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Class Groups of Number Fields:

Numerical Heuristics

By H. Cohen and J. Martinet

Dedicated to Dan Shanks on his 10th birthday

Abstract. Extending previous work of H. W. Lenstra, Jr. and the first author, we give

quantitative conjectures for the statistical behavior of class groups and class numbers for

every type of field of degree less than or equal to four (given the signature and the Galois

group of the Galois closure). The theoretical justifications for these conjectures will appear

elsewhere, but the agreement with the existing tables is quite good.

1. Introduction and Notations. In [3], H. W. Lenstra, Jr., and the first author

developed a method for conjecturing quantitative results on class groups of quadratic

fields and cyclic extensions of prime degree. In a forthcoming paper [4] we shall

show that this technique can be extended to a much wider class of number fields,

and also to relative extensions.

The aim of the present paper is to rapidly make available the numerical conjec-

tures obtained, for people not really interested in our heuristic reasoning or not

wanting to wait for [4] to appear. Hence, apart from a total lack of justifications for

the conjectures that we present, this paper is essentially self-contained. The plan is as

follows.

In the rest of this section we present the notations used in the sequel. Some of

them being nonstandard (and in general differing from the notations of [3]), we urge

the reader to read the notations carefully before applying the conjectures.

In the next section we present templates for the subsequent conjectures, and then

the conjectures themselves, illustrated by numerical examples, first for their own

sake, and second as a double check for the reader to understand the templates. These

conjectures are given for all types of fields of degree less than or equal to four.

In the final section we comment on the consistency of the conjectures with

existing tables (which is quite good).

Combinatorial Notations:

* If X is a set, \X\ denotes its cardinality.

* For an integer/? ^ 2 and a an integer or oo, we set: (p)a = Tl1<k<a(l - p~k);

in particular (p)x = llt>i(l -/>"*), (p)0 = 1-

Remark. It would have been more consistent with the usual notations of combina-

torics to write this as (l/p)a, but the present notation is typographically simpler.
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124 H. COHEN AND J. MARTINET

Algebraic Notations:

•k The letter K will stand for the generic algebraic number field whose class group

we want to study.

* HK (resp. HK/k for relative extensions) will denote the subgroup of the class

group consisting of elements whose order is not divisible by the given bad prime or

primes (resp. and in the kernel of the norm map from K to k ).

Warning. HK does not denote the class group itself, in general.

*hK=\HK\,hK/k = \HK/k\.

•k The letter M will denote a Galois closure of K over Q, and T = Gal(M/Q).

* A will denote a direct product of Dedekind domains A, (in fact, in our cases, A

will either be a direct product of copies of Z or a single Dedekind domain).

* If G is an ^4-module, AutAG (or simply AutG) will denote the group of

.4-automorphisms of G, and G, will denote the component of G on the factor Aj of

A (hence G = VI G¡).

* If p is a maximal ideal of a Dedekind domain A, we will write r*(G) for the

p-rank of G as an A -module, i.e., the dimension of G/\>G over A/\>. We shall write

rz(G) for the /»-rank of G when G is viewed only as a Z-module. Note that when A

is the ring of integers of a quadratic field then

(i) if p splits in A, say pA = pp,

r?(G) = rf(G) + r*(G);

(ii) if p is inert in A,

r/(G) - 2r/(G).

If A = Z we write simply rp(G) instead of rpz(G).

Analytic Notations:

* In the templates, the letter / will stand for a "nice" function (not further

specified!) defined on isomorphism classes of finite ,4-modules.

•k lî A = Yl1<l<mAlt where the A¡ are Dedekind domains, then the zeta function

of A is by definition a function of m complex variables defined by analytic

continuation to Cm of the following function:

1 < / < m

where s = (sx,...,sm) and ÇA' is the Dedekind zeta function of A¡ (when it is

defined).

Warning. This differs from the usual definition of fA, a function of one complex

variable s, which one recovers by setting sx =  ■ ■ ■  = sm = s.

* The Z function of A is defined by

Z"(s)= û f "(s+ *•-).
k>l

where 1 = (1,..., 1) is an m-dimensional vector.

* The Z function of A relative to the function / is obtained by analytic

continuation of

ZA(f;s) = Zf(G)\AutAG\-l\Gxr •••iGj"1"',
G

where the summation is over all ^-isomorphism classes of finite ,4-modules G.
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CLASS GROUPS OF NUMBER FIELDS 125

* If 1 is the constant function equal to 1 everywhere, then it is a theorem (not a

conjecture!) that

ZA(l,s) = ZA(s)

(see [3, Corollary 3.7] or [4]), whence the notation.

* C(A) = Ress=0ZA(s)= Ress=xÇA(s)T\k>2ÇA(k) (used only when A is a

Dedekind domain).

* If f is a prime number which we want to exclude (a "bad" prime), we use

CA¿(s) and Z^,,(s) to mean that we omit the Euler factors corresponding to prime

ideals dividing £, and more generally ZA+{(f;%) to mean that in the sum defining

ZA(f; s) we take only finite /I-modules of order not divisible by /.

* Finally, we set

MA(f;s) = ZiAf;»)/Zi,(»),

where it is understood that the limit is taken if both the numerator and denominator

vanish.

2. The Conjectures. Let K be a generic algebraic number field, M a Galois

closure of K, and T = Gal(M/Q) as usual.

For a given T we first give a diagram indicating interesting subfields of M and

their interrelations (although usually not the conjugates of K), then the "bad" prime

tf (when [K: Q] < 4 there is only one such), the ring A, and in the non-Galois case,

relations between class groups outside the bad prime as always (these relations being

theorems, not conjectures!). We indicate the degrees of the field extensions, except

when they are equal to two.

We then consider the set # of isomorphism classes of fields K having given T, rx,

r2 (number of real and complex embeddings of K ). If / is a function (see notations),

we define the average of / as the following limit, if it exists:

-*(/)=   um     E   /(#*)/   E   1,

\DK\<X \DK\*X

where DK is the discriminant of K. (If we work with relative extensions, replace HK

by HK/k in this definition.)

We then give a general heuristic prediction linking Jt(f) to the function

MA¿,(f; s) defined above, and we specialize this prediction to a number of interest-

ing functions /. In many cases, / will be the characteristic function of a property P

of HK (i.e., 1 if P is true, 0 if not), and in this case we shall speak of the

"probability" that P holds (written pr(P)), although evidently Jt(f) is only finitely

additive.

For each of the functions / we give a few numerical examples, the numbers being

rounded to six decimals.

In what follows:

* Í will be the bad prime.

* H will be a finite A -module of cardinality h.

-k h and m will denote integers not divisible by £.

k p will denote a good prime, and <p a prime ideal of A dividing p.
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126 H. COHEN AND J. MARTINET

We shall give in turn:

(a)Pr(HK^AH),?r(hK = h).

(b) Pr(m | hK).

(c) Pr(rA(HK) = r) and similar quantities.

(d) The average of (Np)"1"^"^ (n a positive integer).

(e) The average of hK.

(f) In a few cases, some additional conjectures.

For relative extensions, we of course replace HK and hK above by HK/k and

bK/k-

Recall once more that HK denotes the class group with its /-component removed.

(1) Quadratic Fields.

K r = Z/2Z
| bad prime: £=2

Q A = Z
(1.1) Complex quadratic fields.

(rx = 0,r2=l),

Jf(f) = M*2(f;0).

(a)pT(HK = H) = 0,pr(hK = h) = 0.

(b) pr(m | hK) = rV„m(l - (;)„/(/))„.,).

Examples.

m = 3:0.439874;     m = 5: 0.239667;
m = 7: 0.163204;     m = 9: 0.159811.

(c)pr(rp(HK) = r) = p-'2(p)x/(p)2.

Examples.

^ = 3: ,- = 0:0.560126;    r = 1: 0.420095;

r= 2:0.019692;    r > 3: 0.000087;

^ = 5: r = 0:0.760333;    r = 1: 0.237604;

r> 2:0.002063.

(d) J£(p"^^) = ¿ZUPi(n~i)(P)n/((P)i(P)n-,)-

Examples.

n = 1:2;    n = 2: p + 3.

(e) J((hK) = oo.

(1.2) Real quadratic fields.

(rx = 2,r2 = 0),

J((f) = Ml2(f;ï).

(a) pr(^ =H) = {2h(2)xC(Z)\\utH\y\

pT(hK = h)=Í2h2(2)xC(Z)U(p)n) '•
V P"\\h l

Examples.

h = 1:0.754458;    h = 3: 0.125743;
h = 5: 0.037723;    h = 7: 0.017963:

h = 9: 0.015718 {H = Z/9Z: 0.013971; H = (Z/3Z)2: 0.001746).
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CLASS GROUPS OF NUMBER FIELDS 127

(b) pr(m | hK) = rVl|m(l - ((p)ao/(p)l%o^ß^(P2ß(P)ß)-1)-

Examples.

m =3: 0.159811;    m = 5: 0.049584;
m = 1: 0.023739;    m = 9: 0.019779.

(c) pv(rp(HK) = r) = /T"'+1>(/>)00/((/>),-.»,-+i)-

Examples.

/, = 3: r = 0:0.840189;    r = 1: 0.157535;

r> 2:0.002275;

p = 5: r = 0:0.950416;    r = 1: 0.049501;

r> 2:0.000083.

(d)J£(p"rr<^) = LUoP'{"-'-1)(P)n/((P),(P)n-l)-

Examples.

n = l:l+p'1;    n = 2: 2 + p'1 + p~2.

(e) Jt(HK) = oo.

(f) (Also conjectured by C. Hooley [11])

E hQifp)~%    asx^oo.

P prime. p= 1 (mod4)

(2) Cyclic Cubic Fields.

K T = Z/3Z
3 | bad prime: /= 3

Q A = Z[j]       (j = e2'^)

K is totally real       (rx = 3, r2 = 0),

J£(f)-Mi3(f;l).

[HK~ A  H) -      TT'

.1

(a) px(HK^AH)=^h(3)xC(A)\r\utAH

pr(hK = h) = [^h2(3)xc(A)Y1 e nw;1.
^ I     Na=hV\\a

Here, a runs through all integral ideals of A of norm h, and f through prime

ideals dividing a.

Examples.

A - 1:   0.850072;    h = 4: 0.070839 (here H = z (Z/2Z)2);

h = 1:   0.040480 (50% for each of the two A -isomorphism classes) ;

h = 13: 0.010898 (50% for each of the two ̂ -isomorphism classes) ;

h = 16: 0.004723 (fí = z (Z/4Z)2: 0.004427; H = z (Z/2Z)4: 0.000295).
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128 H COHEN AND J. MARTINET

(b) pi\m\HK) = PXP2, where

Pi" O        [l-{(p)Í/(p)2l)        E        {p2ß+2"(P)ß(p)yY1),
p"\\m       \ 0«ß + y<ci

p=l (mod3)

P2=   n  [i-((p2)x/(p2)i) e (p4ß(p2)ßyl]

Examples.

P°\\m        \ 0^ß<a/2
p = 2 (mod 3)

m = 2 and m = 4: 0.081950;    m = 5: 0.001667;
m = 1: 0.046914;    m = 8 and m = 16: 0.005446.

(c) pr(rA(HK) = r) = (N*)-«r+l\Np)^((Nlp)r(N»)r+1).

If p = 1 (mod 3), then

pr{rpZ(HK) = r) = (p)l   £   p-'(t+1^u+1)/((p)ÁP)t+Áp)u(p)u+i).
t + u = r

\ip = 2 (mod 3), then

, , _ 10   if r is odd,
pr(rp (HK) - r) - I   _r(r+2)/2(^/((^^,2)^    otherwise.

Examples.

/»-2: r = 0:0.918050

r > 4: 0.000346

p=5: r = 0:0.998333

p = l: r= 0:0.953086

r> 2:0.000583.
(d) If p s 1 (mod 3) then

r= 2:0.081604;

r > 2: 0.001667;

r= 1:0.046331;

^(/>-í<M=I/>'<'-'-1)(p)„/((/,),.(/>)B_I.),
i=0

ur(/»"'?(W*>) = {j£{pnr^"^.

Examples.

n = l:(l+p-1)2;    n = 2: (2 + /T1 + p~2)2.

U p = 2 (mod 3) then

J£(p2"^^)=^(p<^)=íp2^-l\p2)n/((p2),(p2)^,).

Examples.

« = 1:1+/T2;    n = 2: 2 + p'1 + /r4.

(e) J£(hK) = oo.

(3) Non-Galois Cubic Fields.

M . r — v
//'      \ 3 —   3

/^ \ bad prime: /= 3
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(3.1) Complex cubic fields.

(rx = l,r2=l),

J£(f) = Ml,(f;\).

(a) pr(//^/Y) = (^(3LC(Z)|Aut//|) \

pr(hK = h)=\\h2(3)xC(Z)Y\(p)a
\ p"\\i>

Examples.

h = 1:0.518642;    h = 2: 0.259321;

h = 4: 0.086440 (fí - Z/4Z: 0.064830; H - (Z/2Zf: 0.021610);

h = 5:0.025932.

(b)pr(m I A*) = rVl|m(l-((/>)«/(/>)!)   E   (P2^)"1)-
0sS/S<a

£xaw/)/eí.

»i = 2: 0.422424;    m = 4: 0.133636;
m = 5:0.049584;    w = 7: 0.023739.

(c)pr(/-p(//J=r) = jp-(r+1»(p)00/((p)r(/7)r + 1).

Examples.

p = 2: r = 0:0.577576;    r = 1: 0.385051;

r = 2: 0.036672;    r > 3: 0.000702.

For p > 5 see 1.2(c).

(d), (e) See 1.2(d) and 1.2(e).

(3.2) Totally real non-Galois cubic fields.

(rx = 3,r2 = 0),

Jt(f) = Ml,(f;2).

I 81
(a) pr(//^//) = (^/!2(3)0CC(Z)|Aut//

pr(hK = h)=[^1h\3)xC(Z)Y\(p)a
\ °T p"\\m

Examples.

h = 1:0.758339;    A = 2: 0.189585;

A = 4: 0.031597 (W = Z/4Z: 0.023698; // = (Z/2Z)2: 0.007899).

(b) pr(m | hK) = ^.,„„(1 - ((p)x/(p)2)\Z0^i<a(p'\p)lirl).

Examples.

m = 2:0.229898;    m = 4: 0.037373;
m = 5: 0.009983;    m = 7: 0.003400.

(c)pr(rp(^)=r) = /,-^+2>(/,)oc/((/))r(/,)r+2).

Examples.

p = 2: r = 0:0.770102

r = 2: 0.009779

/7 = 5: r = 0:0.990017

r > 2: 3.3 X 10

r= 1:0.220029

/•> 3:0.000090

r = 1: 0.009980
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130 H. COHEN AND J. MARTINET

(à)J£(p"r^) = Y.Up'(n-'-2)(p)n/((p)l(p)n_,).

Examples.

n = l:l+p-2;    n = 2: 1 + /T1 + p-2 + /T4.

(e) Jt(hK) = 4tt2/21 = 1.462164.

(4) Cyclic Quartic Fields.

K r = z/4z
I bad prime : £ = 2

k HK~ HkX HK/k

hence only HK/k is interesting

Q A = Z[í]

(4.1) Totally complex cyclic quartic fields.

(rx = 0,r2 = 2).

Here, /: is real quadratic.

.*(/) = Mi 2(/;0).

Remark. If one wants the full class group Z/^, then the template is

^(/) = M*2(/;1,0),

where i = ZxZ[/].

(a)pr(^/,=/1i/) = 0,pr(A^ = A) = 0.

(b) pr(m | A^/fc) = PjPj, where

*\-   n  [i-(/>)«  e  (/»'^(j»)^/»)»)"1).
p = l (mod 4)

p,=  n  (i-(/'2)oc/(/'2)[(a-i./21)-
p \\m

P = 3 (mod 4)

Examples.

m = 5: 0.421894;

m = 9: 0.123440;

m = 13:0.158813.

»i = 3:   0.123440

m = 7:   0.020825

w = 11:0.008333

(c) pr(^(//^A) = r) = (N)p)-r\Np)œ/(Np)2r.

If /? = 1 (mod 4), then

pr(r/(i/]CA) = r) = (/>)200   E   ¿>-,2-"V((;>)2(/>)«)•
i + u = r

If p = 3 (mod 4), then

/ 0    if r is odd,

Af{HK/k) = r) = L-rV2(/,2)oo/(/,2)2      otherwise_

Examples.

/7 = 3: r = 0:0.876560;    r = 2: 0.123266;

/•> 4: 0.000173;

^ = 5: r = 0:0.578106:    r = 1: 0.361316;

/- = 2:0.059592;    r > 3: 0.000986.
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CLASS GROUPS OF NUMBER FIELDS 131

(d) If p = 1 (mod 4), then

MpnrÍ(H^)-tpKn-Í\p)A{p)i{p)n-i),
¿=0

Examples.

» = 1:4;    n = 2:(p + 3)2.

If p = 3 (mod 4), then

ur(^<^A))->(/»-^^*))-è/»«--o(^)^((^)i(^)i|_()i
; = 0

£xam/?/es.

« = 1:2;    « = 2: /72 + 3.

(e) Jf(hK/k) = oo.

(4.2) Totally real cyclic quartic fields.

(r, = 4, r2 = 0),

Jï(f) = Mi2(f;l).

Remark. For the full class group i/^,

^(/) = M*2(/;1,1),

where 5 = Z x Z[/'].

(a)

pr(//^ =, //) = [-A(2)00C(^)|Auty( //|)   ,

pr(hK/k = h) = ßh2(2)xC(A)\1   £     n  (W)?.

Here, a runs through all integral ideals of A of norm h, and p through prime

ideals dividing a.

Examples.

A = l:   0.864608;

h = 5:   0.086461 (50% for each of the two A -isomorphism classes) ;

h = 9:   0.012008 (here, //= z (Z/3Z)2);

h = 13: 0.011085 (50% for each of the two A -isomorphism classes).

(b) pr(w | hK/k) = PXP3, where

Pl=    û    (l-((/02oc/(/>)l)    e    (/>2/}+2Y(/>)*(/>)yr),

p = l (mod 4)

p>-   n  (i-((p2)„/(p2)i) e (p4ß(p2)ßyl
P°\\m        \ 0«j8<a/2

/> —3 (mod4)
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132 H. COHEN AND J. MARTINET

Examples.

m = 3: 0.013870

m = 7; 0.000425

m = 11:0.000069

m = 5: 0.096709;

m = 9: 0.013870;

m = 13:0.012774.

(c) pr(^(//^,) = r) = (ATb)-'<'+1)(iVö)M/((Art))r(tft>)r+1).

If /? = 1 (mod 4), then

pr(r/(^/,) = r) = (p)200   £   ¿r'«^ —V(( />),( />),+i( PU />)„ + ,)•

If /? = 3 (mod 4). then

, _    . _ (0    if r is odd,

Pr(>> ("*/*) -n- \p-^2(P2)x/((p2)r/2(P2)(r/2) + x)    otherw.se.

Examples.

/> = 3: /- = 0:0.986130;    r = 2: 0.013867;

/-> 4: 2.1 X 10"6;

/> = 5: r = 0:0.903291;    r = 1: 0.094093;

r> 2:0.002617.

(d) If p = 1 (mod 4), then

ur(p"í<"«/*))= £/>i("-'-1H/>),./((/>),(/>)„-.),
;=o

ur(/»",?(ff*/*)) = í^r(/>"'í(H*/*)))2.

Examples.

n = l:(l+p-1)2;    n = 2: (2 + p] + p-2f.

If /? = 3 (mod4), then

^(/,^^>)=^(^<^))= £/>2'l''-<-1V2),/((/>2),(/>2),,-,)-
/ = 0

Examples.

n = l:l+p-2;    n = 2: 2 + p~2 + p~*.

(€) Jt(hK/k) = oo.

(5) Bicyclie Fields.

/ I Nv r = (z/2z)2
kx k2 k3 bad prime: £= 2

\   I   / HK= HKi X Hkl X Hkj

Our heuristics predict that these three groups behave independently, hence the

desired conjectures for HK or HK*k — Hk¡ X Hk  can easily be deduced from the

conjectures in  the quadratic case.  For the sake of completeness we give the

templates.
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CLASS GROUPS OF NUMBER FIELDS 133

For HK we take A = Z3.

For HK/k we take A = Z2.

(5.1) Totally complex bicyclic fields.

(/-! = 0, r2 = 2).

¥orHK(A =Z3): Jf(f) = M^2(/;0,0,1).

For//^3(^=Z2)

if A:3 is complex:    .#(/) = M^2(/; 0,1),

if A3 is real:    ^(/) = M^2(/;0,0).

(5.2) Totally real bicyclic fields.

(rx = 4,r2 = 0).

For//^ = Z3):^(/)=A/^2(/; 1,1,1).

For 7/^, (/I = Z2): M(f) = Mi2(f; 1,1) (here A:3 is real).

(6) Dihedral Quartic Fields.

T = D,

bad prime: ¡f = 2

Note. In this diagram Gal( Af/A:0) = Z/4Z,

while Gal(M/A:) = Gal(M/A:') = (Z/2Z)2.

Only the relative class group //*•/£ is

interesting, and we have

hm/e - HK/k x HK/k and HK./k, = #*-/*.

/t = Z
(6.1) Totally complex dihedral quartics with complex quadratic subfield k.

(h = 0. r2 = 2),

Jt(f) = Ml2(f;l).

For specific / and examples, see (1.2) (real quadratic fields).

(6.2) Dihedral quartics of mixed signature.

(rx = 2,r2=l).

Same as (6.1).

(6.3) Totally complex dihedral quartics with real quadratic subfield k.

(rx = 0, r2 = 2),

J((f) = Ml2(f;tí).
For specific / and examples, see (1.1) (complex quadratic fields).

(6.4) Totally real dihedral quartic fields.

(rx = 4,r2 = 0),

J£(f) = Ml2(f;2).

(a)

px(HK/k = H) = [^-2h2(2)xC(Z) \\utH\

px(hK/k = h)=[l-\h\2)xC(Z)Y\(p)a
P°\\h

'K/k       -I       I      2-
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134 H. COHEN AND J. MARTINET

r= 1:0.054532;

r= 1:0.009980;

Examples.

h = 1:0.930775;    h = 3: 0.051710;
A = 5:0.009308;   h = 7: 0.003166;

A = 9: 0.002155 (H « Z/9Z: 0.001915; // = (Z/3Z)2: 0.000239).

(b) pr(m | A„A) = n^a - ((^)00/(p)2)Eo^<a(P3/i(/')/3)"1)-

isxam/?/.?.?.

m = 3 : 0.054787 ;    m = 5: 0.009983 ;
m = 7: 0.003400;    m = 9: 0.002275.

(Oprir/H^) = r) = p-r(r+1)(p)x/((p)r(p)r+2).

Examples.

p = 3: r = 0: 0.945213;

r> 2:0.000256;

p = 5: r = 0:0.990017;

r> 2:3.3 X 10~6.

(d) Jt(p"rA"«^) = LUPÍ("-'-2)(P)n/((P)i(P)n-l)-

Examples.

n = l:l+p-2;    n = 2: 1 + p~l + p~2 + p~\

(e) J((hK/k) = m2ß = 1.233701.

Remark. The conjectures that we obtain in the case Z>8 are, as expected, the same

as the ones that we would obtain for quadratic extensions of a fixed quadratic field

k (such an extension being of type Z)8 with probability 1).

(7) Quartic Fields of Type A4.

T = A4

bad prime: £=2

HM/C ^HKXHKXHK(HK = HL/C)

A =Z

(7.1) Totally complex quartic fields of type A4.

(rx = 0,r2 = 2),

J£(f) = Ml2(f;l).

For specific / and examples, see (1.2) (real quadratic fields).

(7.2) Complex quartic fields of type A 4 of mixed signature.

(rx = 2, r2=l).

These fields to not exist!

(7.3) Totally real quartic fields of type A4.

(rx = 4, r2 = 0),

Jt(f) = MÏ2(f;3).
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(a)

pr(HK = H) =

pr(hK= h) =

128

777^(3)

128

h3(2)xC(Z)\AutH

-i

.h<(2)xC(Z)  El  (P)a
In H-3J p"\\m

Examples.

A = 1:0.978989;    A = 3: 0.018129;
A = 5:0.001958;    A = 7: 0.000476;

A = 9: 0.000252 (H = Z/9Z: 0.000224; H = (Z/3Z)2: 0.000028).

(b) pr(m | hK) = rVl|m(l - ((p)00/(/»)3)Io*/»<«(//,(/')/»)-1)-

Examples.

m = 3:0.018433;    m = 5: 0.001999;
m = 7:0.000486;    m = 9: 0.000256.

(c)pr(rp(HK) = r) = p-^\p)x/((p)r(p)r+3).

Examples.

/> = 3: r = 0:0.981567;

r > 2: 0.000029;

p = 5: r = 0:0.998001;

(d) M{p"W, = ZUPi(n-'~l\p)n/((P),(P)n-i)-

Examples.

« = 1:1 + p"3;    n = 2:1 A p~2 A p~3 + p'6.

(é)J£(hK)= K(3)= 1.051800.

(f) J£(h2K) = <kv2Ç(3) - 1.297606.

(8) Quartic Fields of Type S4.

M

/\
LK r = S4

Àft /| \ bad prime : £- 2

L = C(fm) with Nc/Q(m) e Q*2

#a//c = HKXHKXHK and

r= 1:0.018404;

r> 1:0.001999.

#*: = #L/C

/I

(8.1) Totally complex quartic fields of type S4.

(rx = 0,r2 = 2),

J£(f) = MÏ2(f;l).

For specific / and examples, see (1.2) (real quadratic fields).

(8.2) Quartic fields of type S4 and mixed signature.

(rx = 2,r2=l),

J?(f) = MÏ2(f;2).
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For specific / and examples, see (6.4) (totally real dihedral quartic fields).

(8.3) Totally real quartic fields of type S4.

(rx = 4, r2 = 0),

Ji(f) = Ml2(f;3).

For specific / and examples, see (7.3) (totally real quartics of type A4).

3. Discussion. The tables that we have at our disposal (some of which having been

extended specifically to test our conjectures) are as follows:

- Complex quadratic fields, \DK\ < 2.5 X 107 [2].

- Real quadratic fields Q(^/p) with p prime, p < 108 [15].

- Cyclic cubic fields, DK < 2.56 x 108 ([9], [8]).

- Noncyclic complex cubic fields, \DK\ < 2 X 104 [1].

- Pure cubic fields Q(y/7~) with p prime, p < 106 ([13], [15]).

- Noncyclic totally real cubic fields, \DK\ < 5 X 105 [7].

- Some tables for fields of degree 4 and 6, which are not sufficiently extensive to

make any significant statistics ([10], [12], [6]). In addition, C. P. Schnorr [14]

kindly computed for us a few samples for \DK\ = 5 X 108 for complex quadratic

fields.

The first observation is that for imaginary and real quadratic fields, and for cyclic

cubics, the agreement with the tables is very good.

The second observation is that for noncyclic complex cubic fields, the agreement

is not so good. Now in the non-Galois cubic case, as will be explained in [4], we have

every reason to believe that the prime 2 behaves like a good prime. The poor

agreement with the tables would seem to indicate that, either our whole strategy in

the non-Galois case is wrong, or at least that 2 should be considered also a bad

prime. However, the discriminants involved in the table of [1] are not very large. If

we look at the subtable of pure cubic fields, the discriminant of Q(y7?) is 3/7 or

27/>2, according as p = +1 (mod 9) or not, hence in the table of [15] the discrimi-

nants go up to more than 3 X 1012. If we assume that, as a whole, pure cubics

behave like any other complex cubics, then ordering them as usual by discriminants

(and not by p\) we find very good agreement with the tables. Thus we believe that

the poor agreement with [1] is due to the fact that the discriminants are not

sufficiently large.

However, there is another phenomenon which has been stressed several times

([13], [15]) and which we repeat here: If one considers only Q(y[p) with p = 2

(mod 3) prime (so as not to be bothered by the 3-part), and if one distinguishes

between p = 1 (mod 9) and p = 2,5 (mod 9), one notes a marked distinction in the

behavior of the class group. For example, class number 1 seems to occur with

probability 0.60 for p = -1 (mod9), but with probability 0.40 for p = 2,5 (mod9).

This is apparently due to the higher 2-part of the class group in the second case, and

although a sort of reinterpretation of this phenomenon has been given in [5], no

satisfactory heuristic explanation has yet been found.

Since DK < x is equivalent to p < \Jx/3 for p = -1 (mod 9) and p < yx/27 for

p = 2,5 (mod 9), by taking together all the Q(]fp) with p = 2 (mod 3) and discrimi-
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nant < x, we find an approximate probability of

\ X 0.60 + \ X 0.40 = 0.52

of having class number 1, very close to the predicted probability 0.5186.

A similar remark can be made about quartic extensions of type A4 and S4: The

prime 3 could be bad. However, we think that this is not the case.
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