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Abstract

This paper studies the differentiability properties of the projection
onto the cone of positive semidefinite matrices. In particular, the
expression of the Clarke generalized Jacobian of the projection at any
symmetric matrix is given.

Keywords: Positive semidefinite matrices, projection, spectral function, dif-
ferentiability, Clarke generalized Jacobian, eigenvalue optimization, pertur-
bation theory, nonsmooth analysis.
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1 Introduction

1.1 Motivations

Let Mn be the Euclidean space of n × n real matrices equipped with the
standard inner product 〈A, B〉 = trace (A⊤B) =

∑

ij AijBij . Denote by Sn
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the subspace of symmetric matrices and by Sn
+ the cone of symmetric positive

semi-definite matrices. Denote the projection from Sn onto Sn
+ by PSn

+
. Since

Sn
+ is a closed and convex set, this projection is well defined and globally

Lipschitz on Sn, see [7, Proposition A.3.1.3]. By the Rademacher Theorem,
[3, Chapter 3], PSn

+
is differentiable almost everywhere (in Lebesgue sense)

on Sn. Natural questions are therefore arising:

(i) Where is PSn
+

differentiable?

(ii) What is the Jacobian, ∇PSn
+
(X), of PSn

+
at a point X ∈ Sn where PSn

+

is differentiable?

(iii) What is the Clarke generalized Jacobian, ∂CPSn
+
(X), of PSn

+
at a point

X ∈ Sn where PSn
+

is not differentiable?

These are the questions that we answer is this paper. In particular, using
differentiability properties of spectral functions, our development culminates
in Theorem 3.7 giving a complete description of the Clarke generalized Ja-
cobian.

In the general context of the projection onto a closed convex set, Question
(iii) above was first formulated in [5].

1.2 Basic notation

By Rn
↓ we denote the set of vectors from Rn with coordinates ordered in non

increasing order. The function λ : Sn → Rn
↓ maps a symmetric matrix to the

vector of its eigenvalues, ordered non increasingly:

λ1(X) ≥ λ2(X) ≥ · · · ≥ λn(X).

For any vector x in Rn, by Diag x we denote the diagonal matrix with vector
x on the main diagonal, and by diag : Mn → Rn we denote its dual operator:
diag (X) = (X11, . . . , Xnn).

By pX we denote the number of the positive eigenvalues of X ∈ Sn, by qX
the number of negative ones, and by nX the multiplicity of 0 as an eigenvalue.
Clearly

(1) pX + qX = n − nX = rank of X.

We denote by O(n) the compact group of n× n orthogonal matrices and
by P n the finite subgroup of permutations matrices. We denote the set of
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all orthogonal matrices that give the ordered spectral decomposition of X by
O(n)X , that is,

(2) O(n)X = {U ∈ O(n) |X = U(Diag λ(X))U⊤}.

For instance, observe that O(n)X = O(n) if X = 0.
Spectral functions are functions on Sn invariant under conjugation by

elements from O(n): F (X) = F (U⊤XU). Restricting a spectral function F
to the subspace of diagonal matrices shows that

∀X ∈ Sn, F (X) = f(λ(X)),

where f(x) = F (Diagx) is a symmetric function on Rn, that is, f(x) = f(Px)
for any P ∈ P n. Thus, spectral and symmetric functions are in one-to-one
correspondence. Many properties of F are inherited from its corresponding
f and vice versa. For example, F is convex on Sn if, and only if, f is convex
on Rn, see [2]. Moreover, F is differentiable or twice differentiable at X ∈ Sn

if, and only if, f is such at λ(X), see Theorem 1.5 below.

1.3 Tensor notation

To conveniently handle the formulae for the first and second derivatives of
spectral functions f ◦ λ, we use some of the notation introduced in [11].

A k-tensor on Rn is a multi-linear, real valued function on Rn × · · · ×Rn

(k-times). The set of all k-tensors on Rn will be denoted by T k,n. By Nn

we will denote the set {1, 2, . . . , n}. For a fixed basis in Rn, by T i1...ik we
denote the (i1, . . . , ik)-th entry of T ∈ T k,n. Vectors are viewed as 1-tensors
and matrices as 2-tensors, in the natural way. In this paper we work with
tensors of dimension at most four.

By {Hpq : 1 ≤ p, q ≤ n} we denote the standard basis in the space Mn.
That is, the matrices Hpq are such that (Hpq)

ij is one if (i, j) = (p, q), and
zero otherwise.

Definition 1.1 (σ-Hadamard product) For each permutation σ on N2,
we define σ-Hadamard product, H1 ◦σ H2, between the two matrices H1 and
H2 to be a 2-tensor on Rn as follows.

(H1 ◦σ H2)
i1i2 = H

i1i
σ−1(1)

1 H
i2i

σ−1(2)

2 .(3)
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In other words, when σ = (1)(2) we have H1◦(1)(2)H2 = diag (H1)diag (H2)
⊤

and when σ = (12) we have H1 ◦(12) H2 = H1 ◦H2
⊤, where A◦B = [AijBij ] is

the usual Hadamard product between A = [Aij] and B = [Bij ]. Analogously
when σ is a permutation on N1, that is σ = (1), we define ◦

(1)
H = diag H .

Let T be an arbitrary matrix in Mn and let σ be a permutation on N2.
We define Diag σT to be a 4-tensor on Rn in the following way

(Diag σT )
i1i2
j1j2 =

{

T i1i2 , if is = jσ(s) for s = 1, 2,
0, otherwise.

(4)

Similarly, when T ∈ Rn and σ = (1) we define Diag(1)T = Diag T .
Notice that any 4-tensor, T , on Rn can naturally be viewed as a 2-tensor

on Mn, and vice versa, for example

T [H1, H2] =
n

∑

p1,q1=1

n
∑

p2,q2=1

T
p1p2
q1q2Hp1q1

1 Hp2q2

2 .

Define inner product between two tensors in T k,n in the usual way:

〈T1, T2〉 =

n
∑

p1,...,pk=1

T p1...pk

1 T p1...pk

2 .

Definition 1.2 (Conjugation) We define an action of the orthogonal group
O(n) on the space of all k-tensors on Rn, that will be denoted by UTU⊤ or
by U · T :

(5) (UTU⊤)i1...ik =

n
∑

p1,...,pk=1

(

T p1...pkU i1p1 · · ·U ikpk

)

.

It is easy to see that this action is, as expected, norm preserving and
associative: V (UTU⊤)V⊤ = (V U)T (V U)⊤ for all U, V ∈ O(n). The Diag σ

operator, the σ-Hadamard product, and conjugation by an orthogonal matrix
are connected in the following way (see [11, Theorem 4.4] for a generaliza-
tion).

Lemma 1.3 For any vector T ∈ Rn, any matrix H in Mn and any orthog-
onal matrix U ∈ O(n), we have:

〈T, ◦
(1)

(U⊤HU)〉 =
(

U(Diag(1)T )U⊤)

[H ].
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For any matrix T ∈ Mn, any matrices H1 and H2 in Mn, any orthogonal
matrix U ∈ O(n) and any permutation σ on N2, we have:

〈T, (U⊤H1U) ◦σ (U⊤H2U)〉 =
(

U(Diag σT )U⊤)

[H1, H2].

We conclude this section with an easy lemma about conjugation. In this
lemma and throughout the paper, conv S denotes the convex hull of the set
S (a subset of a real vector space).

Lemma 1.4 Let S be a subset of the vector space of k-tensors on Rn and G
be a subset of the group O(n). Then

(i) G · (conv S) ⊆ conv (G · S),

(ii) conv (G · (conv S)) ⊆ conv (G · S).

Proof. Let g ∈ G, observe on (5) that the function T .→ g · T is linear.
Therefore

g · conv S = conv g · S ⊂ conv G · S.

This yields the first inclusion. Since the right-hand side is convex, the second
inclusion follows.

1.4 Gradient and Hessian of spectral functions

Theorem 1.5 (Derivatives of spectral functions) a) Let X ∈ Sn and
let U be any element in O(n)X. A symmetric function f : Rn →R is differ-
entiable at λ(X) if, and only if, f ◦λ is differentiable at X. In that case, the
gradient of f ◦ λ is given by the following well-defined (independent of the
choice of U) formula

(6) ∇(f ◦ λ)(X) = U
(

Diag(1)∇f(λ(X))
)

U⊤,

b) A symmetric function f : Rn →R is twice differentiable at λ(X) if, and
only if, f ◦ λ is twice differentiable at X. In that case, the Hessian of f ◦ λ
is given by the following well-defined formula

(7) ∇2(f ◦ λ)(X) = U
(

Diag(1)(2)∇2f(λ(X)) + Diag(12)A(λ(X))
)

U⊤,
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where A : Rn → Sn is the map defined by

(8) Aij(x) =























0, if i = j

f ′′
ii(x) − f ′′

ij(x), if i 0= j but xi = xj

f ′
i(x) − f ′

j(x)

xi − xj

, otherwise.

Proof. The differentiability result is established in [8, Theorem 1.1] and
the twice differentiability in [9, Theorem 3.3]. The particular expression for
the Hessian is given in [11, Example 4.9].

Notice that the entries of ∇2f(x) and A(x) do not depend on the ei-
genvalues but only on the partial derivatives of f up to order two. Thus,
Formulae (6) and (7) depend on the eigenvalues only through the orthogonal
matrix U and the composition with λ(X). One should keep in mind that, in
the formula for the Hessian, U conjugates a four dimensional tensor on Rn.

The proof of the next corollary is an interesting application of the differ-
entiability properties of spectral functions.

Corollary 1.6 a) The set of all singular matrices in Sn has Lebesgue mea-
sure zero. b) The set of all matrices in Sn with repeated eigenvalues has
Lebesgue measure zero.

Proof. a) Consider the symmetric convex function f(x) =
∑n

i=1 |xi| defined
for all x ∈ Rn. As we mentioned at the end of Section 1.2, the spectral
function f ◦ λ is convex. Moreover, by Theorem 1.5, f ◦ λ is differentiable
at X if, and only if, f is differentiable at λ(X). Observe now that f is
differentiable at x ∈ Rn if, and only if, all xi are nonzero. Thus the convex
function f ◦ λ is differentiable at X ∈ Sn if, and only if, X is nonsingular.
Since a convex function on Sn (or Rn) is differentiable almost everywhere
[10, 6] we are done.

b) An analogous argument for the function f(x) =
∑

i<j |xi − xj|.

2 Differentiability of the projection

The main idea in this section is the realization that the projection onto the
cone of positive semi-definite matrices is the gradient mapping of a spectral
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function (see Subsection 2.2). Then to investigate the smoothness of the
projection, we employ Formula (7) for the Hessian of spectral functions.

2.1 Explicit expression of the projection

It is well-known, see [4] for example, that the projection operator onto the
cone of positive semi-definite matrices allows a closed form representation.
Indeed, projecting X amounts to replacing the negative eigenvalues by 0 in
the spectral decomposition of X. Recall that the polar cone (Sn

+)◦ = {B ∈
Sn, 〈A, B〉 ≤ 0} is actually Sn

− = −Sn
+ , the cone of negative semi-definite

matrices.

Theorem 2.1 (Expression for PSn

+
) Let X ∈ Sn and let U be any element

in O(n)X. Then, the projection of X onto Sn
+ is given by

(9) PSn
+
(X) = U

(

Diag (max{λ1(X), 0}, . . . , max{λn(X), 0})
)

U⊤.

The equivalent result for the projection onto Sn
− replaces the positive eigen-

values with 0.

It is worth mentioning that this result is also a straightforward application
of Moreau’s theorem (see [7, Theorem 3.2.5 and Exercise A.15]) which in our
case can be stated as follows.

Theorem 2.2 (J.-J. Moreau) For any three matrices X, X1, and X2 in
Sn the properties below are equivalent:

(i) X = X1 + X2 with X1 ∈ Sn
+, X2 ∈ Sn

− , and 〈X1, X2〉 = 0;

(ii) X1 = PSn
+
(X) and X2 = PSn

−

(X).

In particular, PSn
+

+ PSn
−

= In.

2.2 A primitive function of the projection

Denote by ISn
−

the indicator function on Sn
− . Let ∆ : Sn → R be the Moreau

regularization of ISn
−

defined by

(10) ∆(X) = min
Y ∈Sn

{

1

2
‖X − Y ‖2 + ISn

−

(Y )

}

.

In Lemma 2.3, we observe that ∆(X) is a spectral function and in Lemma 2.4
we show that PSn

+
is its gradient.
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Lemma 2.3 The function ∆ is the spectral function ∆ = δ ◦ λ, where

(11) δ(x1, . . . , xn) =
1

2

n
∑

i=1

max{0, xi}2 .

Proof. For any X ∈ Sn, write

∆(X) = 1
2
‖X − PSn

−

(X)‖2

= 1
2
‖PSn

+
(X)‖2

= 1
2

∑n

i=1 max{0, λi(X)}2 = δ
(

λ(X)
)

.

[by definition of PSn

−

(X)]

[by Theorem 2.2]

[by Theorem 2.1]

This ends the proof.

Lemma 2.4 The function ∆ defined by (10) is convex and differentiable.
Moreover, its gradient at X ∈ Sn is PSn

+
(X).

Proof. The function δ defined by (11) is obviously convex on Rn. Then
[8, Corollary 2.7] yields the convexity of ∆ on Sn. The differentiability of ∆
and the formula for the gradient follow from Theorem 1.5.

Remark 2.5 This result is actually independent of spectral functions pro-
perties: it holds if Sn

+ is replaced by any closed, convex cone. See more about
the properties of the Moreau regularization in [6, Ch.XV].

2.3 Differentiability of the projection

Studying differentiability of PSn
+

amounts to studying second-order differen-
tiability of ∆ = δ ◦ λ. The point is that δ ◦ λ is a spectral function and
this makes things easier: we have a characterization of twice differentiable
spectral functions and an easy-to-use formula for their Hessian.

We begin by recalling the nature of objects that come into play. When it
exists, the derivative of PSn

+
at X, ∇PSn

+
(X) is a linear function from Sn to

Sn. The second derivative of δ ◦ λ at X, ∇2(δ ◦ λ)(X), is a 2-tensor on Sn.
Notice that these derivatives are connected by the following equation

(12) ∀H1, H2 ∈ Sn, ∇2(δ ◦ λ)(X)[H1, H2] = 〈∇PSn
+
(X)[H1], H2〉.

8



In the rest of the paper, we identify these objects via this identity. We
now introduce a map that plays an important role in the description of the
gradient and the Clarke generalized Jacobian of PSn

+
.

Definition 2.6 (The map B(x)) For any x ∈ Rn
↓ with non-zeros entries

(p positive, q negative, where p + q = n), we define the matrix B(x) ∈ Sn as
follows:

• If i ≤ p, j ≤ p, then Bij(x) = 1;

• If i > p, j > p, then Bij(x) = 0;

• If i ≤ p, j > p, then Bij(x) =
xi

xi − xj

;

• If i > p, j ≤ p, then Bij(x) =
xj

xj − xi

.

Theorem 2.7 For any X ∈ Sn the following are equivalent:

(i) PSn
+

is differentiable at X,

(ii) ∆ = δ ◦ λ is twice differentiable at X,

(iii) X is non-singular.

In that case, the functions δ ◦ λ and PSn
+

are actually C∞ in a neighbourhood
of X, and

(13) ∇PSn
+
(X) = U

(

Diag(12)B(λ(X))
)

U⊤,

for any U ∈ O(n)X.

Proof. By Lemma 2.4, the differentiability of PSn
+

at X ∈ Sn is equivalent
to the twice differentiability of ∆ at X. By (11), the function δ is twice
differentiable at x = (xi)i if, and only if, each xi is nonzero. Theorem 1.5
implies that ∆ is twice differentiable at X if, and only if, the function δ is
twice differentiable at λ(X), and that happens if, and only if, 0 is not an
eigenvalue of X.

Since δ(x) is C∞ at a vector x with nonzero coordinates, we obtain by
[15, Section 3] that δ ◦ λ and PSn

+
are C∞ at a non-singular matrix X.

9



We now compute the Hessian of δ ◦ λ at a non-singular X ∈ Sn. For
a vector x ∈ Rn

↓ with nonzero coordinates (the first p strictly positive), we
have:

(14) ∇2δ(x) =

(

Ip 0
0 0

)

,

and it is easy to see that

(15) Diag(1)(2)∇2δ(x) = Diag(12)∇2δ(x).

Now, using (8), we compute the matrix A(x):

• If i = j, then Aij(x) = 0.

• If i ≤ p, j ≤ p, with i 0= j, then Aij(x) = 1.

• If i > p, j > p, then Aij(x) = 0.

• If i ≤ p, j > p, then Aij(x) =
xi

xi − xj

.

• If i > p, j ≤ p, then Aij(x) =
xj

xj − xi

.

Combining that with Equations (14) and (15), and letting x = λ(X), parti-
cularizes (7) into (13), and completes the proof.

At the very beginning of the paper, we stated that PSn
+

is differentiable
almost everywhere. This property can be checked using Theorem 2.7 and
the fact that the set of singular matrices has a (Lebesgue) measure zero, see
Corollary 1.6.

2.4 Study of B

In this subsection we present several technical properties of B(x) and define
two subsets of Mn that will be useful in the sequel. We start with the
following observation.

Lemma 2.8 Let x ∈ Rn
↓ be with non-zeros entries: p positive and q negative

(p + q = n). Then the entries of the matrix B(x) are in the closed interval
[0, 1] and form non increasing sequences in each row (considered from left to
right) and each column (from top to bottom).

10



Proof. Write x = (λ1, . . . , λp, µp+1, . . . , µn) with

λ1 > λ2 > · · · > λp > 0 > µp+1 > µp+2 > · · · > µn.

Using the expressions for the entries of B(x) in Definition 2.6, one can see
that the only case to study is i ≤ p and j > p. In that case we have

Bij(x) =
λi

λi − µj

=
λi/µj

λi/µj − 1
.

Notice that the ratio λi/µj is negative and

λi

µl

≤ λj

µl

whenever i < j ≤ p, l ∈ {p + 1, . . . , n}

λl

µi

≤ λl

µj

whenever p < i < j, l ∈ {1, . . . , p}.

Since the function y .→ y

y−1
is decreasing on the interval (−∞, 0), with values

in (0, 1), the proof is complete.

This property leads us to define the following sets:

• By D{01}(m) we denote the finite set of m×m symmetric matrices with
entries from the set {0, 1} such that the entries in each row (considered
from left to right) or column (from top to bottom) form a non increasing
sequence.

• By D[01](m) we denote the convex set of m × m symmetric matrices
with entries from the interval [0, 1], with the same property of non
increasing rows and columns.

For example,

D{01}(2) =

{(

0 0
0 0

)

,

(

1 0
0 0

)

,

(

1 1
1 0

)

,

(

1 1
1 1

)}

, and

(16)

D[01](2) =

{(

a b
b c

)

| a, b, c ∈ [0, 1] and a ≥ b ≥ c

}

.

The next corollary is immediate.
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Corollary 2.9 For any x ∈ Rn
↓ , the matrix B(x) is in D[01](n). Moreover,

any m × m submatrix of a matrix in D[01](n) is an element of D[01](m),
m ≤ n.

Trivially, D{01}(m) ⊂ D[01](m), and the following result gives the precise
relationship between D{01}(m) and D[01](m).

Lemma 2.10 For any m ∈ N, we have

D[01](m) = conv (D{01}(m)).

The elements of D{01}(m) are the extreme points of D[01](m).

Proof. Let {Eij | 1 ≤ i ≤ j ≤ m} be the standard basis for the set of
m × m symmetric matrices. That is, if i 0= j, then Eij has one in positions
(i, j) and (j, i) and zero everywhere else; and if i = j, then Eii has one in
position (i, i) and zero everywhere else.

Take any matrix Q ∈ D[01](m). We will express it as a convex combi-
nation of matrices from D{01}(m). If Q is the all-zero matrix, we are done.
Otherwise, define the matrix B ∈ D{01}(m) as follows

Bij =

{

1, if Qij 0= 0
0, otherwise.

Next, we find basic matrices Ei1j1,. . . ,Eisjs
such that

• B =
∑s

k=1 Eikjk
;

• For every l ∈ {1, . . . , s}, the sum of the first l of these basic matrices
is in D{01}(m) (this implies that (i1, j1) = (1, 1));

• Qirjr ≤ Qir−1jr−1, for all r ∈ {2, . . . , s}.

Now define

B0
l =

l
∑

k=1

Eikjk
, for all l = 1, 2, .., s.

We will express matrix Q as a convex combination of the matrices {B0
l }s

l=1

in s steps. Three points about the notation should be immediately clear:
B0

s = B, Qirjr > 0, and Q ◦ Eirjr
= QirjrEirjr

for all r ∈ {1, 2, . . . , s}.
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In the first step, we let α1 = Qi1j1 ∈ [0, 1] and define

B1
l = α1B

0
l , for all l = 1, . . . , s.

The fact that the zero matrix is in D{01}(m) implies that these matrices
are in conv (D{01}(m)). Notice that we have

B1
l ◦ Ei1j1 = Q ◦ Ei1j1 for l = 1, 2, ..., s

B1
l ◦ Eiqjq

= Qi1j1Eiqjq
for 1 ≤ q ≤ l ≤ s,

B1
l ◦ Eiqjq

= 0 for 1 ≤ l < q ≤ s

If s = 1, we are done, thus suppose that s ≥ 2.
Suppose that on the (r − 1)-st step we defined the matrices

{Br−1
l : l = r − 1, r, ..., s}

with the following four properties:

(i) Br−1
l ∈ conv (D{01}(m)) for all l = r − 1, r, ..., s;

(ii) Br−1
l ◦ Eiqjq

= Q ◦ Eiqjq
for all l and q such that q ≤ r − 1 ≤ l ≤ s;

(iii) Br−1
l ◦Eiqjq

= Qir−1jr−1Eiqjq
for all l and q such that r− 1 ≤ q ≤ l ≤ s;

(iv) Br−1
l ◦ Eiqjq

= 0 for all l and q such that r − 1 ≤ l < q ≤ s.

On the r-th step, since 0 < Qirjr ≤ Qir−1jr−1, set αr = Qirjr/Qir−1jr−1 ∈
[0, 1] and form the convex combinations:

Br
l = αrB

r−1
l + (1 − αr)B

r−1
r−1 , for all l = r, r + 1, . . . , s.

We now check that {Br
l : l = r, r + 1, ..., s} satisfy the four properties in the

indiction hypothesis.
(i) The fact that Br

l ∈ conv (D{01}(m)) for all l = r, r + 1, ..., s is clear
from the definition.

(ii) For fixed indexes l and q such that q < r ≤ l ≤ s (the case q = r is
covered in Property (iii) below), we have:

Br
l ◦ Eiqjq

=
(

αrB
r−1
l + (1 − αr)B

r−1
r−1

)

◦ Eiqjq

= αrQ ◦ Eiqjq
+ (1 − αr)Q ◦ Eiqjq

= Q ◦ Eiqjq
.

[by the definition of B
r

l
]

[by Property (ii)]
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(iii) For fixed indexes l and q such that r ≤ q ≤ l ≤ s, we have:

Br
l ◦ Eiqjq

=
(

αrB
r−1
l + (1 − αr)B

r−1
r−1

)

◦ Eiqjq

= αrQ
ir−1jr−1Eiqjq

+(1 − αr)B
r−1
r−1 ◦ Eiqjq

= αrQ
ir−1jr−1Eiqjq

= QirjrEiqjq
.

[by the definition of B
r

l
]

[by Property (iii)]

[by Property (iv)]

[by the definition of αr]

(iv) For fixed indexes l and q such that r ≤ l < q ≤ s, by Property (iv),
we have:

Br
l ◦ Eiqjq

=
(

αrB
r−1
l + (1 − αr)B

r−1
r−1

)

◦ Eiqjq
= 0.

With this the induction is complete. After s inductive steps we define the
matrix Bs

s ∈ conv (D{01}(m)) with the property that

Bs
s ◦ Eiqjq

= Q ◦ Eiqjq
, for all 1 ≤ q ≤ s.

Summing over all q’s we get that Bs
s = Bs

s ◦ B0
s = Q ◦ B0

s = Q.
The second claim in the lemma is clear.

Note 2.11 Denoting by I(n) the set of all n × n symmetric matrices with
entries from the interval [0, 1], it is easy to see, using Example (16), that, in
general, the following inclusion is strict

conv (P n · D{01}(n)) ! I(n).

Lemma 2.12 a) For any A ∈ D{01}(m), there is a sequence of vectors
{xk}∞k=1 in Rm

↓ , converging to 0, with each xk having distinct, non-zero coor-
dinates, and such that

lim
k→∞

B(xk) = A.

b) If {xk}∞k=1 is any sequence of vectors in Rm
↓ with non-zero entries, for

which the sequence {B(xk)}∞k=1 converges, then the number of positive (and
therefore negative) coordinates of xk is constant, for all large enough k.

Proof. a) Suppose that matrix A has r1 ones in the first row, r2 in the
second and so on. It is clear that n ≥ r1 ≥ r2 ≥ · · · ≥ rn ≥ 0 and that
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vector (r1, r2, . . . , rn) uniquely determines A. Define p = max{t | rt ≥ t}.
Informally, this is the size of the largest principle submatrix, with every
entry equal to one, that we can find in the upper-left corner of A. For each
j ∈ {p + 1, . . . , n} define the sequence

xk
j = − 1

kn+p−j+1
, k = 1, 2, ...,

and for each i ∈ {1, . . . , p}, define the sequence

xk
i =

1

kn+p−ri+0.5
, k = 1, 2, ....

Then, for every k the symmetric matrix B(xk) is given by:

• If i ≤ p, j ≤ p, then Bij(xk) = 1;

• If i > p, j > p, then Bij(xk) = 0;

• If i ≤ p, j > p, then Bij(xk) =
1

1 + kj−ri−0.5
.

It is easy to see now, that B(xk) converges to A.
b) Let pk be the number of positive entries in the vector xk. Assume the

sequence {pk} does not become constant from some point on. Since pk is an
integer between 1 and n, there are two integers s and t (1 ≤ s < t ≤ n) that
appear infinitely many times in the sequence. Without loss of generality, we
may assume that the constant subsequence with elements equal to s (resp.
t) is p2k (resp. p2k+1). The fact that

Btt(x2k) = 0 and Btt(x2k+1) = 1,

contradicts the convergence of {B(xk)}.

3 Clarke generalized Jacobian

In this section, we compute the Clarke generalized Jacobian [1, Section 2.6]
of the projection onto Sn

+ , defined by

(17) ∂CPSn
+
(X) = conv

{

lim
k→∞

∇PSn
+
(Xk) |Xk → X,∇PSn

+
(Xk) exists, Xk 0∈ N

}

,
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where N ⊂ Sn has Lebesgue measure zero. The fact, that the definition of
the Clarke generalized Jacobian does not depend on the choice of the null
set N , is part of [13, Theorem 4].

By Corollary 1.6, the set of matrices in Sn with multiple eigenvalues has
(Lebesgue) measure zero. Thus, we may assume without loss of generality,
that the set N in (17) contains the set of all symmetric matrices with repeated
eigenvalues. Also, by Theorem 2.7, for the gradient ∇PSn

+
(Xk) to exist, the

matrix Xk must be non-singular. These two observations are behind point
(ii) in the definition of C(X) below.

Remark 3.1 (X non-singular) Notice that the generalized Jacobian is al-
ready known at non-singular matrices. Let X be a non-singular matrix in
Sn. Theorem 2.7 states that δ ◦ λ and PSn

+
are C∞ at X and therefore

(18) ∂CPSn
+
(X) = {∇PSn

+
(X)} = {O(n)X ·

(

Diag(12)B(λ(X))
)

},

where the second equality follows from Equation (13). In Theorem 3.7, we
generalize this formula for an arbitrary matrix X.

3.1 Simpler representation of the generalized Jacobian

In this subsection we will derive more convenient representation of the right-
hand side of Equation (17). For any X in Sn, we denote by C(X) the set of
sequences in Sn with the following three properties:

(i) {Xk}∞k=0 converges to X;

(ii) Xk is non-singular and has distinct eigenvalues for every k;

(iii) The limit lim
k→∞

B(λ(Xk)) exists.

We introduce the set of all possible such limits

(19) L(X) =
{

lim
k→∞

B(λ(Xk)) | {Xk}∞k=0 ∈ C(X)
}

.

Lemma 3.2 Let X ∈ Sn. Then

(20) ∂CPSn
+
(X) = conv

{

O(n)X · (Diag(12)L(X))
}

.
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Proof. Denote the right-hand side of Equation (17) by E . The inclusion
⊇ is easy. Indeed, take U ∈ O(n)X , B ∈ L(X), and let Xk be a sequence in
C(X), such that B(Xk) tends to B. Then, for every k ∈ N set

Yk = U
(

Diag λ(Xk))U
⊤,

and note, using (13), that

∇PSn
+
(Yk) = U

(

Diag(12)B(λ(Xk))
)

U⊤ −→ U(Diag(12)B )U⊤.

Hence U(Diag(12)B )U⊤ ∈ E and the inclusion is proved.
To prove ⊆, take M ∈ E and a sequence {Xk} of non-singular matrices

with distinct eigenvalues converging to X, such that

(21) lim
k→∞

∇PSn
+
(Xk) = M.

Let Xk = Uk(Diag λ(Xk))U
⊤
k be the ordered spectral decompositions of the

Xk. By Theorem 2.7, Limit (21) becomes

(22) lim
k→∞

Uk

(

Diag(12)B(λ(Xk))
)

U⊤
k = M.

Now, we extract subsequences from Xk:

• Since the orthogonal group is compact, there is a subsequence, (denote
it again by {Xk}) for which {Uk} converges to some U ∈ O(n). More-
over, by continuity of the eigenvalues on Sn (see e.g. [14, Section 2.3.1]),
we have that X = U(Diag λ(X))U⊤.

• By Lemma 2.8, the sequence {B(λ(Xk))} is bounded and therefore we
may take a subsequence (denote it again by {Xk}), such that B(λ(Xk))
converges to some B ∈ D[01](n).

Passing to the limit in (22) we obtain M = U
(

Diag(12)B
)

U⊤, and the second
inclusion is proved.

3.2 Properties of the set L(X)

Let X be in Sn and recall Identity (1): pX + qX = n − nX . Let also

(23) λ(X) = (λ1(X), . . . , λpX (X), 0, . . . , 0, µpX+nX+1(X), . . . , µn(X)),
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where there are nX zeros in between. We define two subsets of Sn, denoted
by D{01}(X), D[01](X) respectively, of all matrices of the form:

(24)



























1pX×pX 1pX×nX Λ

1nX×pX S(nX) 0nX×qX

Λ⊤ 0qX×nX
0qX×qX



























.

where S(nX) is equal to D{01}(nX), D[01](nX) respectively, and the pX × qX
matrix Λ has entries

Λij =
λi

λi − µpX+nX+j

, for all 1 ≤ i ≤ pX , 1 ≤ j ≤ qX .

Example 3.3 • If X is the zero matrix in Mn, we have

D{01}(X) = D{01}(n) and D[01](X) = D[01](n).

• If X is non-singular, observe from Definition 2.6 that we have

D{01}(X) = D[01](X) = {B(λ(X))}.

The goal in this subsection is to prove the inclusions

D{01}(X) ⊆ L(X) ⊆ D[01](X),

where the set L(X) is defined by Equation (19). The next two propositions
show the first and the second inclusion, respectively.

Proposition 3.4 Fix a matrix X in Sn. For any A ∈ D{01}(X), there exists
a sequence {Xk} in C(X), such that lim

k→∞
B(λ(Xk)) = A.

Proof. Let X = U
(

Diag λ(X)
)

U⊤ be an ordered spectral decomposition
of X, where vector λ(X) is described by (23). Since A ∈ D{01}(X), A has
a block structure as described by (24). Let B ∈ D{01}(nX) be the central
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block in this representation. Applying Lemma 2.12 with m = nX and B
gives a sequence {xk} ⊂ RnX

↓ converging to 0 ∈ RnX with each vector xk

having distinct, non-zeros entries, such that lim
k→∞

B(xk) = B and such that

the number of positive entries of xk is constant for every k. Define

dk =

(

λ1(X) +
pX

k
, . . . , λpX(X) +

1

k
, xk, µpX+nX+1(X) +

qX
k

, . . . , µn(X) +
1

k

)

,

and Xk = U(Diag dk)U
⊤. Then, for k large enough, Xk has distinct eigen-

values and the sequence {Xk} converges to X. Furthermore, for all large
enough k we have λ(Xk) = dk ∈ Rn

↓ . Finally, using Definition 2.6, it is not
difficult to see that lim

k→∞
B(λ(Xk)) = A. Clearly, {Xk} is in C(X).

Proposition 3.5 Let X ∈ Sn and let {Xk} ∈ C(X) be such that {B(λ(Xk))}
converges to B, then B lies in D[01](X).

Proof. By the second part of Lemma 2.12, we may suppose without loss
of generality that pXk

= p. By continuity of eigenvalues on Sn (see e.g. [14,
2.3.1]) and the fact that {Xk} converges to X we get pX ≤ p ≤ pX + nX . Let

λ(Xk) = (λk
1, . . . , λ

k
p, µ

k
p+1, . . . , µ

k
n), and

λ(X) = (λ1, . . . , λpX
, 0, ..., 0, µpX+nX+1, . . . , µ

k
n)

We compute B = lim
k→∞

B(λ(Xk)) by considering several cases.

• If i ≤ pX and j ≤ p, then Bij(λ(Xk)) = 1 for all k implies that Bij = 1;

• If i ≤ pX and p < j ≤ pX + nX , then Bij(λ(Xk)) =
λk

i

λk
i
−µk

j

implies Bij = 1;

• If i ≤ pX and pX + nX < j, then Bij(λ(Xk)) =
λk

i

λk
i
−µk

j

implies Bij = λi

λi−µj
;

• The principle submatrix of B(λ(Xk)) formed by the entries with indexes
i, j ∈ {pX + 1, ..., pX + nX} is, by Lemma 2.8, in the set D[01](nX). Since
D[01](nX) is closed, the same submatrix of B will also be in D[01](nX).

• If pX < i ≤ p and pX + nX < j, then Bij(λ(Xk)) =
λk

i

λk
i −µk

j

implies Bij = 0;

• If p < i and pX + nX < j, then Bij(λ(Xk)) = 0, and then Bij = 0.
Since B is a symmetric matrix, we have its complete description, which

shows that B ∈ D[01](X).

We summarize the results in this subsection in the following proposition.
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Proposition 3.6 For any matrix X ∈ Sn we have the inclusions

D{01}(X) ⊆ L(X) ⊆ D[01](X).

If, in particular, X is non-singular, the inclusions hold with equalities

D{01}(X) = L(X) = D[01](X) = {B(λ(X))}.

3.3 A formula for the Clarke generalized Jacobian

We are now in a position to compute the Clarke generalized Jacobian of PSn
+

at an arbitrary symmetric matrix X.

Theorem 3.7 (Clarke generalized Jacobian) Let X be any n × n sym-
metric matrix. The Clarke generalized Jacobian of PSn

+
, the projection map

onto the cone of positive semi-definite matrices, at X is

(25) ∂CPSn
+
(X) = conv

(

O(n)X · (Diag(12)D{01}(X))
)

,

where D{01}(X) is defined by (24).

Proof. By Proposition 3.6, we have the inclusions

D{01}(X) ⊆ L(X) ⊆ D[01](X).

Applying the Diag(12) operator and conjugating, we get

O(n)X · (Diag(12)D{01}(X)) ⊆ O(n)X · (Diag(12)L(X))

⊆ O(n)X · (Diag(12)D[01](X)).

Taking the convex hull throughout, we get

conv
(

O(n)X ·
(

Diag(12)D{01}(X)
))

⊆ ∂CPSn
+
(X)

⊆ conv
(

O(n)X ·
(

Diag(12)D[01](X)
))

= conv
(

O(n)X ·
(

Diag(12)convD{01}(X)
))

= conv
(

O(n)X ·
(

conv Diag(12)D{01}(X)
))

⊆ conv
(

O(n)X ·
(

Diag(12)D{01}(X)
))

.

[by Lemma 3.2]

[by Lemma 2.10]

[since Diag(12) is linear]

[by Lemma 1.4(ii)]

Thus, we must have equalities throughout and the result follows.
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Example 3.8 (X = 0) In particular, when X = 0, we obtain the formula

∂CPSn
+
(0) = conv

(

O(n) · (Diag(12)D{01}(n))
)

.

Example 3.9 (X non-singular) When X is a non-singular matrix in Sn

Formula (25) reduces to Formula (18) via Proposition 3.6.

Remark 3.10 (What about PSn

−

?) We can adapt this study to obtain
similar results about PSn

−

– the projection onto the cone of negative definite
matrices. This projection is also differentiable at any non-singular matrix X
and its gradient at X is expressed via

∇PSn
+
(X) = U

(

Diag(12)B′(λ(X))
)

U⊤,

with U ∈ O(n)X and B′(x) ∈ Sn defined for any x ∈ Rn
↓ with non-zeros

entries (p positive, q negative, and p + q = n) by

• If i ≤ p, j ≤ p, then B′ij(x) = 0;

• If i > p, j > p, then B′ij(x) = 1;

• If i ≤ p, j > p, then B′ij(x) =
xj

xj − xi

;

• If i > p, j ≤ p, then B′ij(x) =
xi

xi − xj

.

Further results for PSn
−

follow, in an analogous way as those for PSn
+
. Notice

that we also can retrieve the differentiability properties of PSn
−

from those of
PSn

+
via Theorem 2.2.

4 Interchanging the conjugation and the con-

vex hull

Looking at Formula (25), one is tempted to exchange the operations of tak-
ing the convex hull and taking the orbits under the action of O(n)X . In
this section we address this issue. We show that if the multiplicity of the
zero eigenvalue is zero or one we can exchange conv with O(n)X , but if the
multiplicity is at least two we, in general, cannot exchange these operations.
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4.1 Block diagonal and block constant matrices

Let X be a symmetric matrix with eigenvalues

λ1(X) = · · · = λk1(X) > λk1+1(X) = · · · = λk2(X) > λk2+1(X) · · ·λkr
(X),

where kr = n. The indices of the equal eigenvalues partition the set {1, ..., n}
in to r blocks I1 = {1, 2, ..., k1},...,Ir = {kr−1 + 1, ..., kr}.

A matrix M is said to be block constant if M i1i2 = M j1j2 whenever i1, j1

are in the same block and i2, j2 are in the same, possibly different, block.
We say that a matrix is block diagonal when it has r square blocks on the
diagonal with sizes equal to the sizes of the sets I1,...,Ir, and zeros elsewhere.
We denote by O(X, n) the group of all block diagonal orthogonal matrices.
We need the following two lemmas.

Lemma 4.1 For any block constant matrix M and any block diagonal or-
thogonal matrix U we have

U
(

Diag(12)M
)

UT = Diag(12)M.

Proof. This lemma is a particular case of Lemma 5.3 in [12]. It follows
easily from the definitions.

Lemma 4.2 Let U be a arbitrary matrix of O(n)X. We have the represen-
tation O(n)X = U O(X, n).

Proof. Observe that if V ∈ O(n)X, then U⊤V is a block diagonal,
orthogonal matrix. Thus, we have U⊤O(n)X ⊂ O(X, n) or, equivalently,
O(n)X ⊂ U O(X, n). The converse inclusion follows from definitions.

Thus, with U ∈ O(n)X , we can write

∂CPSn
+
(X) = conv

(

O(n)X · (Diag(12)D{01}(X))
)

= U · conv
(

O(X, n) · (Diag(12)D{01}(X))
)

.

We see that conv and O(n)X can be interchanged, if and only if conv and
O(X, n) can be interchanged.
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4.2 Different multiplicities of the zero eigenvalue

Recall that pX , qX are the number of positive and negative eigenvalues re-
spectively and that nX is the multiplicity of zero eigenvalue. Notice that

• if nX = 0, the set D{01}(X) has one element (namely B(λ(X))),

• if nX = 1, the set D{01}(X) has two elements.

Observe also that, in these two cases, every matrix of D{01}(X) is block
constant. Using Lemma 4.1 the following result then becomes clear.

Theorem 4.3 Let X be any n×n symmetric matrix having eigenvalue zero
with multiplicity zero or one. The Clarke generalized Jacobian of PSn

+
, the

projection map onto the cone of positive semi-definite matrices, at X is

(26) ∂CPSn
+
(X) = U

(

Diag(12)D[01](X)
)

UT ,

where D[01](X) is defined by (24) and U ∈ O(n)X.

When nX ≥ 2, in general, we cannot interchange the operations conv
and O(n)X in Formula (25). We do have that

O(n)X ·
(

Diag(12)D[01](X)
)

= O(n)X · conv
(

Diag(12)D{01}(X)
)

! conv
(

O(n)X · Diag(12)D{01}(X)
)

,

where the first equality follows from Lemma 2.10 and the inclusion from
Lemma 1.4(i). We show that the inclusion is strict in general, by showing
that the set O(n)X · (Diag(12)D[01](X)) is not convex when X is the 2×2 zero
matrix.

Proposition 4.4 If X is the 2 × 2 zero matrix then the set

(27) O(n)X · (Diag(12)D[01](X))

is not convex.

Proof. Define

T (a, b, c) =

(

a b
b c

)

,
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as well as

U(φ) =

(

cos(φ) − sin(φ)
sin(φ) cos(φ)

)

and V (φ) =

(

cos(φ) sin(φ)
sin(φ) − cos(φ)

)

.

Then we have

O(2)X = O(2) = {U(φ) | 0 ≤ φ < 2π} ∪ {V (φ) | 0 ≤ φ < 2π} ,

D[01](X) = {T (a, b, c) | a, b, c ∈ [0, 1] and a ≥ b ≥ c} .

For given parameters φ, a, b and c, direct computation shows

U(φ) · (Diag(12)T (a, b, c)) = V (φ) · (Diag(12)T (a, b, c)),

implying that it is enough to work only with the matrices U(φ). Consider
two particular entries in this 4-tensor:

f(φ, a, b, c) =
(

U(φ) · (Diag(12)T (a, b, c))
)12
11,

g(φ, a, b, c) =
(

U(φ) · (Diag(12)T (a, b, c))
)22
11.

Using Equations (4), (5) we compute f and g explicitly:

f(φ, a, b, c) = cos3(φ) sin(φ)(a − b) + cos(φ) sin3(φ)(b − c),

g(φ, a, b, c) = cos2(φ) sin2(φ)(a − b) − cos2(φ) sin2(φ)(b − c).

Consider the following two points

M1 = (f(5π/6, 1, 0, 0), g(5π/6, 1, 0, 0)) = (−3
√

3/16, 3/16)

M2 = (f(4π/6, 1, 1, 0), g(4π/6, 1, 1, 0)) = (−3
√

3/16,−3/16).

To show that (27) is not convex, it is sufficient to show that the middle,
(−3

√
3/16, 0), of the segment [M1, M2] is not in the set

{(f(φ, a, b, c), g(φ, a, b, c)) | 0 ≤ φ < 2π, 0 ≤ a, b, c ≤ 1}.

Suppose on the opposite that there are values of φ, a, b and c for which
(f(φ, a, b, c), g(φ, a, b, c)) = (−3

√
3/16, 0). The fact f(φ, a, b, c) 0= 0 implies

that cos(φ) 0= 0 0= sin(φ). Then, g(φ, a, b, c) = 0 implies that

(28) a − b = b − c,
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and substituting that into f(φ, a, b, c) = −3
√

3
16

we get

cos(φ) sin(φ)(a − b) = −3
√

3

16
.

The last equation is equivalent to

sin(2φ)(a − b) = −3
√

3

8
.

Notice that since a, b, c ∈ [0, 1], Equation (28) also implies that |a− b| ≤ 1/2.
This gives us the contradiction | sin(2φ)| ≥ 3

√
3/4 > 1. Thus the middle

of U(5π/6) · Diag(12)T (1, 0, 0) and U(4π/6) · Diag(12)T (1, 1, 0) does not lie in
O(n)X · (Diag(12)D[01](X)).
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