Class Groups of Quadratic Fields. II

By Duncan A. Buell*
Dedicated to Daniel Shanks on the occasion of his 70th birthday.

Abstract

A computation has been made of the noncyclic class groups of imaginary quadratic fields $Q(\sqrt{-D})$ for even and odd discriminants - D from 0 to -25000000 . Among the results are that 95% of the class groups are cyclic, and that -11203620 and -18397407 are the first discriminants of imaginary quadratic fields for which the class group has rank three in the 5 -Sylow subgroup. The latter was known to be of rank three; this computation demonstrates that it is the first odd discriminant of 5 -rank three or more.

1. Introduction. In [2] is described a computation of class numbers and class groups of imaginary quadratic fields $Q(\sqrt{-D})$ for even and odd discriminants $-D$ from 0 to -4000000 . This computation has been used in various contexts [1], [3], [4], [7]. Due to interest in a new factoring technique which utilizes the nature and structure of imaginary quadratic class numbers and class groups [8], a further computation and statistical analysis was made of these numbers and groups [5]. To further define the nature of class groups, we have rewritten the programs of [2] and computed all noncyclic class groups of imaginary quadratic fields $Q(\sqrt{-D})$ for even and odd discriminants $-D$ from 0 to -25000000 . This computation and its results are summarized in this paper.

We have followed the convention of [2] with regard to the 2-Sylow subgroup. Since the rank of that subgroup is determined by the number of prime factors in the discriminant $-D$ (theorem of Gauss) for the purposes of our computation, the 2-Sylow subgroup of a class group is called "noncyclic" if the 2-Sylow subgroup of the subgroup of squares in the class group is noncyclic.

All programming was done in C on a VAX 11/780** owned by the Computer Science Department, Louisiana State University, running 4.2BSD UNIX**. Some of the statistical summaries were obtained using S.

2. The Computation.

2.1. General Description. The basic computation is similar to that of [2]. Even and odd discriminants were dealt with separately. Separate computations were done for discriminants in ranges of integers in blocks of 200000, using one long array. (Thus, one such computation would be for odd discriminants between -600000 and -800000 .) A first pass through the array removed integers which were not discriminants of quadratic fields by flagging integers with odd prime squares as factors or of

[^0]the wrong congruence class modulo 4 . Then, for each remaining discriminant, a triple loop counted the binary quadratic forms of that discriminant, obtaining the class number, the class number of the group of forms and of the field being identical for imaginary fields.

The class numbers having thus been computed, a list was made of discriminants with "possibly noncyclic" groups by removing from the existing list those discriminants whose class numbers were not divisible by the square of at least one odd prime (or, for the 2-Sylow subgroup, the discriminants with fewer than 4 genera or without a factor of 4 in the number of norms per genus). Each of the possibly noncyclic p-Sylow subgroups of the remaining groups was then tested. The maximal order of any element in a class group being $F P G / p$, where $F P G$ is the number of forms per genus for the discriminant, forms were generated "at random" and their $F P G / p$ th powers computed. If any of these was not the identity, the group was known to be cyclic. If, in testing 15 "randomly generated" forms, only the identity was found for the $F P G / p$ th powers, the group was determined to be "probably noncyclic" and the p-Sylow subgroup explicitly computed. Data for groups determined to be noncyclic were written to a disk file, and statistics and summaries produced after the computation was completed.

The "random generation" of binary quadratic forms was this: A form (a, b, c) of discriminant $-D$ exists if the congruence $x^{2} \equiv-D(\bmod 4 \alpha)$ is solvable. For odd primes α, this is equivalent to having the Jacobi symbol $[-D / \alpha]$ equal to +1 . Our program simply ran through the primes in sequence as possible first coefficients α and found and reduced the possible forms for the discriminant in question.

We mention that in this computation all "probably noncyclic" groups were completely determined. This was not the case in the previous computation [2]. In that computation, a "probably noncyclic" group with a p-Sylow subgroup of order p^{k} was declared to be noncyclic of the form $C(p) \times C\left(p^{k-1}\right)$ if a form of order p^{k-1} was found. Similarly, "probably noncyclic" p-Sylow subgroups of order p^{2} and p^{3} were simply declared to be $C(p) \times C(p)$ and $C(p) \times C\left(p^{2}\right)$, respectively. No differences were found between the results of the previous computation and the results of this one, however.
2.2. The Group Computation. The algorithm for computing class groups is derived from that of Shanks [10], is essentially the same as that of [2], and is given as Algorithm A below. The decomposition of an Abelian p-Sylow subgroup (written multiplicatively) begins as follows.
a. Obtain a form, f_{1}, of order a power of p.
b. Compute the p-exponent ord ${ }_{1}$ such that $p^{\text {ord }_{1}}$ is the order of element f_{1}.
c. Save the penultimate p-powers $\left.\left\{f_{1}^{i\left(p^{\text {ord }}-1\right.}\right): 1 \leqslant i \leqslant(p-1)\right\}$ of f_{1}.
d. Obtain a form f_{2} and compute ord ${ }_{2}$ similarly.
e. If ord ${ }_{2}>\operatorname{ord}_{1}$, exchange f_{1} and f_{2} and store the penultimate p-powers of the new f_{1}.
f. If

$$
\left.f_{2}^{p_{2} \text { ord }_{2}-1}=f_{1}^{i\left(p^{\text {ord }} 1-1\right.}\right)
$$

for some i, then a dependence exists between f_{1} and f_{2}. This is removed by
replacing f_{2} with

$$
f_{2} \cdot f_{1}^{-i\left(p^{\text {ord }_{1}-1}\right)}
$$

and recomputing ord $_{2}$, repeating the test for dependence in this step until we find we have independent elements.
g. Having found two independent elements, if the p-orders sum to the p-power in the order of the group, we are, of course, done. If not, we find a third element, remove the dependence of this element on elements f_{1} and f_{2}, and continue until we have exhausted the p-Sylow subgroup. We note that removing dependence requires comparing the third elements's penultimate p-power against the penultimate powers of the first and second elements of the cross products of those powers.

For quadratic class groups, several facts were taken into account in implementing the algorithm. First, our previous computation showed that 95.74% of the class groups for discriminants from 0 to -4000000 were cyclic. Further, those noncyclic groups were in general "almost" cyclic, in the sense that the noncyclic p-Sylow subgroups were usually $C(p) \times C\left(p^{k}\right)$. Very few groups had rank three. Thus, we assumed that it would be normal for the groups to be easily computed and to be of rank two. Once the program established the fact that a group had rank three, therefore, it simply wrote this fact to the disk file, and went on to the next discriminant. In a very few cases, the entire decomposition had not at this point been found, and we performed a separate computation to finish the decomposition and "patch" the disk file of data on noncyclic groups. This happened for about 40 discriminants. No groups were found of rank larger than three for an odd prime Sylow subgroup. Although a detailed analysis was not undertaken, it is our general impression that this decomposition algorithm works well on quadratic class groups of this size.
3. Results. We present in Tables 1-4 a summary of the frequencies of occurrence of noncyclic p-Sylow subgroups and the first occurrences of those groups. In Table 1 we include counts of both noncyclic class groups and noncyclic subgroups, although

Table 1
Summary of noncyclic groups

	A	B	C	D	E	F
Even	2533009	1084644	142224	143833	13.1	5.61
Odd	5066042	1758766	239409	241845	13.6	4.73
Total	7599051	2843410	381633	385678	13.4	5.02

A-number of discriminants
B-number of possibly noncyclic discriminants
C-number of noncyclic class groups
D-number of noncyclic subgroups
$\mathrm{E}-100^{*} C / B$
$\mathrm{F}-100^{*} C / A$

Table 2
Summary for individual p-Sylow subgroups

A	B	C	D	E	F
2-Even	670838	26.48	103036	4.07	15.36
2-Odd	859385	16.96	157523	3.11	18.33
2-Total	1530223	20.14	260559	3.43	17.03
3-Even	372238	14.70	34992	1.38	9.40
3-Odd	749306	14.79	72211	1.43	9.64
3-Total	1121544	14.76	107203	1.41	9.56
5-Even	118144	4.66	4462	0.18	3.78
5-Odd	242187	4.78	9365	0.18	3.87
5-Total	360331	4.74	13827	0.18	3.84
7-Even	54338	2.15	1096	0.04	2.02
7-Odd	113926	2.25	2162	0.04	1.90
7-Total	168264	2.21	3258	0.04	1.94
11-Even	16883	0.67	142	0.01	0.84
11-Odd	40007	0.79	339	0.01	0.85
11-Total	56890	0.75	481	0.01	0.85
13-Even	10531	0.42	71	0.00	0.67
13-Odd	26737	0.53	160	0.00	0.60
13-Total	37268	0.49	231	0.00	0.62
17-Even	4302	0.17	17	0.00	0.40
17-Odd	13252	0.26	44	0.00	0.33
17-Total	17554	0.23	61	0.00	0.35
19-Even	2783	0.11	12	0.00	0.43
19-Odd	9756	0.19	28	0.00	0.29
19-Total	12539	0.17	40	0.00	0.32
23-Even	1206	0.05	3	0.00	0.25
23-Odd	5475	0.11	10	0.00	0.18
23-Total	6681	0.09	13	0.00	0.19
29-Even	320	0.01	2	0.00	0.63
29-Odd	2634	0.05	1	0.00	0.04
29-Total	2954	0.04	3	0.00	0.10
31-Even	239	0.01	0	0.00	0.00
31-Odd	2063	0.04	1	0.00	0.05
31-Total	2302	0.03	1	0.00	0.04
41-Even	22	0.00	0	0.00	0.00
41-Odd	638	0.01	1	0.00	0.16
41-Total	660	0.01	1	0.00	0.15

A-prime p
B-number of possibly noncyclic discriminants
C -possibly noncyclic discriminants as a \% of the total
D--number of noncyclic p-Sylow subgroups
E-actually noncyclic p-Sylow subgroups as a \% of total
F -actually noncyclic p-Sylow subgroups as a \% of possible

Table 3
Count of possibly noncyclic p-Sylow subgroups (for primes p with no noncyclic groups found)

p	Even D	Odd D	Total
37	69	1050	1119
43	19	556	575
47	5	367	372
53	0	213	213
59	0	102	102
61	0	97	97
67	0	59	59
71	0	36	36
73	0	23	23
79	0	25	25
83	0	9	9
89	0	4	4
97	0	1	1

Table 4
First occurrences of noncyclic p-Sylow subgroups

A	B	C	D	E
3	3896	3×12	3299	3×9
5	17944	5×10	11199	5×20
7	159592	7×14	63499	7×7
11	580424	22×22	65591	11×22
13	703636	13×26	228679	13×26
17	4034356	17×34	1997799	34×34
19	3419828	19×38	373391	19×38
23	11137012	23×46	7472983	23×46
29	16706324	58×58	20113607	29×116
31	-	-	11597903	31×62
41	-	-	6112511	41×82

A-prime p
B-first even discriminant with noncyclic p-Sylow subgroup
C-decomposition of class group
D-first odd discriminant with noncyclic p-Sylow subgroup
E -decomposition of class group
only a very small fraction of class groups turned out to be noncyclic in more than one p-Sylow subgroup. In Table 5 we list all the class groups found with a noncyclic p-Sylow subgroup for $p>19$. In Tables $6-8$ we detail information about noncyclic groups with $p^{3} \mid h$ for $p \geqslant 5$.

The most unique groups found were those for discriminants -11203620 , with class group $C(10) \times C(10) \times C(10)$, and -18397407 , with class group $C(5) \times C(10)$ $\times C(40)$. The latter was given in a list of rank-three groups by Schoof [9], but the former is apparently new.

Table 5

Groups noncyclic in a p-Sylow subgroup for $p>19$

Disc	Group	Disc	Group
6112511	41×82	14969711	$2 \times 46 \times 46$
7472983	23×46	16706324	58×58
7814559	46×46	18359043	23×46
11137012	23×46	20113607	29×116
11597903	31×62	20859463	23×69
11836723	23×23	21360324	46×446
12919471	23×92	22287687	46×46
13034696	23×92	23855464	29×58
14115151	46×46	24482399	23×207
Table 6			
Noncyclic groups for which $125 \mid h$			
Group	First odd D	First even D	Total number
5×25	258563	-	11
5×125	1287491	-	33
5×625	258563	-	7
5×50	50783	178004	78
5×250	1287491	2189204	74
25×50	258563	-	2
10×50	309263	702456	243
10×250	2177951	9059636	68
50×50	-	9623444	1
$5 \times 10 \times 40$	18397407	-	1
$2 \times 10 \times 50$	1337479	2340680	236
$2 \times 10 \times 250$	15945095	-	3
$10 \times 10 \times 10$	-	11203620	1
$2 \times 2 \times 10 \times 50$	4798335	10865256	55
Table 7			
Noncyclic groups for which 343\|h			
Group	First odd D	First even D	Total number
7×49	480059	-	13
7×343	4603007	-	4
7×98	1984715	890984	55
14×98	2249295	3617480	73
$2 \times 14 \times 98$	9599159	13944644	12

Table 8
Groups with $p^{3} \mid h$ with $p \geqslant 11$

D	Group	D	Group
7948999	11×121	19461503	11×242
9055019	11×121	24557096	11×121
9670583	11×121	14127343	13×169
12139691	11×121	17803439	19×361
19380719	11×363		

Table 9
Groups with high powers of 2 in two cyclic factors

Disc	Group	Disc	Group
6342959	16×256	21025623	32×64
12993671	32×128	22128095	64×64
13263095	32×192	22209799	16×256
14060036	32×64	22947695	16×256
16834223	16×256	23144495	32×192
17317119	16×256	23429156	32×64
18961895	16×256	24475919	32×256

One question which occasionally arises is that of which groups appear as class groups of quadratic fields. Although an exhaustive search did not seem worthwhile, we did consider the groups of odd order (which correspond to prime discriminants) of order less than 1000 . Of these, the only groups of rank two which did not appear were $C(p) \times C(p)$ for $p=11,19,29$, and 31 , and $C(25) \times C(25)$. The only groups of rank three which did occur were $C(3) \times C(3) \times C(33), C(3) \times C(3) \times C(69)$, $C(3) \times C(3) \times C(99)$, and $C(3) \times C(3) \times C(105)$.

We present in Table 9 the groups for which the 2-Sylow subgroup (of the subgroup of squares) had order at least 512 and the first cyclic factor was of order at least 8. And finally, in Table 10, we present all class groups which were noncyclic in two different p-Sylow subgroups for odd primes p.

It is to be noted that the frequency of noncyclic 3-Sylow and 5-Sylow subgroups (1.14% and 0.18%, respectively, from Table 2) are not substantially different from the heuristically conjectured frequencies of Cohen and Lenstra [6], which are 1.167% and 0.158%, respectively, for subgroups $C(3) \times C(3)$ and $C(5) \times C(5)$, to which must be added percentages of lower order for more complex subgroups.

Remark. In our computation, we called a class group "noncyclic" in the 2-Sylow subgroup if the 2-Sylow subgroup of the subgroup of squares was noncyclic. In all our tables, however, when groups are explicitly presented, the group that is presented is the full class group, not just the subgroup of squares.

Table 10
Groups noncyclic in two odd-Sylow subgroups

Group	1st even D	1st odd D	Group	1st even D	1 st odd D
15×15	-	119191	21×84	24924488	-
15×30	-	3358427	21×126	-	4620215
15×45	-	2403659	21×147	-	24565367
15×60	7773124	3072743	21×168	24594884	-
15×75	-	10064191	21×189	-	20532511
15×90	11044456	7153015	21×231	-	24294143
15×105	-	3150391	21×378	-	21657191
15×120	4587656	7932539	30×30	2766392	2075343
15×135	-	12057919	30×60	6006356	4425351
15×150	11358104	21307739	30×90	11912984	6567311
15×165	-	10181471	30×120	24481784	17414135
15×180	-	5046527	30×150	-	9763511
15×210	-	18016831	30×180	-	16911191
15×225	-	8396639	30×210	-	23996759
15×240	-	8196191	33×33	-	22479739
15×270	-	14348903	33×66	22297448	
15×285	-	9609071	33×99	-	14898623
15×300	-	13017119	35×35	-	19399067
15×360	-	19260095	42×42	16053944	7192015
15×450	-	23224151	70×70	-	21428391
15×480	-	17896199	126×126	-	8209319
15×525	-	23906711	$2 \times 30 \times 30$	11905176	5486327
21×21	-	8847427	$2 \times 30 \times 60$	21140216	7814015
21×42	16574248	6481447	$2 \times 30 \times 90$	-	17535791
21×63	-	3561799	$2 \times 42 \times 42$	-	19701647

4. Note. The data which form the output of the group computation currently exist online on the ' omputer Science Department's VAX computer. The author is willing to respond to limited requests from interested parties, or to provide copies of the data if supplied with a magnetic tape.

Computer Science Department

Louisiana State University
Baton Rouge, Louisiana 70803

1. Joseph Blass \& Ray Steiner, "On the equation $y^{2}+k=x^{7}$," Utilitas Math., v. 13, 1978, pp. 293-297.
2. Duncan A. Buell, "Class groups of quadratic fields," Math. Comp., v. 30, 1976, pp. 610-623.
3. Duncan A. Buell, "Small class numbers and extreme values of L-functions of quadratic fields," Math. Comp., v. 31, 1977, pp. 786-796.
4. Duncan A. Buell, H. C. Williams \& Kenneth S. Williams, "On the imaginary bicyclic biquadratic fields of class-number 2," Math. Comp., v. 31, 1977, pp. 1034-1042.
5. Duncan A. Buell, "The expectation of success using a Monte Carlo factoring method-some statistics on quadratic class numbers," Math. Comp., v. 43, 1984, pp. 313-327.
6. H. Cohen \& H. W. Lenstra, Jr., "Heuristics on class groups of number fields," in Number Theory (H. Jager, ed.), Lecture Notes in Math., vol. 1068. Springer-Verlag, Berlin, 1984, pp. 33-62.
7. Franz-Peter Heider \& Bodo Schmithals, "Zur Kapitulation der Idealklassen in unverzweigten primzyklischen Erweiterungen," J. Reine Angew. Math., v. 336, 1983, pp. 1-25.
8. C. P. Schnorr \& H. W. Lenstra, Jr., "A Monte Carlo factoring algorithm with linear storage," Math. Comp., v. 43, 1984, pp. 289-312.
9. R. J. Schoof, "Class groups of complex quadratic fields," Math. Comp., v. 41, 1983, pp. 295-302.
10. Daniel Shanks, Class Number, A Theory of Factorization and Genera, Proc. Sympos. Pure Math., vol. 20, Amer. Math. Soc., Providence, R.I., 1969, pp. 415-440.

[^0]: Received August 1, 1984; revised September 18, 1984 and August 8, 1985.
 1980 Mathematics Subject Classification. Primary 10-04, 12A25, 10C07.
 *Research supported in part by NSF grant DCR-8311580.
 **VAX is a trademark of Digital Equipment Corporation, UNIX is a trademark of Bell Laboratories.

