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 In this research, the temporal trends of vegetation from 2000 to 2019 as well as 
meteorological variables contribution to vegetation change were investigated using the GLAM 
NDVI, rainfall and temperature data. The MAKESENS revealed that the vegetation growth rate 
was slow, particularly on a yearly time scale. On the other hand, the rainfall and temperature 
had a major impact on vegetation growth on a monthly-time scale with a time lag. The lagged 
effect of rainfall and temperature on vegetation was shown to be a promotion (based on cross-
correlation analysis). There was high value of r (0.804) between vegetation and rainfall for a 
certain lag period, which was significant (P ≤ 0.05) as per the cross-correlation. Rainfall had a 
4-month lag effect on vegetation development, while temperature had a 5 (r = 0.74), − 2 (r = 
0.84), − 3 (r = 0.68) month lag effect on vegetation growth. This study's findings revealed 
changes in vegetation and highlighted the importance of rainfall and temperature in regulating 
vegetation dynamics. Finally, this study recommended that the effect of more climatic 
variables on vegetation should be investigated in the context of human activities to better 
conserve the environment. 

 
 

 
 
 

1. INTRODUCTION  
 

Vegetation is demonstrated by the Normalized 
Differential Vegetation Index (NDVI) (Tucker 1979) and 
is also a common tool for depicting biodiversity 
transition (Nemani et al. 2003). The evolution of satellite 
sensor technologies has resulted in obtaining these 
changes more efficiently and effectively (Shen et al. 
2016). To a large extent, these technologies have been 
used in identifying the location of surface vegetation 
(Chu et al. 2019) over a long period with high spatial and 
temporal resolution (Rasmus and Simon 2012). Eastman 
et al. (2013) used NDVI to assess the validity of remote 
sensing data, especially for evaluating green vegetation 
and understanding the moisture content of the 
vegetation in a given region (Delbart et al. 2005; Jackson 
et al. 2004). 

 NDVI is also used in drought and ecosystem 
monitoring (Gu et al. 2008; Gu et al. 2007).  As a result, 
several studies have shown that NDVI is capable of 
studying vegetation changes at different scales. NDVI was 
employed to investigate the spatiotemporal distribution 

of vegetation (Liu and Lei 2015, Zhang et al. 2013). 
Furthermore, Shilong et al. 2011 investigated vegetation 
temporal trends in Eurasia's temperate and boreal 
regions using the NDVI. 

Generally, vegetation connects water, soil, 
environment, and other natural substances (Nemani et 
al. 2003). At various scales, the NDVI–climate 
relationship has been well described in many studies. In 
regions with abundant water supplies, global warming 
promotes vegetation growth, while in areas with limited 
water resources, vegetation growth is seriously 
hampered (Feng et al. 2016). Rainfall and temperature, 
which have major effects on vegetation growth and 
distribution, are the two most important factors affecting 
vegetation change (Pei et al. 2019; Xu et al. 2015). 
Nowadays, there are noticeable changes in global climate 
and environment (Na et al. 2018). The climatic and 
anthropogenic influences on variations in vegetation 
patterns and functions are major concerns in ecosystem 
research (Li et al. 2019). The temperature increased 
plant activity in the Northern Hemisphere (Mao et al. 
2013; Piao et al. 2015), while rainfall had a significant 
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impact on NDVI in arid and semi-arid areas (Camberlin 
et al. 2007; Piao et al. 2011). Also, the early greening of 
the meadow steppe vegetation is aided by spring climate 
warming, whereas, the issue of weather change was 
mitigated by the water shortage of traditional steppe and 
desert steppe vegetation (Zhao et al. 2015). Rainfall, on 
the other hand, has a major impact on the variation of 
vegetation at the inter-annual time scale, whilst, at the 
monthly time level, the vegetation development is 
affected by both temperature and rainfall (Liu and Wang 
2012). 

As a result, the primary concern of researchers is the 
relation between vegetation and climate due to its clear 
indicative effect on the ecological system (Eastman et al. 
2013). For example, lag period and variation of 
vegetation due to climatic parameters was investigated 
by Wu et al 2015. The cross-correlation method of 
comparing a data set at consecutive lags is applied to 
assess the time lag effect (Davis 2002). Time series 
measurements must be taken at corresponding times in 
a cross-correlation study, i.e., two variables must be 
calculated at the same time (Posavec et al. 2017). A time 
series is generated when a collection of observations is 
organized in a systematic order based on their dates of 
occurrence. A trend, on the other hand, is a consistent 
change over time in the time series characteristics (Patra 
2008). Detecting the existence of trends can be done 
using a variety of methods. Sun et al. 2021, for instance, 
investigated the seasonal changes in the normalized 
difference vegetation index (NDVI) and then evaluated 
the spatiotemporal pattern of vegetation using Sen's 
tendency estimation as well as the Mann–Kendall 
significance test. Multiple regression, Sen's, and Mann–
Kendal methods were used to quantify the effects of 
rainfall, temperature, and human activities on vegetation 
(Li et al. 2019). A computer software model named 
MAKESENS is used for trend analysis which is relying on 
the nonparametric Mann-Kendall test for trend and 
nonparametric Sen's method for trend magnitude (Salmi 
et al. 2002). 

Around 63 percent of Bangladesh's tea is produced in 
Moulvibazar (Islam and Al-Amin 2019). Since vegetation 
estimation and site characterization are still in their 
infancy in Bangladesh, the study of vegetation in context 
of rainfall and temperature has yet to be investigated in 
this rapidly growing town of Moulvibazar. Therefore, 
understanding vegetation evolution and change 
characteristics as a result of climate change necessitates 
a detailed study of the vegetation-rainfall, temperature 
relationship. 

The study purposes were to analyze the temporal 
variability and trend of NDVI and other meteorological 
parameters in the Moulvibazar district. Apart from this, 
another one is to investigate the relationship between 
NDVI and climatic factors. This research in particular, 
investigates the impact of climatic variables on 
vegetation variation and the subsequent vegetation lag 
caused by climatic factors. The study clarified the 
relationship between NDVI and climatic variables, 
evaluated the correlation at different time scales, and 
estimated the timing of NDVI response to climatic 
variables, all of which are important for future studies. 

 

2. MATERIALS and METHOD 
 

2.1. Study Site Description 
 

Moulvibazar district is located at Sylhet division in 
Bangladesh's north-eastern region (Kabir et al. 2014). 
The climate in Moulvibazar is humid subtropical. 
Monsoons, high temperatures, high humidity, and heavy 
rainfall characterize the climate of Moulvibazar. The hot 
season begins in early April and lasts until July. 
Moulvibazar has a mean annual temperature of 24.7 °C. 
A total of 2,805 mm of precipitation occurs each year 
(Wikipedia 2020). This town (Fig. 1) has a landscape 
with a Holocene flood plain, a low raised terrace, and 
sporadic hillocks from the geomorphological context 
(Rahman et al. 2018). 
 

 
 

Figure 1. Moulvibazar district 
 

The research used the Global Agriculture Monitoring 
(GLAM) Terra MODIS 8-day NDVI data in CSV format 
(https://glam1.gsfc.nasa.gov/) from 2000 to 2019 to 
investigate the vegetation's temporal distribution. For 
any given year, this website provides MODIS NDVI 
images and graphs. The annual NDVI trend can also be 
compared to the long-term average (NDVI Anomalies) on 
this website (ARSET Advanced NDVI Webinar Series 
2020). NASA Goddard Space Flight Center’s GIMMS 
(Global Inventory Monitoring and Modeling Studies) 
division, USDA FAS (US Department of Agriculture 
Foreign Agricultural Service), the South Dakota State 
University Geographic Information Science Center of 
Excellence and the University of Maryland-Department 
of Geography initiated a collaborative research project 
named GLAM (Becker-Reshef et al. 2010). The project, 
which started in 2002, is co-financed by USDA-FAS and 
NASA. It provides timely, easily accessible, remotely 
sensed data which is scientifically validated for crop 
condition monitoring and production assessment (USDA 
FAS 2020). The meteorological data (precipitation and 
temperature) from 2000 to 2019 within the study area 
were collected from the Power Data Access Viewer-NASA 
POWER (https://power.larc.nasa.gov/data-access-
viewer/) to examine their impact on vegetation. 
 

2.2. Methods 
 

Initially, the PNG (Portable Network Graphics) 
formation, which was downloaded from the website 
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https://glam1.gsfc.nasa.gov/, was used to evaluate the 
oversimplified view of NDVI in the Moulvibazar region. 
The annual trend of climatic factors and NDVI was then 
determined using the MAKESENS software. 
Furthermore, the monthly trend of NDVI was examined 
in this regard. The correlation was also examined to 
analyze the influence of climatic variables on vegetation, 
and the lag period was determined using the cross-
correlation process. The website 
https://exceluser.com/1069/ provided the ready-to-use 
cross-correlation excel spreadsheet. 
 

 
 

 

2.2.1. The oversimplified view of NDVI in 
Moulvibazar 

 

For Moulvibazar, an image of NDVI with NDVI 
anomaly was taken from the GLAM website 
(https://glam1.gsfc.nasa.gov/) (Fig. 2). An NDVI 
anomaly is the difference between the average NDVI for 
a given month in a given year and the average NDVI for 
the same month over a fixed number of years.  This 
method can be used to compare the health of vegetation 
in a given month and year relative to what is considered 
natural, which can be a good indicator of drought or 
deteriorating vegetation health (ARSET Advanced NDVI 
Webinar Series 2020). 
 

 
Figure 2. Selection of Moulvibazar district 
 
2.2.2. Trend analysis 
 

For analyzing the sloping pattern of time-series, Sen 
et al. proposed the Sen’s estimation process (Li et al. 
2019; Meng et al. 2020). It is a computational method 
that has the advantage of not being influenced by a lack 
of data. The MAKESENS method was then employed to 
calculate the NDVI time series' sloping pattern. The 
following is the formula: 
 

𝑓(𝑡) = 𝑄𝑡 + 𝐵 (1) 
 

The f(t) was a monotonically increasing or decreasing 
time function, the constant was B and the slope was Q. To 
obtain the slope estimate Q in Eq. (ii), all data value pairs' 
slopes were first estimated (Li et al. 2019; Meng et al. 
2020; Salmi et al. 2002):  

 

𝑄𝑖 =
𝑥𝑗 − 𝑥𝑘
𝑗 − 𝑘

 (2) 

 

Here j and k are the years, and xj and xk are the annual 
values of these years where j >k. If the time series had n 
values xj the slope Qi is estimated by N = n (n-1)/2. Sen's 
slope estimator was the median of these N values of Qi 
(Salmi et al. 2002). 

Sen's tendency estimation approach does not provide 
statistical significance tests for the trend, so the 
MAKESENS method was used to assess the trend. Since it 
is nonparametric statistical test, this technique is widely 
used to detect a monotonic pattern in climate. The 
MAKESENS method (Li et al.,2019; Meng et al. 2020; 
Salmi et al. 2002) was as follows: 
 

 

Z = 

{
 

 
𝑆−1

√𝑉𝐴𝑅(𝑆)

0
𝑆+1

√𝑉𝐴𝑅(𝑆)}
 

 𝑖𝑓 𝑆 > 0
𝑖𝑓 𝑆 = 0
𝑖𝑓 𝑆 < 0

 (3) 

  
S = ∑ ∑ 𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘)

𝑛
𝑗=𝑘+1

𝑛−1
𝑘=1  (4) 
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𝑠𝑔𝑛(𝑥𝑗 − 𝑥𝑘) =  {
1
0
−1
}

𝑖𝑓 𝑥𝑗 − 𝑥𝑘 > 0 

𝑖𝑓 𝑥𝑗 − 𝑥𝑘 = 0

𝑖𝑓 𝑥𝑗 − 𝑥𝑘 < 0
 (5) 

  

VAR(S) = 
1

18
[𝑛(𝑛 − 1)(2𝑛 + 5) − ∑ 𝑡𝑝(𝑡𝑝 − 1)(2𝑡𝑝 + 5)

𝑞
𝑝=1 ] 

 
(6) 

Where S denoted the test statistic and VAR(S) 
denoted variance of S. q was the number of tied groups 
and in the pth group, tp was the number of data values. 
For time series with less than ten data points, the S test 
was used, and for time series with ten or more data 
points, the standard approximation (Z) was used. 

The number of annual values in the data series under 
investigation was denoted by the letter n. For four 
different significance levels in MAKESENS, the two-tailed 
test was used α: 0.1, 0.05, 0.01, and 0.001. An upward 
(downward) trend is indicated by a positive (negative) Z 
value (Salmi et al. 2002). 
 
2.2.3. Relationship and Lag Time Analysis 
 

The lag relationship between hydrothermal factors 
and vegetation is more pronounced. Therefore, studying 
the NDVI–climate relationship on a monthly time scale 
may be more realistic. Climate change affects vegetation 
in a variety of ways. Vegetation does not always react to 
climate change immediately, indicating that there is a 
time lag in vegetation due to climate change. The NDVI–
climate relationship was investigated on two-time scales 
in this study: (i) monthly average NDVI and climatic 
variables from 2000 to 2019, and (ii) annually average 
NDVI and climatic variables from 2000 to 2019. In the 
first case, the NDVI and climate factor mean monthly 
sequences (January to December) from 2000 to 2019 
were used as two sets of variables, and the value of 
correlation coefficients between them was estimated. On 
the other hand, the yearly average series of NDVI and 
climatic factors from 2000-2019 were taken for the 
second case. The value of correlation coefficients 
between NDVI and climatic factors was determined in the 
same way as in the first case. The following is the related 
formula (Wang et al. 2020; Li et al. 2018): 
 

𝑅𝑥𝑦 (𝑟) = 
∑ [(𝑥𝑖−�̅�)(𝑦𝑖−�̅�)]
𝑛
𝑖=1

√∑ [(𝑥𝑖−�̅�)
2(𝑦𝑖−�̅�)

2]𝑛
𝑖=1

 (7) 

 

where 𝑅𝑥𝑦 is the Pearson correlation coefficients 

between variable x and variable y, with a value between 
−1 and 1, n is the sample size, xi is the value of NDVI in 
the ith month, and yi is the mean monthly climate factors 
in the ith month, where �̅� and  �̅� are the means of the two 
variables, respectively. In addition, the ANOVA findings 
were used to test the significance of the correlation 
coefficients. 

The response time is known as the lag time that 
corresponds to the maximum of the cross-correlation 
function (Cai and Ofterdinger 2016). In this analysis, the 
mean response time of the NDVI in the study region to 
climatic events was calculated using a cross-correlation 
function between climatic factors (rainfall, temperature) 
and NDVI time-series. In order to estimate lag time, a 

specially developed cross-correlation Excel spreadsheet 
program was used. The correlation (r) was estimated by 
the value of NDVI and climatic parameters. The 
calculation was done by the value of current and previous 
1–5-month climatic parameters with the value of NDVI. 
Furthermore, r was also calculated by the current as well 
as the previous 1–5 months' NDVI values with climatic 
factors. 
 

3. RESULTS  
 

3.1. General View of NDVI 
 

Before conducting in-depth studies on NDVI in 
Moulvibazar, a general view of NDVI would assist in 
vegetation assessment. Throughout the study period, the 
range of NDVI values within the study area was shown in 
Fig. 3 and 4. The NDVI values ranged from - 1 to 0.90 
across the entire study region. Besides that, the graphical 
representation (Fig. 3) depicted a comparison of the 
NDVI mean from 2001 to 2018 with the 8-day NDVI 
values. The graph beneath it (Fig. 4) depicted the 
fluctuation of negative and positive NDVI anomalies over 
time. Over Moulvibazar, the highest positive anomaly 
pattern was observed in 2013 and 2017, while the 
highest negative anomaly pattern was discovered at the 
end of 2010.  In comparison to the positive anomaly 
pattern, the study zone had more negative anomalies. 
 

3.2. Annual Pattern of Climatic Factors and NDVI 
 

In Fig. 5, the trend of mean annual climatic factors 
(rainfall, temperature) and NDVI in the Moulvibazar 
district (as determined by MAKESENS) was illustrated. 
The trends of NDVI and rainfall (except temperature) 
were statistically significant at different levels (Table 1). 
The trend's alternative hypothesis was rejected in 
temperature, as shown by the blank cell of significance. 
The NDVI and rainfall both showed a significant upward 
trend based on positive Z values, with an increased rate 
of 0.003/year and 0.149 mm/year, respectively (Table 
1). The NDVI trend was significant at a level of 0.05 for 
the entire observation period, while the rainfall time 
series trend was significant at a level of 0.1. In the case of 
temperature, however, the rate was zero. 
 

3.3. Monthly Pattern of NDVI 
 

The trends (by MAKESENS) of mean monthly NDVI 
were shown in Fig. 6. The trends were statistically 
significant at different levels excluding in months 
January, June, September, and October (Table 2). The null 
hypothesis of the trend was accepted in these months, as 
shown by the significance blank cell. Depending on the 
positive Z values, the NDVI displayed a noticeable 
upward trend, which varied between 0.002 and 0.007 
per month.
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Figure 3. NDVI value in Moulvibazar 
 

 
Figure 4. NDVI and NDVI anomaly in Moulvibazar 
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Table 1. Annual trend of climatic factors and NDVI 

Events 
First 

Period 
Last Period Test Z 

Rate of Change 
per Year, Q 

Constant, B Significance of Trend, 𝛂 

NDVI 2000 2019 2.37 0.003 0.50 0.05 

Rainfall (mm) 2000 2019 1.78 0.149 5.18 0.1 

Temperature (°C) 2000 2019 0.00 0.000 24.40  

 

  
  

 

 

Figure 5. Trends of mean annual NDVI and climatic factors 
 
Table 2. Monthly trend of climatic factors and NDVI 

Month 
First 
Period 

Last 
Period 

Test Z 
Rate of 
Change per 
Year, Q 

Constant, B 
Significance of 
Trend, 𝛂 

Jan 2000 2019 0.91 0.001 0.46  
Feb 2000 2019 2.04 0.003 0.47 0.05 
Mar 2000 2019 1.91 0.003 0.50 0.1 
Apr 2000 2019 2.11 0.003 0.53 0.05 
May 2000 2019 2.50 0.005 0.48 0.05 
Jun 2000 2019 0.55 0.004 0.46  
Jul 2000 2019 -0.49 -0.003 0.50  
Aug 2000 2019 1.98 0.007 0.47 0.05 
Sep 2000 2019 1.07 0.002 0.62  
Oct 2000 2019 1.46 0.002 0.67  
Nov 2000 2019 2.08 0.003 0.58 0.05 
Dec 2000 2019 2.70 0.002 0.50 0.01 
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Figure 6. Trends of mean monthly NDVI time series  

 
3.4. Relationships between Climatic Variables and 

Vegetation 
 

Rainfall and temperature were used in this analysis to 
demonstrate their impact on NDVI. Rainfall showed an 
irregular gradient in different years (Fig. 7 (right)), while 
the distribution of rainfall is highly unequal in month-
wise (Fig. 7 (left)) variance. The areas with high rainfall 
values were observed in 2017 (14.57 mm) (Fig. 7(right)) 
and in June (15.45 mm) (Fig. 7(left)). On the other side, 
the low values were distributed mainly in 2011 (4.39 
mm) (Fig. 7(right)) and in January (0.16 mm) (Fig. 
7(left)). The mean annual rainfall was 6.96 mm (Fig. 
7(right)) over the study area and it increased from April 
to October (Fig. 7(left)) over the study period. The lowest 
rainfall was observed from November to March (Fig. 
7(left)). On the other hand, the temperature also varied 
(Fig. 8) with the lowest values mainly in January 
(17.22 °C) and in 2007 (23.92 °C), and with the highest 
values mainly in July (27.78 °C) and in 2000 (25.07 °C). 
The areas with high temperature values were noticed 
from March to October, whereas, low temperature values 
were observed from November to February (Fig. 8 (left)). 
From 2000 to 2019, the mean NDVI value in the study 
region showed distinct characteristics (Fig. 7 and 8). The 
NDVI fluctuated in a small range maintaining a stability 
in the region with the lowest value of 0.47 (July) and 0.46 

(2010), and the highest value of 0.68 (October) and 0.59 
(2019). Almost similar results in the case of annual NDVI 
with the highest (2017) and lowest (end of 2010) values 
were also found from section 3.1 (Fig. 4). Every year, the 
lower values of NDVI were appeared between January 
and February. On the other side, the higher values were 
appeared from July to October indicating NDVI changed 
in a predictable pattern (Fig. 7 (left) and 8 (left)). From 
the analysis, the highest NDVI was noticed in October 
while the highest rainfall was found in June. So, the 
monthly NDVI value was increased corresponding to 
rainfall with about 4 months lag. Similarly, the monthly 
NDVI value was increased corresponding to temperature 
with about 6 months lag. However, the annual 
relationship was found uneven in both cases. 

The correlations R2 (r) between the climatic 
parameters and NDVI were evaluated at two-time scales 
to determine the effects of each on vegetation: (i) one is 
monthly (Fig. 9(left), 10(left)), and (ii) another is 
annually (Fig. 9(right), 10(right)). As shown in Fig. 9 and 
10, an insignificant correlation was observed with 
positive value, indicating that both rainfall and 
temperature had less impact on vegetation over the 
study area. According to the above results, NDVI with a 
certain lag time showed frequent changes as climatic 
factors changed on a regular basis. 
 

 

  
Figure 7. Changes in NDVI and rainfall: (left) monthly average, (right) yearly average 
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Figure 8. Changes in NDVI and temperature: (left) monthly average, (right) yearly average 

 

  
Figure 9. Relation between vegetation and Rainfall: (left) monthly, (right) yearly  

 

  
Figure 10. Relation between NDVI and Temperature: (left) monthly, (right) yearly 

 
3.5 Analysis of Lag Period  
 

Since the relationship between monthly NDVI values 
and climate factors was inconsistent in annual analysis 
(Fig. 9(right) and 10(right)), the lag between monthly 
NDVI values and climatic factors was investigated. Fig. 11 
depicted the values of the correlations between NDVI and 
rainfall as well as temperature from 2000 to 2019. The 
current and previous months' NDVI and climate 
variables were compared, and the month with the 
highest correlation coefficient was chosen as the lagged 
month. At subsequent lags, both positive and negative 
comparisons are made, with the zero-lag representing 
the alignment of two data sets at their source. 

 
1 P indicates significance level. If P exceeds 0.05, then 

it will be insignificant. 

In terms of rainfall, the study discovered a clear 
positive relationship (Fig. 11(left)) between NDVI and 
rainfall in May (r = 0.804, P1=0.016), suggesting that 
vegetation was lagged by four months in receiving 
rainfall from May. In case of temperature (Fig. 11(right)), 
the lagged months of NDVI were March, April and June. 
However, the significant positive correlation in month 
June (r = 0.74, P = 0.05) and March (r = 0.84, P = 0.002), 
April (r = 0.68, P = 0.045) indicated that there was 
monthly lag (5 months, − 2 – 3 months) vegetation due 
to temperature.  
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Figure 11. Correlation coefficients between climatic factors: (left) rainfall, (right) temperature and vegetation  

 

4. DISCUSSION 
 

Over the last few decades, vegetation is influenced 
largely by the effect of human disturbance (Yu et al. 
2018), rainfall and temperature change (Li et al. 2019). 
As a result, studying vegetation change and how it 
responds to climate change would provide vital 
information for management of environmental resources 
(Sun et al. 2021; Li et al. 2019).  

The highest (0.59) and lowest (0.46) NDVI values 
were reported in this analysis in 2019 and 2014, 
respectively. The NDVI values were ranged from – 1 to 
0.09 across the sample region. Various factors promoted 
the development of vegetation, in which reainfall and 
temperature playing a significant role (Jiang and Wang 
2016). Significant climate change has resulted in the 
rising of current vegetation pattern (Wang et al. 2005). 
The NDVI–climate relationship has been difficult to 
uncover. Some research looked at the influences of 
rainfall, temperature and anthropogenic activities on 
arable land in a quantitative way (Shi et al. 2016). Studies 
have found that the most significant factors influencing 
vegetation growth were climatic parameters (Pei et al. 
2019).  

Climate conditions, on the other hand, impact certain 
places at different time scales. A distinctive relationship 
between vegetation and climatic factors was observed in 
different case of annual and monthly time scales. 
According to MAKESENS there were significant 
increasing trends (P < 0.05) observed in vegetation 
growth and rainfall. Similarly, a significant upward trend 
was also found in vegetation coverage on the Loess 
Plateau (Sun et al. 2015). In terms of an annual basis 
trend, the rate of vegetation growth was 0.003. 
Meanwhile, based on the monthly trend, a growth rate of 
0.002 to 0.007 was observed. The increasing rate of 
rainfall, on the other hand, was 0.149 mm/year, which 
suggested a low growth rate of rainfall on annual basis. 

The highest NDVI value was found in October, while 
the highest rainfall was identified in June in this study. 
The explanation for this could be that there was sufficient 
moisture condition for the development of vegetation as 
there was too much rain in June, with some of it 
remaining in the subsurface in October. On the other 
hand, the highest temperature was recorded in July, and 
the highest NDVI growth was recorded in October. The 
reason for this could be that decomposition and 
mineralization of organic matter would be accelerated as 

the enzymatic activities of photosynthesis would be 
stimulated due to rise of temperature (Wan et al. 2005). 

NDVI was influenced by temperature and rainfall, and 
cross-correlation analysis revealed a time lag for climate 
influences. In general, cross-correlation was defined as 
the degree to which two series were correlated in terms 
of lag between them, as well as the method of comparing 
them at successive lags (Davis 2002). Generally, time lags 
occurred as different climatic variables changed 
(Davenport and Nicholson 2007). The NDVI reached at a 
high value of r (0.804) due to rainfall for a certain lag 
period, which was significant (P < 0.05) according to the 
cross-correlation. Rainfall had a 4-month lag effect on 
vegetation development, while temperature had a 5 (r = 
0.74), − 2 (r = 0.84), and − 3 (r = 0.68) month lag effect 
on vegetation growth. Sun et al. 2021 also discovered 
that rainfall in the end of growth period had a lag of 1-2 
months on vegetation development, whereas the 
temperature in the middle of the growth period had a lag 
impact of one month. 

 

5. CONCLUSION  
 

The current study used the MAKESENS software, 
cross-correlation, and ANOVA significance test to 
investigate the trends of NDVI and their lag period due to 
climatic conditions. The NDVI's temporal variation 
revealed that vegetation growth was low, particularly on 
the yearly-time scale (0.003/year). Furthermore, an 
assessment revealed that vegetation growth on the 
monthly-time scale was strongly dominated by rainfall 
and temperature. Finally, the delayed impact of rainfall 
and temperature on vegetation was revealed. Rainfall 
from January to April had a four-month lag effect on 
vegetation growth, while temperature had a 5, - 2, - 3 
months lag on vegetation growth. This study's findings 
revealed changes in vegetation and highlighted the 
importance of rainfall and temperature in regulating 
vegetation dynamics.  

This study was limited to find out the temporal 
variation of vegetation. Instead of considering 
spatiotemporal data, only MODIS NDVI temporal data 
were used in this scenario. The effect was assessed using 
two climatic variables (temperature and rainfall), though 
there were many other variables, including human 
activity, which were not addressed. Therefore, to better 
preserve the environment, the effects of climatic 
conditions on NDVI should be analyzed under the 
circumstance of global climate change. Meanwhile, the 
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human activities on vegetation should be analyzed 
quantitatively. 
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