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Abstract

With the rapid increase of large-scale, real-world

datasets, it becomes critical to address the problem of long-

tailed data distribution (i.e., a few classes account for most

of the data, while most classes are under-represented). Ex-

isting solutions typically adopt class re-balancing strategies

such as re-sampling and re-weighting based on the number

of observations for each class. In this work, we argue that

as the number of samples increases, the additional benefit

of a newly added data point will diminish. We introduce

a novel theoretical framework to measure data overlap by

associating with each sample a small neighboring region

rather than a single point. The effective number of samples

is defined as the volume of samples and can be calculated

by a simple formula (1−βn)/(1−β), where n is the number

of samples and β ∈ [0, 1) is a hyperparameter. We design a

re-weighting scheme that uses the effective number of sam-

ples for each class to re-balance the loss, thereby yielding

a class-balanced loss. Comprehensive experiments are con-

ducted on artificially induced long-tailed CIFAR datasets

and large-scale datasets including ImageNet and iNatural-

ist. Our results show that when trained with the proposed

class-balanced loss, the network is able to achieve signifi-

cant performance gains on long-tailed datasets.

1. Introduction

The recent success of deep Convolutional Neural Net-

works (CNNs) for visual recognition [26, 37, 38, 16] owes

much to the availability of large-scale, real-world anno-

tated datasets [7, 28, 49, 41]. In contrast with commonly

used visual recognition datasets (e.g., CIFAR [25, 40], Ima-

geNet ILSVRC 2012 [7, 34] and CUB-200 Birds [43]) that

exhibit roughly uniform distributions of class labels, real-

world datasets have skewed [21] distributions, with a long-

tail: a few dominant classes claim most of the examples,

while most of the other classes are represented by relatively

few examples. Models trained on such data perform poorly

for weakly represented classes [19, 15, 42, 4].

∗The work was performed while Yin Cui and Yang Song worked at

Google (a subsidiary of Alphabet Inc.).
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Figure 1. Two classes, one from the head and one from the tail of

a long-tailed dataset (iNaturalist 2017 [41] in this example), have

drastically different number of samples. Models trained on these

samples are biased toward dominant classes (black solid line). Re-

weighing the loss by inverse class frequency usually yields poor

performance (red dashed line) on real-world data with high class

imbalance. We propose a theoretical framework to quantify the

effective number of samples by taking data overlap into consider-

ation. A class-balanced term is designed to re-weight the loss by

inverse effective number of samples. We show in experiments that

the performance of a model can be improved when trained with

the proposed class-balanced loss (blue dashed line).

A number of recent studies have aimed to alleviate the

challenge of long-tailed training data [3, 32, 17, 42, 44, 12,

48, 45]. In general, there are two strategies: re-sampling

and cost-sensitive re-weighting. In re-sampling, the number

of examples is directly adjusted by over-sampling (adding

repetitive data) for the minor class or under-sampling (re-

moving data) for the major class, or both. In cost-sensitive

re-weighting, we influence the loss function by assigning
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relatively higher costs to examples from minor classes. In

the context of deep feature representation learning using

CNNs, re-sampling may either introduce large amounts of

duplicated samples, which slows down the training and

makes the model susceptible to overfitting when over-

sampling, or discard valuable examples that are important

for feature learning when under-sampling. Due to these dis-

advantages of applying re-sampling for CNN training, the

present work focuses on re-weighting approaches, namely,

how to design a better class-balanced loss.

Typically, we assign sample weights or re-sample data

inversely proportionally to the class frequency. This simple

heuristic has been widely adopted [17, 44]. However, recent

work on training from large-scale, real-world, long-tailed

datasets [31, 29] reveal poor performance when using this

strategy. Instead, they propose to use a “smoothed” version

that empirically re-samples data to be inversely proportional

to the square root of class frequency. These observations

suggest an interesting question: how can we design a better

class-balanced loss that is applicable to a diverse array of

datasets with drastically different scale and imbalance?

We aim to answer this question from the perspective of

sample size. As illustrated in Figure 1, we consider training

a model to discriminate between a major class and a minor

class from a long-tailed dataset. Due to highly imbalanced

data, directly training the model or re-weighting the loss

by inverse number of samples cannot yield satisfactory per-

formance. Intuitively, the more data, the better. However,

since there is information overlap among data, as the num-

ber of samples increases, the marginal benefit a model can

extract from the data diminishes. In light of this, we propose

a novel theoretical framework to characterize data overlap

and calculate the effective number of samples in a model-

and loss-agnostic manner. A class-balanced re-weighting

term that is inversely proportional to the effective number of

samples is added to the loss function. Extensive experimen-

tal results indicate that this class-balanced term provides a

significant boost to the performance of commonly used loss

functions for training CNNs on long-tailed datasets.

Our key contributions can be summarized as follows: (1)

We provide a theoretical framework to study the effective

number of samples and show how to design a class-balanced

term to deal with long-tailed training data. (2) We show that

significant performance improvements can be achieved by

adding the proposed class-balanced term to existing com-

monly used loss functions including softmax cross-entropy,

sigmoid cross-entropy and focal loss. In addition, we show

our class-balanced loss can be used as a generic loss for vi-

sual recognition by outperforming commonly-used softmax

cross-entropy loss on ILSVRC 2012. We believe our study

on quantifying the effective number of samples and class-

balanced loss can offer useful guidelines for researchers

working in domains with long-tailed class distributions.

2. Related Work

Most of previous efforts on long-tailed imbalanced data

can be divided into two regimes: re-sampling [36, 12, 4, 51]

(including over-sampling and under-sampling) and cost-

sensitive learning [39, 50, 17, 23, 35].

Re-Sampling. Over-sampling adds repeated samples

from minor classes, which could cause the model to over-

fit. To solve this, novel samples can be either interpolated

from neighboring samples [5] or synthesized [14, 51] for

minor classes. However, the model is still error-prone due to

noise in the novel samples. It was argued that even if over-

sampling incurs risks from removing important samples,

under-sampling is still preferred over over-sampling [9].

Cost-Sensitive Learning. Cost-Sensitive Learning can

be traced back to a classical method in statistics called im-

portance sampling [20], where weights are assigned to sam-

ples in order to match a given data distribution. Elkan et

al. [10] studied how to assign weights to adjust the decision

boundary to match a given target in the case of binary clas-

sification. For imbalanced datasets, weighting by inverse

class frequency [17, 44] or a smoothed version of inverse

square root of class frequency [31, 29] are often adopted.

As a generalization of smoothed weighting with a theoreti-

cally grounded framework, we focus on (a) how to quantify

the effective number of samples and (b) using it to re-weight

the loss. Another line of important work aims to study sam-

ple difficulty in terms of loss and assign higher weights to

hard examples [11, 30, 8, 27]. Samples from minor classes

tend to have higher losses than those from major classes

as the features learned in minor classes are usually poorer.

However, there is no direct connection between sample dif-

ficulty and the number of samples. A side effect of assign-

ing higher weights to hard examples is the focus on harmful

samples (e.g., noisy data or mislabeled data) [24, 33]. In

our work, we do not make any assumptions on the sam-

ple difficulty and data distribution. By improving the fo-

cal loss [27] using our class-balanced term in experiments,

we show that our method is complementary to re-weighting

based on sample difficulty.

It is noteworthy to mention other efforts in dealing

with data imbalance, including transferring the knowledge

learned from major classes to minor classes [3, 32, 44, 6, 45]

and designing a better training objective via metric learn-

ing [17, 48, 46] or Bayesian uncertainty estimates [22].

Covering and Effective Sample Size. Our theoreti-

cal framework is inspired by the random covering prob-

lem [18], where the goal is to cover a large set by a se-

quence of i.i.d. random small sets. We simplify the problem

in Section 3 by making reasonable assumptions. Note that

the effective number of samples proposed in this paper is

different from the concept of effective sample size in statis-

tics. The effective sample size is used to calculate variance

when samples are correlated.
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3. Effective Number of Samples

We formulate the data sampling process as a simplified

version of random covering. The key idea is to associate

each sample with a small neighboring region instead of a

single point. We present our theoretical framework and the

formulation of calculating effective number of samples.

3.1. Data Sampling as Random Covering

Given a class, denote the set of all possible data in the

feature space of this class as S . We assume the volume of

S is N and N ≥ 1. Denote each sample as a subset of S
that has the unit volume of 1 and may overlap with other

samples. Consider the data sampling process as a random

covering problem where each subset is randomly sampled

from S to cover the entire set of S . The more data is being

sampled, the better the coverage of S is. The expected total

volume of sampled data increases as the number of samples

increases and is bounded by N . Therefore, we define:

Definition 1 (Effective Number). The effective number of

samples is the expected volume of samples.

The calculation of the expected volume of samples is a

very difficult problem that depends on the shape of the sam-

ple and the dimensionality of the feature space [18]. To

make the problem tamable, we simplify the problem by not

considering the situation of partial overlapping. That is, we

assume a newly sampled data point can only interact with

previously sampled data in two ways: either entirely inside

the set of previously sampled data with the probability of

p or entirely outside with the probability of 1 − p, as illus-

trated in Figure 2. As the number of sampled data points

increases, the probability p will be higher.

Before we dive into the mathematical formulations, we

discuss the connection between our definition of effective

number of samples and real-world visual data. Our idea is

to capture the diminishing marginal benefits by using more

data points of a class. Due to intrinsic similarities among

real-world data, as the number of samples grows, it is highly

possible that a newly added sample is a near-duplicate of

existing samples. In addition, CNNs are trained with heavy

data augmentations, where simple transformations such as

random cropping, re-scaling and horizontal flipping will be

applied to the input data. In this case, all augmented ex-

amples are also considered as same with the original exam-

ple. Presumably, the stronger the data augmentation is, the

smaller the N will be. The small neighboring region of a

sample is a way to capture all near-duplicates and instances

that can be obtained by data augmentation. For a class, N
can be viewed as the number of unique prototypes.

3.2. Mathematical Formulation

Denote the effective number (expected volume) of sam-

ples as En, where n ∈ Z>0 is the number of samples.

All possible data (N)

Newly sampled data (1)

Previously sampled data

Overlapped (p)

Not overlapped (1-p)

Figure 2. Giving the set of all possible data with volume N and

the set of previously sampled data, a new sample with volume 1
has the probability of p being overlapped with previous data and

the probability of 1− p not being overlapped.

Proposition 1 (Effective Number). En = (1−βn)/(1−β),
where β = (N − 1)/N .

Proof. We prove the proposition by induction. It is ob-

vious that E1 = 1 because there is no overlapping. So

E1 = (1−β1)/(1−β) = 1 holds. Now let’s consider a gen-

eral case where we have previously sampled n−1 examples

and are about to sample the nth example. Now the expected

volume of previously sampled data is En−1 and the newly

sampled data point has the probability of p = En−1/N to

be overlapped with previous samples. Therefore, the ex-

pected volume after sampling nth example is:

En = pEn−1+(1−p)(En−1+1) = 1+
N − 1

N
En−1. (1)

Assume En−1 = (1− βn−1)/(1− β) holds, then

En = 1+β
1− βn−1

1− β
=

1− β + β − βn

1− β
=

1− βn

1− β
. (2)

The above proposition shows that the effective number of

samples is an exponential function of n. The hyperparame-

ter β ∈ [0, 1) controls how fast En grows as n increases.

Another explanation of the effective number En is:

En = (1− βn)/(1− β) =

n
∑

j=1

βj−1. (3)

This means that the jth sample contributes βj−1 to the ef-

fective number. The expected total volume N for all possi-

ble data in the class can then be calculated as:

N = lim
n→∞

n
∑

j=1

βj−1 = 1/(1− β). (4)

This is consistent with our definition of β in the proposition.
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Implication 1 (Asymptotic Properties). En = 1 if β = 0
(N = 1). En → n as β → 1 (N → ∞).

Proof. If β = 0, then En = (1 − 0n)/(1 − 0) = 1. In the

case of β → 1, denote f(β) = 1 − βn and g(β) = 1 − β.

Since limβ→1 f(β) = limβ→1 g(β) = 0, g′(β) = −1 6= 0
and limβ→1 f

′(β)/g′(β) = limβ→1(−nβn−1)/(−1) = n
exists, using L’Hôpital’s rule, we have:

lim
β→1

En = lim
β→1

f(β)

g(β)
= lim

β→1

f ′(β)

g′(β)
= n. (5)

The asymptotic property of En shows that when N is

large, the effective number of samples is same as the num-

ber of samples n. In this scenario, we think the number

of unique prototypes N is large, thus there is no data over-

lap and every sample is unique. On the other extreme, if

N = 1, this means that we believe there exist a single pro-

totype so that all the data in this class can be represented by

this prototype via data augmentation, transformations, etc.

4. Class-Balanced Loss

The Class-Balanced Loss is designed to address the

problem of training from imbalanced data by introducing

a weighting factor that is inversely proportional to the ef-

fective number of samples. The class-balanced loss term

can be applied to a wide range of deep networks and loss

functions.

For an input sample x with label y ∈ {1, 2, . . . , C} 1,

where C is the total number of classes, suppose the model’s

estimated class probabilities are p = [p1, p2, . . . , pC ]
⊤,

where pi ∈ [0, 1] ∀ i, we denote the loss as L(p, y). Sup-

pose the number of samples for class i is ni, based on Equa-

tion 2, the proposed effective number of samples for class

i is Eni
= (1 − βni

i )/(1 − βi), where βi = (Ni − 1)/Ni.

Without further information of data for each class, it is dif-

ficult to empirically find a set of good hyperparameters Ni

for all classes. Therefore, in practice, we assume Ni is only

dataset-dependent and set Ni = N , βi = β = (N − 1)/N
for all classes in a dataset.

To balance the loss, we introduce a weighting factor αi

that is inversely proportional to the effective number of sam-

ples for class i: αi ∝ 1/Eni
. To make the total loss roughly

in the same scale when applying αi, we normalize αi so

that
∑C

i=1
αi = C. For simplicity, we abuse the notation of

1/Eni
to denote the normalized weighting factor in the rest

of our paper.

Formally speaking, given a sample from class i that con-

tains ni samples in total, we propose to add a weighting

1For simplicity, we derive the loss function by assuming there is exactly

one ground-truth label for a sample.
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Figure 3. Visualization of the proposed class-balanced term (1 −

β)/(1− βny ), where ny is the number of samples in the ground-

truth class. Both axes are in log-scale. For a long-tailed dataset

where major classes have significantly more samples than mi-

nor classes, setting β properly re-balances the relative loss across

classes and reduces the drastic imbalance of re-weighing by in-

verse class frequency.

factor (1 − β)/(1 − βni) to the loss function, with hyper-

parameter β ∈ [0, 1). The class-balanced (CB) loss can be

written as:

CB(p, y) =
1

Eny

L(p, y) =
1− β

1− βny
L(p, y), (6)

where ny is the number of samples in the ground-truth class

y. We visualize class-balanced loss in Figure 3 as a func-

tion of ny for different β. Note that β = 0 corresponds to

no re-weighting and β → 1 corresponds to re-weighing by

inverse class frequency. The proposed novel concept of ef-

fective number of samples enables us to use a hyperparame-

ter β to smoothly adjust the class-balanced term between no

re-weighting and re-weighing by inverse class frequency.

The proposed class-balanced term is model-agnostic and

loss-agnostic in the sense that it is independent to the choice

of loss function L and predicted class probabilities p. To

demonstrate the proposed class-balanced loss is generic, we

show how to apply class-balanced term to three commonly

used loss functions: softmax cross-entropy loss, sigmoid

cross-entropy loss and focal loss.

4.1. ClassBalanced Softmax CrossEntropy Loss

Suppose the predicted output from the model for all

classes are z = [z1, z2, . . . , zC ]
⊤, where C is the total num-

ber of classes. The softmax function regards each class

as mutual exclusive and calculate the probability distribu-

tion over all classes as pi = exp(zi)/
∑C

j=1
exp(zj), ∀ i ∈

{1, 2, . . . , C}. Given a sample with class label y, the soft-

max cross-entropy (CE) loss for this sample is written as:

CEsoftmax(z, y) = − log

(

exp(zy)
∑C

j=1
exp(zj)

)

. (7)

9271



Suppose class y has ny training samples, the class-balanced

(CB) softmax cross-entropy loss is:

CBsoftmax(z, y) = −
1− β

1− βny
log

(

exp(zy)
∑C

j=1
exp(zj)

)

. (8)

4.2. ClassBalanced Sigmoid CrossEntropy Loss

Different from softmax, class-probabilities calculated by

sigmoid function assume each class is independent and not

mutually exclusive. When using sigmoid function, we re-

gard multi-class visual recognition as multiple binary clas-

sification tasks, where each output node of the network is

performing a one-vs-all classification to predict the proba-

bility of the target class over the rest of classes. Compared

with softmax, sigmoid presumably has two advantages for

real-world datasets: (1) Sigmoid doesn’t assume the mutual

exclusiveness among classes, which aligns well with real-

world data, where a few classes might be very similar to

each other, especially in the case of large number of fine-

grained classes. (2) Since each class is considered inde-

pendent and has its own predictor, sigmoid unifies single-

label classification with multi-label prediction. This is a

nice property to have since real-world data often has more

than one semantic label.

Using same notations as softmax cross-entropy, for sim-

plicity, we define zti as:

zti =

{

zi, if i = y.

−zi, otherwise.
(9)

Then the sigmoid cross-entropy (CE) loss can be written as:

CEsigmoid(z, y) = −
C
∑

i=1

log
(

sigmoid(zti)
)

= −

C
∑

i=1

log

(

1

1 + exp(−zti)

)

.

(10)

The class-balanced (CB) sigmoid cross-entropy loss is:

CBsigmoid(z, y) = −
1− β

1− βny

C
∑

i=1

log

(

1

1 + exp(−zti)

)

.

(11)

4.3. ClassBalanced Focal Loss

The recently proposed focal loss (FL) [27] adds a mod-

ulating factor to the sigmoid cross-entropy loss to reduce

the relative loss for well-classified samples and focus on

difficult samples. Denote pti = sigmoid(zti) = 1/(1 +
exp(−zti)), the focal loss can be written as:

FL(z, y) = −

C
∑

i=1

(1− pti)
γ log(pti). (12)

0 10 20 30 40 50 60 70 80 90 100
CIFAR-100 class index

0

100

200

300

400

500

Nu
m

be
r o

f i
m

ag
es

 p
er

 c
la

ss 10.0
20.0
50.0
100.0
200.0

Figure 4. Number of training samples per class in artificially cre-

ated long-tailed CIFAR-100 datasets with different imbalance fac-

tors.

Dataset Name # Classes Imbalance

Long-Tailed CIFAR-10 10 10.00 - 200.00

Long-Tailed CIFAR-100 100 10.00 - 200.00

iNaturalist 2017 5,089 435.44

iNaturalist 2018 8,142 500.00

ILSVRC 2012 1,000 1.78

Table 1. Datasets that are used to evaluate the effectiveness of

class-balanced loss. We created 5 long-tailed versions of both

CIFAR-10 and CIFAR-100 with imbalance factors of 10, 20, 50,

100 and 200 respectively.

The class-balanced (CB) focal loss is:

CBfocal(z, y) = −
1− β

1− βny

C
∑

i=1

(1− pti)
γ log(pti). (13)

The original focal loss has an α-balanced variant. The

class-balanced focal loss is same as α-balanced focal loss

when αt = (1−β)/(1−βny ). Therefore, the class-balanced

term can be viewed as an explicit way to set αt in focal loss

based on the effective number of samples.

5. Experiments

The proposed class-balanced losses are evaluated on ar-

tificially created long-tailed CIFAR [25] datasets with con-

trollable degrees of data imbalance and real-world long-

tailed datasets iNaturalist 2017 [41] and 2018 [1]. To

demonstrate our loss is generic for visual recognition,

we also present experiments on ImageNet data (ILSVRC

2012 [34]). We use deep residual networks (ResNet) [16]

with various depths and train all networks from scratch.

5.1. Datasets

Long-Tailed CIFAR. To analyze the proposed class-

balanced loss, long-tailed versions of CIFAR [25] are cre-

ated by reducing the number of training samples per class

according to an exponential function n = niµ
i, where i
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Dataset Name Long-Tailed CIFAR-10 Long-Tailed CIFAR-100

Imbalance 200 100 50 20 10 1 200 100 50 20 10 1

Softmax 34.32 29.64 25.19 17.77 13.61 6.61 65.16 61.68 56.15 48.86 44.29 29.07

Sigmoid 34.51 29.55 23.84 16.40 12.97 6.36 64.39 61.22 55.85 48.57 44.73 28.39

Focal (γ = 0.5) 36.00 29.77 23.28 17.11 13.19 6.75 65.00 61.31 55.88 48.90 44.30 28.55

Focal (γ = 1.0) 34.71 29.62 23.29 17.24 13.34 6.60 64.38 61.59 55.68 48.05 44.22 28.85

Focal (γ = 2.0) 35.12 30.41 23.48 16.77 13.68 6.61 65.25 61.61 56.30 48.98 45.00 28.52

Class-Balanced 31.11 25.43 20.73 15.64 12.51 6.36∗ 63.77 60.40 54.68 47.41 42.01 28.39∗

Loss Type SM Focal Focal SM SGM SGM Focal Focal SGM Focal Focal SGM

β 0.9999 0.9999 0.9999 0.9999 0.9999 - 0.9 0.9 0.99 0.99 0.999 -

γ - 1.0 2.0 - - - 1.0 1.0 - 0.5 0.5 -

Table 2. Classification error rate of ResNet-32 trained with different loss functions on long-tailed CIFAR-10 and CIFAR-100. We show

best results of class-balanced loss with best hyperparameters (SM represents Softmax and SGM represents Sigmoid) chosen via cross-

validation. Class-balanced loss is able to achieve significant performance gains. ∗ denotes the case when each class has same number of

samples, class-balanced term is always 1 therefore it reduces to the original loss function.

is the class index (0-indexed), ni is the original number of

training images and µ ∈ (0, 1). The test set remains un-

changed. We define the imbalance factor of a dataset as

the number of training samples in the largest class divided

by the smallest. Figure 4 shows number of training images

per class on long-tailed CIFAR-100 with imbalance factors

ranging from 10 to 200. We conduct experiments on long-

tailed CIFAR-10 and CIFAR-100.

iNaturalist. The recently introduced iNaturalist species

classification and detection dataset [41] is a real-world

long-tailed dataset containing 579,184 training images from

5,089 classes in its 2017 version and 437,513 training im-

ages from 8,142 classes in its 2018 version [1]. We use the

official training and validation splits in our experiments.

ImageNet. We use the ILSVRC 2012 [34] split contain-

ing 1,281,167 training and 50,000 validation images.

Table 1 summarizes all datasets used in our experiments

along with their imbalance factors.

5.2. Implementation

Training with sigmoid-based losses. Conventional

training scheme of deep networks initializes the last linear

classification layer with bias b = 0. As pointed out by Lin et

al. [27], this could cause instability of training when using

sigmoid function to get class probabilities. This is because

using b = 0 with sigmoid function in the last layer induces

huge loss at the beginning of the training as the output prob-

ability for each class is close to 0.5. Therefore, for training

with sigmoid cross-entropy loss and focal loss, we assume

the class prior is π = 1/C for each class, where C is the

number of classes, and initialize the bias of the last layer

as b = − log ((1− π) /π). In addition, we remove the ℓ2-

regularization (weight decay) for the bias b of the last layer.

We used Tensorflow [2] to implement and train all the

models by stochastic gradient descent with momentum. We

trained residual networks with 32 layers (ResNet-32) to

conduct all experiments on CIFAR. Similar to Zagoruyko et

al. [47], we noticed a disturbing effect in training ResNets

on CIFAR that both loss and validation error gradually went

up after the learning rate drop, especially in the case of

high data imbalance. We found that setting learning rate

decay to 0.01 instead of 0.1 solved the problem. Models

on CIFAR were trained with batch size of 128 on a single

NVIDIA Titan X GPU for 200 epochs. The initial learn-

ing rate was set to 0.1, which was then decayed by 0.01
at 160 epochs and again at 180 epochs. We also used linear

warm-up of learning rate [13] in the first 5 epochs. On iNat-

uralist and ILSVRC 2012 data, we followed the same train-

ing strategy used by Goyal et al. [13] and trained residual

networks with batch size of 1024 on a single Cloud TPU.

Since the scale of focal loss is smaller than softmax and sig-

moid cross-entropy loss, when training with focal loss, we

used 2× and 4× larger learning rate on ILSVRC 2012 and

iNaturalist respectively. Code, data and pre-trained mod-

els are available at: https://github.com/richardaecn/

class-balanced-loss.

5.3. Visual Recognition on LongTailed CIFAR

We conduct extensive studies on long-tailed CIFAR

datasets with various imbalance factors. Table 2 shows

the performance of ResNet-32 in terms of classification

error rate on the test set. We present results of using

softmax cross-entropy loss, sigmoid cross-entroy loss, fo-

cal loss with different γ, and the proposed class-balanced

loss with best hyperparameters chosen via cross-validation.

The search space of hyperparameters is {softmax, sigmoid,

focal} for loss type, β ∈ {0.9, 0.99, 0.999, 0.9999} (Sec-

tion 4), and γ ∈ {0.5, 1.0, 2.0} for focal loss [27].

From results in Table 2, we have the following observa-

tions: (1) With properly selected hyperparameters, class-

balanced loss is able to significantly improve the perfor-

mance of commonly used loss functions on long-tailed

datasets. (2) Softmax cross-entropy is overwelmingly used

as the loss function for visual recognition tasks. How-
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Figure 5. Classification error rate when trained with and without the class-balanced term. On CIFAR-10, class-balanced loss yields

consistent improvement across different β and the larger the β is, the larger the improvement is. On CIFAR-100, β = 0.99 or β = 0.999
improves the original loss, whereas a larger β hurts the performance.
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Figure 6. Effective number of samples with different β on long-tailed CIFAR-10 and CIFAR-100 with the imbalance of 50. This is a

semi-log plot with vertical axis in log-scale. When β → 1, effective number of samples is same as number of samples. When β is small,

effective number of samples are similar across all classes.

ever, following the training strategy in Section 5.2, sigmoid

cross-entropy and focal loss are able to outperform soft-

max cross-entropy in most cases. (3) The best β is 0.9999
on CIFAR-10 unanimously. But on CIFAR-100, datasets

with different imbalance factors tend to have different and

smaller optimal β.

To understand the role of β and class-balanced loss bet-

ter, we use the long-tailed dataset with imbalance factor

of 50 as an example to show the error rate of the model

when trained with and without the class-balanced term

in Figure 5. Interestingly, for CIFAR-10, class-balanced

term always improves the performance of the original loss

and more performance gain can be obtained with larger β.

However, on CIFAR-100, only small values of β improve

the performance, whereas larger values degrade the perfor-

mance. Figure 6 illustrates the effective number of samples

under different β. On CIFAR-10, when re-weighting based

on β = 0.9999, the effective number of samples is close to

the number of samples. This means the best re-weighting

strategy on CIFAR-10 is similar with re-weighting by in-

verse class frequency. On CIFAR-100, the poor perfor-

mance of using larger β suggests that re-weighting by in-

verse class frequency is not a wise choice. Instead, we need

to use a smaller β that has smoother weights across classes.

This is reasonable because β = (N − 1)/N , so larger β
means larger N . As discussed in Section 3, N can be inter-

preted as the number of unique prototypes. A fine-grained

dataset should have a smaller N compared with a coarse-

grained one. For example, the number of unique prototypes

of a specific bird species should be smaller than the number

of unique prototypes of a generic bird class. Since classes in

CIFAR-100 are more fine-grained than CIFAR-10, CIFAR-

100 should have smaller N compared with CIFAR-10. This

explains our observations on the effect of β.

5.4. Visual Recognition on LargeScale Datasets

To demonstrate the proposed class-balanced loss can be

used on large-scale real-world datasets, we present results

of training ResNets with different depths on iNaturalist

2017, iNaturalist 2018 and ILSVRC 2012.
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iNaturalist 2017 iNaturalist 2018 ILSVRC 2012

Network Loss β γ Input Size Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

ResNet-50 Softmax - - 224 × 224 45.38 22.67 42.86 21.31 23.92 7.03

ResNet-101 Softmax - - 224 × 224 42.57 20.42 39.47 18.86 22.65 6.47

ResNet-152 Softmax - - 224 × 224 41.42 19.47 38.61 18.07 21.68 5.92

ResNet-50 CB Focal 0.999 0.5 224 × 224 41.92 20.92 38.88 18.97 22.71 6.72

ResNet-101 CB Focal 0.999 0.5 224 × 224 39.06 18.96 36.12 17.18 21.57 5.91

ResNet-152 CB Focal 0.999 0.5 224 × 224 38.06 18.42 35.21 16.34 20.87 5.61

ResNet-50 CB Focal 0.999 0.5 320 × 320 38.16 18.28 35.84 16.85 21.99 6.27

ResNet-101 CB Focal 0.999 0.5 320 × 320 34.96 15.90 32.02 14.27 20.25 5.34

ResNet-152 CB Focal 0.999 0.5 320 × 320 33.73 14.96 30.95 13.54 19.72 4.97

Table 3. Classification error rate on large-scale datasets trained with different loss functions. The proposed class-balanced term combined

with focal loss (CB Focal) is able to outperform softmax cross-entropy by a large margin.
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Figure 7. Training curves of ResNet-50 on ILSVRC 2012 (left) and iNaturalist 2018 (right). Class-balanced focal loss with β = 0.999 and

γ = 0.5 outperforms softmax cross-entropy after 60 epochs.

Table 3 summarizes the top-1 and top-5 error rate on the

validation set of all datasets. We use the class-balanced fo-

cal loss since it has more flexibility and find β = 0.999 and

γ = 0.5 yield reasonably good performance on all datasets.

From results we can see that we are able to outperform com-

monly used softmax cross-entropy loss on ILSVRC 2012,

and by large margins on iNaturalist. Notably, ResNet-50

is able to achieve comparable performance with ResNet-

152 on iNaturalist and ResNet-101 on ILSVRC 2012 when

using class-balanced focal loss to replace softmax cross-

entropy loss. Training curves on ILSVRC 2012 and iNatu-

ralist 2018 are shown in Figure 7. Class-balanced focal loss

starts to show its advantage after 60 epochs of training.

6. Conclusion and Discussion

In this work, we have presented a theoretically sounded

framework to address the problem of long-tailed distribu-

tion of training data. The key idea is to take data over-

lap into consideration to help quantify the effective number

of samples. Following this framework, we further propose

a class-balanced loss to re-weight loss inversely with the

effective number of samples per class. Extensive studies on

artificially induced long-tailed CIFAR datasets have been

conducted to understand and analyze the proposed loss. The

benefit of the class-balanced loss has been verified by exper-

iments on both CIFAR and large-scale datasets including

iNaturalist and ImageNet.

Our proposed framework provides a non-parametric

means of quantifying data overlap, since we don’t make

any assumptions about the data distribution. This makes our

loss generally applicable to a wide range of existing models

and loss functions. Intuitively, a better estimation of the ef-

fective number of samples could be obtained if we know the

data distribution. In the future, we plan to extend our frame-

work by incorporating reasonable assumptions on the data

distribution or designing learning-based, adaptive methods.
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