribution relative to the
Gaussian limit – and the distribution’s degrees of freedom. The limiting cases described in Eq. (A4) are highlighted in dashed orange.
Right: priors considered for the degrees of freedom of the heavy-tailed Cepheid and SN intrinsic scatter distributions.
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Figure A2. Student-t distributions with degrees of freedom corresponding to the 0.1st, 10th, 20th, . . ., 80th, 90th, and 99.9th percentiles
of the gamma (left), exponential (centre) and uniform-t priors (right). Dark purple (light orange) quantiles have small (large) degrees
of freedom; the extreme quantiles are indicated by dashed lines. The curves are normalized such that Gaussian distributions have unit
amplitude.
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