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Abstract. Multiple Instance Learning (MIL) is concerned with learn-
ing from sets (bags) of feature vectors (instances), where the individual
instance labels are ambiguous. In MIL it is often assumed that positive
bags contain at least one instance from a so-called concept in instance
space, whereas negative bags only contain negative instances. The classes
in a MIL problem are therefore not treated in the same manner. One of
the ways to classify bags in MIL problems is through the use of bag
dissimilarity measures. In current dissimilarity approaches, such dissimi-
larity measures act on the bag as a whole and do not distinguish between
positive and negative bags. In this paper we explore whether this is a
reasonable approach and when and why a dissimilarity measure that is
dependent on the bag label, might be more appropriate.

1 Introduction

Multiple-instance learning (MIL) [6] extends traditional supervised learning
methods in order to learn from objects that are described by a set (bag) of
feature vectors (instances), rather than a single feature vector only. MIL prob-
lems are often considered to be two-class problems, i.e., a bag of instances can
belong either to the positive or the negative class. The bag labels are available,
but the labels of the individual instances are not defined. Often assumptions are
made about the instance labels and their relationship with the bag labels.

Traditional MIL problems assume that positive bags contain one or more
positive instances from a so-called concept, whereas negative bags contain only
negative instances [6,9]. E.g. when classifying images represented by a bag of im-
age segments as “tiger” or “no tiger”, a segment containing black stripes could be
seen as a positive instance for the “tiger” concept, whereas segments containing
grass, sky e.t.c. would be considered negative, or background, instances.

Many traditional, “instance-based” MIL approaches try to model the concept
by identifying the “most positive” instances in bags, and classify new bags as
positive if they appear to have instances within this concept [6,9]. Other, “bag-
based” MIL approaches compare bags directly, using distances[18], kernels[7] or
dissimilarities [17,14]. It is possible to define a dissimilarity measure between
bags, represent each bag by its dissimilarities to other bags, and use these dis-
similarity values as features for supervised classifiers. A number of such dissimi-
larities are investigated in [14,17], where it is shown that some bag dissimilarities
can be effective even when a concept is not clearly defined.
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The instance-based methods explicitly use the assumption that positive bags
are different from negative bags, whereas the bag-based methods typically do
not differentiate between classes. This may not be completely natural for a MIL
problem, because we have some information about how positive bags are differ-
ent from negative bags. In supervised learning problems where classes are ex-
pected to behave differently, class-dependent distances[10,5,19] or features[2,8]
have been suggested. In this work we examine whether a similar approach might
be reasonable for MIL problems.

2 Related Work

Using a class-dependent distance measure, rather than a fixed distance mea-
sure, is not a new idea. Quadratic Discriminant Analysis already allows different
classes to have different covariance matrices. More attention to class-dependent
distances is given in [10], where the goal is to learn weights for each feature/class
combination, and to use these weights in a Mahalanobis-type metric. A similar
approach is taken in [5] to improve performance in speech recognition. In [19],
the authors propose learning different metrics for different classes and show that
this improves classification results. In all cases, the goal is obtain high nearest
neighbor performance on the learnt distances.

Other authors have examined the importance of class-dependent features
rather than distances. In [2] several examples are provided where such class-
dependent features are important: classification of handwritten characters, tex-
tures and documents. For instance, in a bag of words approach to document
classification, it might be better to represent documents based on words that
frequently occur in a particular class, as opposed to words that frequently occur
in all documents. The same motivation is given in [8], where a weight is asso-
ciated with each (word, class) pair. Although here, the term “dissimilarity” is
used rather than distance, the learned dissimilarities are still used in a nearest
neighbor setting.

For MIL, the only example of using a class-dependent dissimilarity we are
aware of is from [20]. Here, bag dissimilarities are used for feature selection. The
authors propose to use different dissimilarity measures for two positive bags, two
negative bags, or a positive and a negative bags, to best capture the properties
of the classes, such as the presence of a concept. Because the purpose is feature
selection, only the dissimilarities between bags in the training set are computed.
The same class-dependent dissimilarity cannot be used for the purpose of clas-
sification, because the labels of test bags are not available.

3 Review of MIL and Bag Dissimilarities

In Multiple Instance Learning, an object is represented by a bag Bi = {xik|k =
1, ..., ni} ⊂ R

d of ni feature vectors or instances. The training set T =
{(Bi, yi)|i = 1, ...N} consists of positive (yi = +1) and negative (yi = −1)
bags. The traditional assumption for MIL is that there are instance labels yik
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which relate to the bag labels as follows: a bag is positive if and only if it contains
at least one positive instance[6]. In this case we can speak of concept (positive)
instances, which are assumed to be close together in a region of the feature
space called the concept C ⊂ R

d, and which directly affect the bag label by their
presence.

Alternatively, we can represent an object (and therefore, also a bag in a MIL
problem) by its dissimilarities to prototype objects in a representation set R[11].
Often, R is taken to be the training set T , and each bag is represented as
d(Bi, T ) = [d(Bi, B1), ...d(Bi, BN )]: a vector of dissimilarities. Therefore, each
bag is represented by a single feature vector and the MIL problem can be viewed
as a standard supervised learning problem.

There are various ways of defining the bag dissimilarity measure d(Bi, Bj).
Here we focus on defining d(Bi, Bj) through the pairwise instance dissimilarities
D = [d(xik,xjl)]Ni×Nj

. We use the squared Euclidean distance for the instance
dissimilarity, but other choices are also possible. In all the dissimilarities con-
sidered here, the first step is to find, for each instance in Bi, the distance to its
closest instance in Bj . Using these minimum instance distances, we can define
the following dissimilarities:

– Overall minimum or minmin: dminmin(Bi, Bj) = mink minl d(xik,xjl)

– Average minimum ormeanmin: dmeanmin(Bi, Bj) =
1
ni

∑ni

k=1 minl d(xik,xjl)

– Maximum minimum or maxmin: dmaxmin(Bi, Bj) = maxk minl d(xik ,xjl)

Note that these dissimilarities are very similar to (variants) of the Hausdorff
distance. However, in literature, the name “modified Hausdorff distance” has
been used for a number of different distances (see [21] for some examples), so
we prefer to use these more straightforward names instead. Furthermore, the
Hausdorff distance is generally not symmetric, i.e. d(Bi, Bj) �= d(Bj , Bi), and
often a symmetric version is obtained by taking the average or the maximum
of the two values. In this paper we refrain from doing so for reasons that will
become apparent in the next section.

The three dissimilarities above have their advantages and disadvantages for
particular types of datasets. For instance,minmin performs well with a very tight
concept, whereas meanmin is more appropriate for cases where instances from
positive and negative bags arise from different distributions. A more detailed
explanation is available in [4]1.

4 Class-Dependent Dissimilarity

We argue that, in a MIL problem, it may be advantageous to exploit the bag
label information when defining a dissimilarity between two bags. Let’s assume
we are dealing with a MIL problem with a well-defined concept, such as in

1 In press, available online from
http://prlab.tudelft.nl/sites/default/files/icpr2012.pdf
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Figure 1(a). In this problem, if we consider all instances in a bag, any two
bags may be similar or dissimilar overall. However, in MIL problems with a
concept, we could speculate that the positive bags are similar at the concept
level. Figure 1(b) illustrates the a dissimilarity matrix corresponding with this
intuition. Each square here is a dissimilarity value between two bags, where
the color of the square represents the dissimilarity value (black = 0, i.e. similar
bags, white=1, i.e. dissimilar bags). Notice the difference between treating these
values as distances, or as dissimilarities. In terms of distances, this representation
is quite poor, because each bag has several neighbors in the opposite class.
However, in terms of dissimilarities, the situation is quite different: the positive
bags are clearly represented in a different way than the negative bags, so the
classes are well separated.

By using the same dissimilarity to compare positive and negative bags, we
risk overlooking an important difference between positive and negative bags,
producing a dissimilarity matrix where all values are nearly equal. It seems
that using the class information could help us capture the correct aspects of
dissimilarity between bags. Ideally, we would want to have the class information
of both bags when determining their dissimilarity (e.g. using the overall minimum
distance for two positive bags, as in [20], but for classification purposes, it is
obvious that only the labels of the prototypes are available.

(a) (b)

Fig. 1. (a) Artificial concept dataset, + and © represent instances from positive and
negative bags respectively. (b) Dissimilarity matrix reflecting the intuition we have
about the positive and negative bags. The intensity value reflects the dissimilarity of
two bags (black = 0, white = 1).

For positive prototypes, we want to find out something about the presence
of a concept in the test bag (denoted by B), i.e. the concept instance of the
prototype bag (denoted by R+ or R− depending on the prototype label) needs
to be involved. As illustrated in Figure 2, the asymmetry of the bag dissimilarities
becomes important here. If we measure the dissimilarity of the test bag to the
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prototype bag, denoted by d(B → R+), it may happen that none of the instances
in B are matched to the positive instance in R+. If we measure d(R+ → B)
instead, which measures the dissimilarity from the prototype to the test bag, the
positive instance of R+ has to be matched to an instance in B. In other words,
the distance from a positive prototype d(R+ → B) should be more informative.
For negative prototypes, we want to highlight the absence of the concept in the
prototype. In this case, we are interested in the dissimilarity to the prototype
d(B → R−) because this ensures that incorrect matches (of concept instances
in the test bag to background instances in the prototype) will be present.

(a) (b)

Fig. 2. Difference between the “from” d(R → B) and “to” d(B → R) dissimilarities for
a prototype bag (represented by △). Each row shows the situation for a test bag (rep-
resented by ©). The instance labels (red = positive, blue = negative) are unavailable
and only shown for explanation purposes. The arrows indicate the direction of how the
instance distances are measured.

4.1 Possible Dissimilarity Measure

Just the direction of measuring the dissimilarity does not yet provide us with
a way to produce a single dissimilarity, but with a vector of minimum instance
distances between a bag and a prototype. If the bags were very large, we could
see these vectors as distributions of distances. Assuming that these distributions
would be somehow different for positive and negative test bags, we could define
a dissimilarity value between two bags by comparing the distributions directly.

However, in real applications, some bags may be very small (e.g. in the Musk
datasets, bags with just one instance are present), so such comparisons would not
always be feasible. Instead we try to define cheap approximations for the overall
bag distance, given only finite samples from the instance distance distributions.
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Given our previous experiences with meanmin, we propose to approximate both
directions with the following dissimilarity:

dcd(·, R) =

{

dmeanmin(R → ·) if R is positive

dmeanmin(· → R) if R is negative
(1)

Table 1. AUC performance and standard error (x100), 5x10-fold cross-validation for
1-NN classifier in the dissimilarity space. The numbers in bold indicate which dissimi-
larity is best (or not significantly worse than best) per dataset.

dataset dto dfrom dcd davg

Musk1 92.6 (1.1) 92.6 (1.1) 92.9 (1.2) 93.4 (1.1)
Musk2 89.7 (1.8) 87.2 (1.7) 89.7 (1.6) 88.5 (1.6)
Fox 57.2 (1.4) 65.3 (1.7) 68.7 (1.7) 66.2 (1.7)
Tiger 78.2 (1.6) 79.7 (1.3) 75.1 (1.3) 75.6 (1.6)
Elephant 83.0 (1.3) 87.1 (1.2) 90.8 (1.0) 88.9 (1.0)
Protein 62.1 (2.5) 61.0 (3.1) 63.0 (3.1) 64.2 (2.7)
Mutagen easy 89.6 (1.0) 89.0 (1.1) 88.4 (1.0) 88.8 (1.0)
Mutagen hard 79.5 (3.1) 73.3 (3.6) 79.7 (3.2) 77.3 (3.6)
African 89.9 (0.7) 88.5 (0.7) 90.8 (0.7) 89.3 (0.7)
Beach 82.2 (0.8) 82.1 (1.0) 83.3 (0.8) 82.4 (0.8)
Historical 87.0 (0.7) 85.9 (0.8) 87.1 (0.7) 87.6 (0.7)
Buses 96.6 (0.3) 97.2 (0.3) 97.1 (0.3) 96.9 (0.3)
Dinosaurs 99.2 (0.2) 99.7 (0.0) 99.0 (0.2) 99.3 (0.1)
Elephants 92.9 (0.5) 92.6 (0.8) 92.8 (0.6) 92.9 (0.5)
Flowers 98.0 (0.2) 97.7 (0.3) 98.1 (0.2) 97.6 (0.2)
Horses 98.9 (0.1) 96.1 (0.4) 98.9 (0.1) 97.8 (0.2)
Mountains 82.7 (0.9) 82.6 (0.8) 82.5 (0.8) 85.7 (0.7)
Food 95.9 (0.3) 97.0 (0.2) 96.8 (0.3) 97.3 (0.2)
Dogs 84.5 (0.9) 85.4 (0.8) 86.8 (0.8) 86.6 (0.7)
Lizards 93.0 (0.5) 91.7 (0.7) 92.0 (0.6) 92.2 (0.6)
Fashion 90.0 (0.5) 90.2 (0.6) 90.9 (0.5) 90.2 (0.5)
Sunset 94.3 (0.6) 93.3 (0.5) 94.1 (0.5) 94.7 (0.4)
Cars 88.8 (0.7) 87.9 (0.7) 89.8 (0.6) 88.2 (0.6)
Waterfalls 93.8 (0.4) 91.1 (0.6) 93.5 (0.4) 93.4 (0.4)
Antique 92.8 (0.7) 93.7 (0.5) 93.2 (0.6) 93.4 (0.6)
Battleships 92.7 (0.5) 92.8 (0.4) 93.9 (0.4) 94.5 (0.4)
Skiing 87.0 (0.8) 91.4 (0.6) 87.3 (0.7) 89.9 (0.6)
Desserts 72.0 (1.4) 68.6 (1.1) 71.0 (1.4) 72.7 (1.0)
AjaxOrange 81.6 (1.5) 85.2 (1.5) 86.7 (1.3) 86.7 (1.1)
Apple 69.3 (1.3) 62.4 (1.7) 68.6 (1.3) 66.3 (1.5)
Banana 65.4 (1.4) 61.5 (1.7) 66.6 (1.7) 65.4 (1.8)
BlueScrunge 72.3 (1.5) 81.2 (1.2) 76.2 (1.4) 81.6 (1.2)
CandleWithHolder 80.6 (1.4) 79.7 (1.3) 85.4 (1.2) 87.1 (1.0)
CardboardBox 72.3 (1.5) 83.4 (1.0) 76.7 (1.4) 86.4 (1.1)
CheckeredScarf 95.1 (0.4) 94.2 (0.3) 95.7 (0.4) 96.7 (0.3)
CokeCan 85.0 (1.2) 81.8 (1.2) 87.9 (1.1) 88.5 (1.1)
DataMiningBook 84.7 (1.1) 78.6 (1.3) 86.9 (1.1) 85.7 (1.2)
DirtyRunShoes 90.9 (0.9) 90.6 (0.9) 92.2 (0.8) 91.6 (0.9)
DirtyWorkGloves 75.5 (1.6) 75.9 (1.5) 78.5 (1.5) 82.8 (1.4)
FabricSoftener 89.0 (1.1) 88.9 (1.1) 95.7 (0.7) 89.7 (1.0)
FeltFlowerRug 83.7 (1.4) 86.3 (0.9) 88.4 (1.1) 90.2 (0.8)
GlazedWoodPot 58.7 (1.2) 63.5 (1.7) 59.9 (1.3) 68.1 (1.6)
GoldMedal 75.6 (1.5) 75.1 (1.3) 80.8 (1.2) 83.5 (1.1)
GreenTeaBox 81.8 (1.3) 79.6 (1.4) 85.9 (1.1) 83.4 (1.2)
JuliesPot 68.1 (1.5) 60.3 (1.7) 70.9 (1.5) 64.7 (1.4)
LargeSpoon 79.0 (1.4) 71.1 (1.7) 82.7 (1.2) 81.7 (1.5)
RapBook 70.3 (1.5) 71.4 (1.5) 71.5 (1.4) 74.1 (1.4)
SmileyFaceDoll 79.0 (1.4) 59.6 (2.0) 78.2 (1.4) 75.7 (1.4)
SpriteCan 77.7 (1.2) 71.0 (1.5) 79.5 (1.2) 80.2 (1.2)
StripedNotebook 76.6 (1.2) 78.1 (1.6) 78.8 (1.2) 77.8 (1.2)
TranslucentBowl 67.4 (1.4) 62.1 (1.4) 68.8 (1.5) 63.8 (1.5)
WD40Can 86.3 (1.3) 85.6 (1.1) 90.3 (1.0) 89.0 (1.1)
WoodRollingPin 78.8 (1.4) 79.2 (1.3) 82.6 (1.4) 82.2 (1.2)
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5 Experiments

We test our approach on several benchmark MIL datasets:

– Musk 1, Musk 2 [6], molecule activity prediction.
– Trx Protein [16], protein function prediction.
– Mutagenesis easy, Mutagenesis hard [15], drug activity prediction.
– Fox, Tiger, Elephant [1], image classification.
– 20 Corel datasets [3], image classification.
– 25 SIVAL datasets [13], image classification.

We compare the performance of the 1-nearest neighbor classifier in the dissimilar-
ity space using the class-dependent dissimilarity dcd and its “ingredients”, which
we denote by dto and dfrom for brevity. In addition, we provide results of the
symmetric mean davg = 1

2 (dfrom + dto) because before considering asymmetric
dissimilarities, we have achieved good results with this symmetrized measure.

The results are given in Table 1. The class-dependent dcd is performing better
than dfrom and dto, which is in line with our intuition about it being able to
capture more class differences. Overall, the performance of davg is comparable
to that of dcd, which might mean that averaging dfrom and dto captures some of
the same information as in dcd. For several datasets, one of these dissimilarities
does significantly better than the other, although it is not entirely clear what
these datasets have in common. However, it seems that in many cases where dto
outperforms dfrom, dcd also outperforms davg (e.g. SmileyFaceDoll).

The difference in the results of dfrom and dto is another interesting obser-
vations. For some datasets, these dissimilarities have comparable results, while
for others, especially SIVAL datasets, one outperforms the other greatly. Al-
though dto is often better than dfrom, for instance for the Apple dataset, in
other datasets, such as CardboardBox, the situation is reversed.

6 Discussion and Conclusion

We have emphasized that in Multiple Instance Learning problems, it might be
appropriate to treat the classes differently due to an important difference be-
tween positive and negative bags: the presence of concept instances. Most MIL
approaches which compare bags directly disregard this difference. Therefore, we
proposed to use a class-dependent dissimilarity based on the average minimum
instance distance, which adapts itself based on the labels of the prototype bags.
Experimental results showed that this class-dependent dissimilarity is indeed
more informative than the independent versions, and that it is comparable to
averaging of these two dissimilarities.

In several datasets, we have noticed large differences between measuring dis-
similarities from bags to prototypes (dto), or from prototypes (dfrom) to the test
bags. We believe these differences may be related to the class imbalance in the
Corel and SIVAL datasets, where only 4 to 5% of the bags are positive. Therefore,
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the representation dto is actually very similar to the class-dependent represen-
tation dcd. This also explains why the successes of dto and dfrom are related.
In fact, the correlation coefficient between the difference of performances of dto
and dfrom, and the difference of performances of dcd and davg, is equal to 0.55.
This suggests that dfrom contains some information which negatively affects the
performance of davg, but which can be avoided when using the dissimilarities in
a class-dependent manner.

To better understand the obtained results, we also examined the performances
of the individual “to” and “from” dissimilarities using only the positive, or only
the negative bags as prototypes. The results were surprising, because the perfor-
mances were comparable to the dissimilarities where prototypes of both classes
are available. In about half of the datasets, the dissimilarity from positive proto-
types outperformed all the dissimilarities in Table 1. This provides opportunities
for investigating how prototype selection [12] or assigning weights to the pro-
totype classes can further improve performance. Furthermore, this result might
be of interest in MIL problems with class imbalance such as in medical image
diagnosis, and is worth investigating further.
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7. Gärtner, T., Flach, P., Kowalczyk, A., Smola, A.: Multi-instance kernels. In: Proc.
of the 19th Int. Conf. on Machine Learning, pp. 179–186 (2002)

8. Kummamuru, K., Krishnapuram, R., Agrawal, R.: On learning asymmetric dissim-
ilarity measures. In: International Conference on Data Mining, p. 4. IEEE (2005)
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