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Class Number Computations of Real Abelian
Number Fields

By F. J. van der Linden

Abstract. In this paper we describe the calculation of the class numbers of most real abelian
number fields of conductor « 200. The technique is due to J. M. Masley and makes use of
discriminant bounds of A. M. Odlyzko. In several cases we have to assume the generalized
Riemann hypothesis.

Introduction. It is well known that the class number h of an abelian number field
can be written as h = h+ ■ h~, where h+ is the class number of the maximal real
subfield K+ of K and A" is an integer. We can determine the relative class number h~
in a straightforward way, using the complex analytic class number formula (see [7,
Kap. Ill], or [9, Chapter 3, Section 3]). For the full cyclotomic fields Q(f„), with
4>(n) < 256, and their subfields, one can deduce h~ from the tables of G. Schrutka
von Rechtenstamm [15]; here £„ denotes a primitive nth root of unity, and <j> is the
Euler function.

For the class number factor h+ , the complex analytic class number formula is less
useful, since it requires that the units of K+ be known. Alternative techniques have
been developed by J. M. Masley [ 13], who computed the class number of almost all
real cyclic number fields of conductor =s 100; here the conductor of K is the least /
for which/CCQj^).

In this paper we apply Masley's techniques, with a few additions, to determine the
class numbers of a large collection of real abelian fields of conductor « 200; see
Section 1 for a precise statement of our results, some of which assume the
generalized Riemann hypothesis.

An important ingredient of Masley's method is the use of discriminant lower
bounds proved by A. M. Odlyzko [14]. These lead to an upper bound for the class
number of a real abelian number field, provided that its conductor, or more precisely
its root discriminant (see [13, Section 1]), is sufficiently small. It follows that this
method can only be used for a finite number of real abelian number fields. The
existence of infinite class field towers shows that this remains true after any future
improvement of Odlyzko's bounds. In fact, examples of J. Martinet [12] show that
the method will never apply to fields whose root discriminant is larger than five
times the present bound, under assumption of the generalized Riemann hypothesis.

The structure of this paper is as follows. Section 1 contains our results and Section
2 lists the theorems used in the proofs. The proofs themselves are largely suppressed.
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694 F. J. VAN DER LINDEN

Instead we present, in Section 3, a recipe which any reader can use to check our
results for any given conductor. In Section 4 we illustrate this for the conductors
111, 136, 145, 163, 183; the last four of these are the only conductors for which we
found class numbers greater than the genus factors; see Section 1. Finally, in an
appendix we give an extract from unpublished tables of discriminant lower bounds
due to A. M. Odlyzko [14]. We are grateful for his permisssion to reproduce these
tables.

We denote the end of a proof by D.

1. Main Results. Let K be a real abelian number field with class number h(K).
The conductor f(K) of K is the least m for which K C Q(fm), with fm a primitive mth
root of unity. By GRH we denote the generalized Riemann hypothesis for the
zeta-function of the Hilbert class field of Q(s7(jc))-

Theorem 1. Suppose that f(K) = q is a prime power. Then h(K) = I if <¡>(q) < 66.

Theorem 2. Suppose that f(K) = q is a prime power, and assume GRH. Then

h(K) = 4   ifq= 163,
h(K) = 1   for all other Kfor which <j>(q) *£ 162.

In order to state results for fields with a non prime power conductor we need
some definitions. Let G(K) be the genus field of K, i.e., the maximal totally
unramified extension of K which is abelian over Q. It is contained in Q(f/(/0), and it
can be determined as follows. Let G*(K)bc the smallest field containing K which is
a composite of abelian extensions of Q of prime power conductors. Then G(K) =
G*(K) D R; see [13, Section 2]. It is clear that K = G*(K) = G(K) if f(K) is a
prime power. The equality K = G(K) is true for many other fields as well. We write
g(K) = [G(K):K].

By H(K) we denote the Hilbert class field of K, i.e., the maximal totally
unramified abelian extension of K. By class field theory,we have h(K) = [H(K) : K].
Clearly H(K) contains G(K), so h(K) is divisible by the genus factor g(K).

Theorem 3. Suppose that f(K) = f is not a prime power. Then

h(K) = 2-g(K) = 2   forK = Q(t;x36)+,
h(K) = g(K)   for all other Kfor which f<200,<p(f)<12,f¥= 148,/^ 152,
h(K) = g(K)   for f= 165.
Theorem 4. Suppose thatf(K) — fis not a prime power, and assume GRH. Then

h(K) = 2-g(K) = 2 for K = Q(^X36)+,

h(K) = 2-g(K) iff= 145 and {Ï45EK,
h(K) = 4 ■ g(K) = 4 iff= 183an</12|[tf:Q],
h(K)=g(K) for all other K with f *£ 200.

If we do not assume GRH in Theorems 2 and 4, then h(K) is at least divisible by
the value it is claimed to be, and there is a lower bound on the prime powers
occurring in their quotient. This lower bound is found in the course of the proof.

2. Auxiliary Theorems. In this section we state some theorems used in the proofs
of Theorems 1-4.
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Let K be an algebraic number field with [K: Q] < oo. We denote by &(K) its
rings of integers, and by <S(K)* the unit group of &(K). The discriminant of K over
Q is denoted by A^-. The notations h(K) and H(K) have the same meaning as in
Section 1. If L/K is a Galois extension we denote its Galois group by Gal(L/K).

The following theorem provides us with a good upper bound for the class number;
for Tables 1 and 2, see the appendix.

Theorem 5. Let (A, E) be a pair appearing in Table 1, and K a totally real number
field of degree n over Q for which A1^" < A. Then we have

h(K) <E/(nlogA-log AK).

If the zeta-function of H(K) satisfies the generalized Riemann hypothesis, then the
same is true for pairs (A, E) appearing in Table 2.

Usually the best results are not obtained by taking A to be the smallest value such
that .4 >A'¿".

Proof. Tables 1 and 2 are abstracted from tables computed by A. M. Odlyzko [14].
He proved that lower bound hK> A" ■ e~E îot any totally real number field K and
any pair (A, E) from these tables, assuming GRH in case of Table 2. Applying the
bound to H( K ), we find

Ah(K)>Anh(K).e-E

The theorem follows by taking logarithms. □
Let L/K be a cyclic extension of number fields with [L : K] = n. Denote by a a

generator of Gal(L/K). For a prime number p not dividing n, let Cl^L) be the
/7-primary part of the class group of L, and

Clp(L/K)={aEClp(L):a*^=l},

where 0„ is the nth cyclotomic polynomial. It can be shown, using [20, Theorem 1],
that C1*(L/.ty ) consists of all elements of Cl^L) with norm 1 to all intermediate
fields L' + L of L/K.

Theorem 6. Let M/K be an abelian extension of number fields, and p a prime
number not dividing [M : K]. Then we have

Clp(M)^@Clp(L/K),
where the direct sum is over all intermediate fields L of M/K for which L/K is cyclic.

Proof. See Fröhlich [3, Theorem 3.1].    D

Corollary 7. If M, K, andp are as in Theorem 6, then: p \ h(M) <=» 3L/K cyclic
( possibly K = L) with LE M and p\ h(L).    D

Theorem 8 (Rank). Let L/K be a cyclic extension of number fields, and p a prime
number not dividing n = [L: K]. Then #C1*(L/K) is a power of p¡, where f is the
smallest positive integer for which p1 = 1 mod n.

Proof. Let a be as above, and a E Cl*(L/K), a ^= 1. Suppose that ad(a) = a,
where d divides n, d # n. Denote by U the intermediate field of L/K with
[L' : K] = d. Then on the one hand the norm NL/L,(a) equals an/d, and on the
other hand NL/L,(a) = 1. From p\n/d it now follows that a = 1, a contradiction.
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696 F. J. VAN DER LINDEN

This proves that the stabilizer of a in Gal(L/K) is (1), so the orbit of a under
Gal(L/K) contains n elements. This is true for all a ¥= 1, so #Cl*(L/K) = 1 mod n,
and the theorem follows.    D

Theorem 8 is a more precise version of the rank corollary of J. Masley [13, (2.15)].
It is a very useful theorem because for many primes, pf exceeds the class number
bound from Theorem 5.

Theorem 9 (Reflection). Let p be a prime number, and m a positive integer. If
M = l.c.m.(p, m) we have

p\h+(Q{L))^p\h-(Q{^)).

Proof. See Masley [13, (2.22)].    D

Theorem 10. If p is a prime number with p < 125000, then p\ h+(Q(Çp)).

Proof. See Wagstaff [19].    D

Theorem 11. Let L/K be a p-extension, i.e., a Galois extension with Gal(L/K) a
p-group. Let P be a set of (finte or infinite) primes of K and q a prime of K. Suppose
that L/K is unramified outside PL) {q}. If p\h(L), then there exists a cyclic
extension M/K of degree p that is unramified outside P.

Proof. See Masley [ 13, (2.6)].    D
If we take P — 0, we deduce

Corollary 12 (Pushing Down). Let L/K be a p-extension with at most one
ramifying prime. Then p \ h(L) => p \ h(K).    D

Theorem 13 (Pushing Up). Let L/K be an extension of number fields. Then we
have h(K)\ h(L) ■ [L: K\. If no intermediate field M =£ K of L/K is unramified over
K, then h(K)\h(L).

Proof. See Masley [13, (2.3)].    D

Theorem 14. Let L/K be an abelian extension. Suppose that M is a field with
L C M C H(L) for which M/K is an abelian extension. Then for the relative
conductors we have

TM/K ~~ * L/K-

Proof. Immediate from the definition of relative conductors, see for example [8,
IV, Section 7.3], and the fact that the conductor \M/L = 1.    □

For the next two theorems we need a definition. Let K i= Q be a real, abelian
number field of conductor /. One can show that ija = (l2j — t2))/(^,2f — l2f) is a
unit in Q(Çf)+ if (a,2f)=l. The group CK = (-1, A/(ijfl) : (a,2f) = 1) where
N '■ Q(£/)+ -^ K is the relative norm, is called the group of cyclotomic units of K. It is
a subgroup of Q(K)*. We denote by C'K the subgroup of 6(K)* generated by the
group CL, with L ranging over all subfields L ¥= Q of K (notice that different
subfields can have different conductors).

Hasse has proved the following two theorems:

Theorem 15. Let K be a real abelian extension of degree n of Q. Suppose that all
primes that ramify in K/Qfactorize asp ■ 6(K) = p"" in 6(K). Then
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h(K) = lndex[e(K)*:CK]-][^->
p    p

where the product is taken over all primes that ramify in K/Q.

Proof. See Hasse [7, II, Section 11, Satz 3].    D

Theorem 16. Let K/Q be a real cyclic extension of degree n. Then

h(K) = Index[0(A:)*:Q].
Proof. See Hasse [7, II, Section 19, Satz 9].    D
There are more ways to define "cyclotomic units" and to get information about

the class number from them. See, for example, Leopoldt [10], Lang [9] or Sinnott
[17], [18].

3. The Proofs. In this section we describe a method by which Theorems 1,2,3, and
4 can be proved.

Let a positive integer / be given. We wish to determine the class numbers of the
subfields K of Q(Çf)+ .

Step 1. We use Galois theory to get a diagram of all subfields of Q(f/)+, In [7]
one can find diagrams that occur often. We use existing tables to find the class
number of some fields occurring in this diagram. For fields of degree 2 and 3 we use
tables from [1] and [5]. For fields of degree 4 and 6 one can use tables from [6] and
[11]. The latter two tables were not actually used in the proofs because they were not
yet available. For fields with small conductors one uses the tables from [13].

For the remaining fields one determines the genus factors (see Section 1). Now, by
using Theorem 13 (Pushing Up) we can get additional class number factors. Let us
denote by g'(K) the resulting class number factor.

Step 2. We calculate A^ for each K C Q(Çf)+, e.g., by using the conductor
discriminant product formula [8, Theorem 7.3]. We use Theorem 5 to get an
upperbound B(K) for h(K), assuming GRH or not (only Q(f12g)+ is an exceptional
case: see appendix).

In this stage the only possible prime divisors of h(K)/g'(K) are the primes
p < B(K)/g'(K). Let such a prime p be fixed. In the following steps we determine
whetherp divides h(K)/g'(K), and if so, to which power.

Step 3. For most primes p not dividing [AT:Q] we can use Theorems 6 and 8
(Rank) and Corollary 7 to prove that p does not occur in h(K)/g'(K). If p does
divide [ K : Q], it may be possible to apply these theorems to a base field different
from Q. In the case K = Q(^)+ we can, for some primes, use Theorem 9 (Reflec-
tion) in combination with [15], or Theorem 10. for subfields of Q(Çf)+ we can then
apply Theorem 13 (Pushing Up).

Now we are left with only a few primes p. Typically these are primes p dividing
n = [K: Q], or primes p of which a small power is 1 mod n.

Step 4. This step is only applicable if p \ n. First use Corollary 12 (Pushing Down),
when possible. In other cases, select a subfield K0 of K for which K/K0 is a
/7-extension. Using Theorem 11 or other group-theoretic arguments (cf. Section 4),
we can prove that p \ h(K)/g'(K) implies the existence of an abelian extension
M/K0 with prescribed degree and ramification properties; here Theorem 14 is
sometimes useful. Class field theory tells us that the existence of M as above is
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equivalent to the existence of a quotient group of a ray class group of K0 having
certain specified properties; cf. [2, Chapter XI] or [8, Appendix 2, Section 2]. In
many cases it is easy to disprove the existence of this group by calculations with
units of K0; for this it is convenient to choose K0 as small as possible.

In a few cases, cf. Section 4, we find that such an M does exist. Then we may get
an unramified extension of K, and a new class number factor. In this cases we
update g'(K), and we redo the previous steps, when necessary.

Step 5. In this step we use Theorems 15 and 16. This is the only step for which we
use an electronic computer.

Let G = Gal(AyQ), n = [K: Q], and let p be a prime number not dividing 2«.
We know from Theorem 15 or 16 that h(K) = m ■ #(E/C), where E = 8(K)* and
C C E is generated by cyclotomic units. Here m is a constant that is easy to
determine, and that is built up from prime factors of n. Hence p\ m, and p \ h(K) if
and only if p\#(E/C). So to prove that p\h(K), it suffices to prove that
£'nc= c.

To prove this we make use of the known structure of C/Cp as a Z[G]-module. It
follows from standard facts of representation theory of finite groups, cf. [16, III,
Section 2], that C/C as a Z[G]-module is isomorphic to F^G^/F^, • Tr, where
Tr = 2aeC a. This makes it easy to determine the minimal submodules of C/C; cf.
the example in Section 4. Let them be Cx/C,..., Ct/Cp; then t < n — 1. We choose
a, E C, - C for 1 ̂  / *s t.

If E" n C ^ C, then C, C Ep for some i, so a, E Ep. To obtain a contradition
from this, it suffices to find, for each at, a prime q of &(K) for which/? | A/q — 1 and
a(/vq-i)//> s j mo(j q j0 simpiify the computations, we choose q to be a prime lying
over a prime number q that is 1 modl.c.m.(/>,2/). If the test fails for some i and
many choices of q, it is likely that a, is in fact a pth power, and this can then be
verified by other means. This, however, did not occur for the cases needed in the
proofs of Theorems 1,2,3, or 4.

4. Examples. In this section we give some examples of class number computations.
These examples include all fields we found with class number greater than g(K). We
will also consider the fields with conductor 111 to illustrate step 5. For most fields
the computations are analogous to this last example.

In the following we denote fields by capitals K, L, M, N, with an index indicating
the degree of the field over Q. The same letter is used for fields with the same
conductor. A double index will be used if the degree and the conductor do not
uniquely determine the field.

/= 163. There are four real fields with conductor 163:

Q CK3 CK9 EK21 CKSX.

We have K3 = Q(w), where w is a zero of x3 + x2 — 54.x — 169. Let a be a zero of
x2 + (1 + u)x + 4 + «, and let a' be a zero of x2 + (I + u')x + 4 + «', where
u' = 37 + 3w — w2 is a conjugate of co.

Proposition 17. Suppose that GRH holds. If K C Q(f163)+ and K ^ Q, then
h(K) = 4 andH(K) = K(a, a').
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Proof. M. N. Gras [5] gives h(K3) = 4. Since the discriminant of x2 + (1 + u)x
+ 4 + co is a totally positive element, which generates the square of an ideal of norm
85, the extension K3(a)/K must be unramified. The same argument shows that
K3(a')/K3 is unramified. Since K3(a) ^ K3(a') we see that H(K3) = K3(a, a').
Because 163 is prime we have g(K) = 1 for all fields of conductor 163. By Theorem
13 (Pushing Up) we have 41 h(K) for these fields.

We get the following class number bounds using Theorem 5 (assuming GRH):

h(K9)^ 51 for A = 112.863,
h(K21) < 223 for,4 = 147.266,
h(Kix)<3U      for A = 162.826.

We use Theorem 8 (Rank) for 2 and all primes from 5 up to 89, and we use
Theorem 12 (Pushing Down) for 3. So we find h(K) = 4 for all these fields. Because
K(a, a')/Kis unramified we have H(K) = K(a, a').    D

/ = 183. For the following proposition we need some notation. Let L3 be the cubic
field of conductor 61. Then L3 = Q(co), where w is a zero of x3 + x2 — 20x — 9.
Let a be a zero of x2 + cox + co, and a' be a zero of x2 + u'x + co', where co' =
y(12 — 2co — co2) is a conjugate of co.

Proposition 18. Assume GRH. Let Kbea real abelian field of conductor 183. Then
(a)h(K) = g(K) = 1 if[K: Q] G {4,20),
(b) h(K) = 4, H(K) = K(a, a') if[K:Q] E (12,60).

Proof. We have the following diagram (Figure 1) of subfields of Q(f183)+ = K6Q.
Here The K¡ are of conductor 183 and the L, are of conductor 61. Masley [13] gives
/I(L,)=l.Alig(A:,.)arel.

Figure 1

In L3 we have 3 primes p, q, r over 3. We choose them such that
w = 0 mod p,       to' = 1 mod p,
co = 1 mod q,       co' = 1 mod q,
co = 1 mod r,       co' = 0 mod r.

Then L3(a)/L3 ramifies only at q, r, and L3(a')/L3 ramifies only at p, q. Since the
ideals over p, q, and r are ramified in KX2/L6, the extensions Kx2(a, a')/KX2 and
K60(a, a')/K60 are unramified, and 4 divides h(KX2) and h(K60). The class number
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upper bound for K60, assuming GRH, gives h(Kœ) < 10. So h(K60) E {4,8}. We
use Theorem 13 (Pushing Up) for all odd primes to see that each h(K¡) is a 2-power.
If 21 h(K4), then, by using Theorem 11 for KA/Q, we get an extension of Q of
degree 2 in which only 3 ramifies. This is impossible, so h(K4) = 1. Now we use
Theorem 6, with K = K4, to get A(*6o) = **(*«,) • h(K20) ■ h(Kx2). From Theo-
rem 8 with K = K4 we know that h(KX2) is a power of 4 greater than 1, and that
h(K20) and h*(K60) are powers of 16. This leaves only one possibility: h(Kx2) = 4,
h(K20)=l,h(K60) = 4. U

f= 136.
Proposition 19. Let K be a real abelian field of conductor 136, then
(a)h(K) = g(K)ifK^Q($X36)+,

K(jT(b) h(K) = 2 ■ g(K) f 2;2 ) if K = Q(f136)+ .

Proof. We have the following diagram (Figure 2) of subfields of K32 Qtf.36)

Figure 2

The Ki are of conductor 136, the field L16 is of conductor 68, the Mt are of
conductor 17 and N2 = Q(\/2 ) is of conductor 8. A double bar indicates an
unramified extension.

Masley [13] gives h(K) = 1 for the fields with conductor < 136. The table of
Borewicz-Safarevic [1] gives h(K2) = 2. For the remaining fields we have the
following list:

ä:
^4,1

•^4,2

L8,l

^8,2

16.1

16,2

32

h(K)
5
2
6
2
5
3

44

g{K)
2
1
2
1
1
1
1

G(K)
^8.2

•^4,2

K
K
K
K
K

16.2

8,2

16,1

16,2

32
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Using Theorem 8 (Rank) for the odd primes, we see that each h(K¡) is a 2-power.
Consider the extension KX6¿/N2. In this extension only the two primes over 17

ramify. If 21 h(KX62), we can use Theorem 11 to get a quadratic extension of 7V2 in
which the only ramifying prime is a prime p over 17. Class field theory then gives

2|Index[(0(7V)/p)*:0(iV2)*modp],

because h(N2) = 1. But 1 + \/2 E &(N2)* has order 16 mod p, so this index is 1 and
2\ h(Ki62). Now we can use Theorem 13 (Pushing Up) toget/z(AT42) = h(Ki2) = 1,
h(K4J) = h(Ks¡2) = 2.

It is known that K2 has strict class number equal to 4. This means that K42
has a quadratic extension in which precisely the infinite primes ramify:
K42(^-5 — 2^2 ). So also K32(J-5 + 2^/2 )/K32 ramifies precisely at the infinite
primes. Since the same is true for K32(f^Y)/K32, we find that K32(^5 + 2^2 )/K32 is
totally unramified. So H64 = K32(-J5 + 2^2 ) satisfies HM C H = H(K32).

The group A = Gal(H/K32) is isomorphic to the class group of K32, and it is a
module over G = Gal(K32/N2). Let a generate G. Let H' C H be the fixed field of
A"2'', and let H" C H be the fixed field of A"~x. Then H" is the maximal subfield
of H which is abelian over N2, and H' is the maximal subfield of H which is abelian
overK42. HenceH64 C H" EH' EH.

The primes ramifying in H'/K42 are two primes p2, q2 lying over 2 and two
primes p,7, q17 lying over 17. Theorem 14 tells us that f = \H'/Ktl = lg /k • Using
the conductor-discriminant theorem [8, Chapter IV, Section 7.3, Theorem 7.3] we
obtain f = p2q2fj17q17. Class field theory then gives

[H' : K4a] | Index[(Ö(tf4i2)/f )* : 0(*4,2)* mod f].

Using that

(-1,1 +/2,4+/Ï7,3/2 +{Ï7)Ee(K4a)*,

we calculate that this index is < 16. But we know H' D HM, so this index is > 16
and H' = HM. Then also H" = HM, and^"2"1 = A°~x, i.e., (A°'x)°+X =A°'X. But
A°~x is a 2-group, and a has 2-power order, so (A"~x)(a+X) = 1 for some N. We
conclude that ,4o"1 = 1 and H = HM.

If now 2\h(KX6X), then h(KX6X) = 2 by Theorem 13 (Pushing Up). Then
H(KX6 ,)/Q is abelian which is impossible because g(KX6X) =1.    D

/= 145.

Proposition 20. Assume GRH. Let K be a real abelian field of conductor 145. Then
(a) h(K) = g(K)= I if xfl~45 E K,
(b) h(K) = 2 ■ g(K), H(K) = G(K)(<x) if JÏ45 E K,

where a is a zero of X2 + OX - 1, with 6 ~ |(1 + xf5).

Proof. We have the following diagram (Figure 3) of subfields of Q(fU5)+ = K56:
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14,2

Figure 3

The K¡ have conductor  145, the L, have conductor 29 and M2 = Q(\ß) has
conductor 5. Unramified extensions are indicated by a double bar.

Borewicz and Safarevic [1] give h(K2) = 4, h(M2) = h(L2) = 1. Masley [13] gives
h(L¡) = 1. For the other fields we have the following list, using GRH:

K
K
K,

*i
K
K
K
K
K

4,1

4.2

4.3

14,2

28,1

28,2

28,3

56

h(K)
11
11
2
5
5
3
11
11
2
5

g{K)
2
2
1
1
2
1
2
2
1
1

g'{K)
4
4
2
2
4
1
4
4
2
2

G(tf)
*8

*8

K4M,3

k28,3

14,2

56

56

28,3

56

By Theorem 8 (Rank) we find that h(KX42) = 1. By the above table, all other class
numbers are 2-powers, and h(K43) = h(K2S3) = 2.

The extension M2(a)/M2 is only ramified at one prime over 29. The extension
M2(a')/M2 is only ramified at the other prime over 29, where a' is a zero of
X2 + (I — 6)X — 1. Because K43(a) = K43(a'), the extension K43(a)/K43 is un-
ramified, and for all fields K containing K2 we get K(a) C H(K).

Let H = H(KS). The group A = Gal(H/Ks) is isomorphic to the class group of
K%, and it is a module over G = Gal(K%/M2). Let o be a generator of G. We denote
the fixed field of Aa2~x by H' and the fixed field of A°~x by H". Then H" is the
maximal subfield of H which is abelian over M2 and H' is the maximal subfield of H
which is abelian over K43. Hence HX6 = K8(a) C //" C H' E H. The primes ramify-
ing in H'/K43 are two primes p5 and q5 lying over 5 and two primes p29 and q29
lying over 29. By Theorem 14 we get f H'/k43 = ^5^5^29^29-
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Let F C H' be the field corresponding to the inertia group of \)5 in Gal(H'/K43).
Then \F/K4J\ Pst^^» an(^ [H' '■ F] ~ 2- Class field theory gives: [F: AT43]|2 •
Index[(0(A:43)/q5p29q29)* : 0(A:43)*mod q5p29q29], because h(K43) = 2. Using
that (-1, ¿(1 + v£), ¡(5 + v^9 ), ¿(13 + 7v^" + 3v^9 + /Ï45 ) C 0(J:43)*, we find
that this index is odd, so [F: K43] = 2 and [H' : A^43] = 4. But then we have
H' = H" = HX6 and A"~x = A" '. An argument as in the proof of Proposition 19
then shows that ,4o" " = 1. So H = HX6 = Ks(a), and h(Ks) = 2.

Now we can use Theorem 13 (Pushing Up) to find b(K4,) = h(K42) = 4, and
Theorem 8 (Rank) plus Theorem 6 to find h(K2S,) = h(K2i2) = 4 and h(K56) = 2.
□

Proposition 21. Let K be a real abelian field of conductor 111. Then h(K) = 1.

Proof. We have the following diagram (Figure 4) of sub fields of Q(ful)+ = K36:

K36

L18 /KI2
\

L9. /L6 /K4

L3

Figure 4

The /l"¿ are of conductor 111 and the L, are of conductor 37. From the tables of
Masley [13] we see that h(L¡) = 1. Upper bounds for the remaining class numbers
are:

K h(K)<
K4 6
KX2 15
K36 63

Since 2 • 3 • 37 | h~(Q(Çxxx)), we cannot apply Theorem 9 (Reflection) for 2,3, or
37 (presumably a refinement of Theorem 9 can be used for 37); and for the other
primes the tables of Schrutka von Rechtenstamm [15] do not extend far enough.
Using Theorem 8 (Rank) we see that the only possible primes dividing h(K4) are 2
and 5, the only possible primes dividing h(Kx2) are 2,3,5, and 13 and the only
possible primes dividing h(K3b) are 2,3,5,13, and 37. Now we can use Corollary 12
(Pushing Down) to get 3 [ h(KX2) and 3 \ h(K36).

The extension KX2/L3 is only ramified at the prime p over 37 and the prime q over
3. If 2 | h(Kx2), we can use Theorem 11 to show that there is a quadratic extension
M/L3 in which only q ramifies. This must be a tame ramification, so \M,L = q. By
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class field theory this implies 2 | Index[(0(L3)/q)* : 0(L3)* mod q]. But TVq = 27 =
3 mod4, and -1 G 0(L3)*. So this index is odd, and 2\ h(KX2). Now we can use
Theorem  13 (Pushing Up) and Theorem 8 (Rank) to find that 2\h(K4) and
2) *(*«)•

We use step 5 to get 37 [ h(K36) as follows. Let a be the automorphism of Q(f222)
defined by l222 = f222. We denote the restriction of a to K36 again by a. This is a
generator of Gal( K36/Q).

We use Theorem 16. The group C = C'K   is generated as a Z[G]-module by

« = (r-r1)/(r5-r5) and * = («-«-•)/(«'-«-*).
with f = f222 and £ = f74 = f3-

Wehavea^0'^^1""2.
There is a Z[G]-module isomorphism between C/C31 and F37[G]/F37 • Tr, with

Tr = 23l0 a'. Let Ft E Z[G] be defined by

36
Ft= II ("-7")   for/= 2,...,36.

7 = 2

We can calculate /; (mod 37) by a " polynomial"-division Tr/(a — /'). Put

q = CF-C37       (2 «Si «36).

Then the minimal submodules of C/C31 are precisely the modules

CJC31       (2<j<36).

The submodule B of C generated by ß is equal to the group CL for L = L18. Since
A(L) = 1, we know that 0(L)*37 nfi = fi" from Theorem 15. Using that Kg1 D
L* = L*31, we deduce that

(*) £37n(ß-c37) = c37.

To prove that 31\h(K36), we must show that £37 n C, = C37 for 2 < / < 36. If
(i'/37) = 1, then 1 + a181 F4 so C, E B ■ C37, and we can apply (*). If (z/37) = -1,
then 1 - a181 F,, and C, = (<xF') ■ C31. For these / we can show that aF' is not a 37th
power in the following way. Let p be a prime over 223. It is easy to compute
a"' mod p using that, for example, 5 is a primitive 222th root of unity mod 223. Now
we can compute a^mod p. We know that aF' is a 37th power mod p if and only if
a6F> = 1 mod p. It turns out that a6F> s 1 mod p for (i'/37) = -1, 2 < i < 36. This
proves that 37 \ h(K36).

For the primes 5 and 13 we can proceed in an analogous way: for 5 we work with
cyclotomic units in K4, and we reduce modulo a prime lying over 2221; for 13 we
work with cyclotomic units in KX2, reducing modulo a prime lying over 2887.
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Appendix. In this appendix we give an abstract from the tables of Odlyzko [14],
which we use when we compute class number bounds.

Table  1.  Let K be a totally real field.  For the discriminant we then have
Aj- > A"e~E for the following pairs:

A E A E
18.916 5.3334 54.333 26.667
21.512 6.0001 55.335 29.334
24.016 6.6667 56.129 32.001
26.406 7.3334 56.767 34.667
28.668 8.0001 57.286 37.334
32.780 9.3334 57.714 40.001
36.347 10.667 58.070 42.667
39.407 12.001 58.370 45.334
42.018 13.334 58.624 48.001
46.138 16.001 59.028 53.334
49.145 18.667 59.456 61.334
51.371 21.334 59.896 74.667
53.047 24.001 60.704 200.01

Recently Diaz y Diaz [21] published a table of discriminant lower bounds, not
assuming GRH. He computed this table with techniques analogous to those of
Odlyzko. In all cases where we derived upper bounds from Table 1, we can also get
this upper bound or a slightly better one using the tables of Diaz y Diaz, except for
K = Q(fm)+ • In the latter case we derive h(K) =£ 62 from formula (1) of [21].

For the class field H of Q(f)28)+ 01 degree [H : Q] = 32h, we derive from the
paper of Poitou [22] the following formula (not assuming GRH).

191 ,     ^     xi    a     Lx      7f(3) + 4f(2)       bf— log2>Y + log4W+l-^--^

+ 41   î-^-F(logN^)    forall.>0,

where the outer summation is over all primes p of H, and

e-S/4b
F(x)

cosh(x/2)

If we sum only over the primes over 2 and only for 1 < m < 8, we obtain h < 112,
where we use the fact that the prime over 2 splits completely in ///Q(f,28)+ ,
because it is principal. Using Theorem 8 and Corollary 12, we derive h = 1 or
h = 97. If, however, we use the formula of Odlyzko, we could derive h < 37, which
implies h = 1.

License or copyright restrictions may apply to redistribution; see https://www.ams.org/journal-terms-of-use



706 F. J. VAN DER LINDEN

Table 2. Let AT be a totally real field, for which GRH is true for the f-function of
K. Then A¿- > A"e~E for the following pairs:

A                   E A E
29.298 7.8187 84.656 36.044
31.386 8.3664 94.761 48.840
33.511 8.9400 104.174 66.559
35.667 9.5414 112.863 91.287
37.853 10.173 120.834 126.05
40.063 10.837 128.112 175.22
42.295 11.535 133.464 229.13
44.543 12.270 138.423 300.88
46.806 13.045 143.015 396.69
49.079 13.863 147.266 525.04
51.359 14.726 151.201 697.52
55.928 16.603 154.845 929.98
60.490 18.706 158.220 1244.2
65.024 21.066 162.826 1937.1
69.513 23.723 213.626 5.7672 X 1026
73.940 26.719

We can also obtain upper bounds, assuming GRH, by using formula (10) of [23].
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