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Abstract. Let F¡K be a function field in one variable of genus

g having the finite field K as exact field of constants. Suppose p is a

rational prime not dividing the class number of F. In this paper

an upper bound is derived for the degree of a constant extension

E necessary to have p occur as a divisor of the class number of the

field E.

Throughout this paper the term "function field" will mean a function

field in one variable whose exact field of constants is a finite field with q

elements.

Let F/K be a function field. The order of the finite group of divisor classes

of degree zero is the class number hF. For F/K of genus g, we use the

notation of [2] and denote by L(u) the polynomial numerator of the zeta

function of F. It follows from the functional equation of the zeta function

that

L(u) = 1 + axu + a2u2 + ■ ■ ■

+ aau* + qaa_xu'J+1 + ■ ■ ■ + q^xaxu2"-x + q^u2a

and L(u) eZ[u], Z the rational integers. Furthermore the class number

hF=L(l). If £/£ is a constant field extension of degree «, then the poly-

nomial numerator Ln(u) of the zeta function for E is given by

(2)       Ln(u)= 1 + bxu +-h b„u<> + q^b^u^1 + ■ • • + q»°u2<>

where the coefficients b¡ (j=l, • ■ ■ ,g) are, with appropriate sign, the

elementary symmetric functions of the «th powers of the reciprocals of the

roots of (1). The genus of £ is the same as that of F because F is con-

servative.

In this paper we give an upper bound for the degree of a constant

extension £ of £ necessary to have a predetermined prime p occur as a
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divisor of the class number hE. Precisely, we prove

Theorem 1. Let FjK be a function field of genus g andp a rational prime.

Ifpjfhp then p\hE for E a constant extension of F of degree m where

(a) m =f(p2r^-\) if pechar K and f=ovdq (p).
(b) m=prM-l ifp=chax K and L(u)^\ inzju].

Here r(g) denotes the least common multiple of the integers I, 2, • • • ,g.

1. We collect here some results from the theory of equations. For K a

field, we say/(x) e K[x] is a reciprocal polynomial if and only iff(x)=

xdesff(llx) [1, Vol. 1, §32]. Observe that if f(x)=a0+axx+- ■ -+xn and

f(x) is a reciprocal polynomial then an_i^ai, i=\, ■ ■ ■ , [n/2], since

necessarily a0— + l.

Lemma 1. Let K be a finite field, f (x) e K[x] a monk reciprocal poly-

nomial of even degree 2m. Let E be a splitting field for f(x) over K, then

[E:K]\2r(m), where r(m) is the least common multiple of the integers 1, 2,

• • • , m.

Proof.   Suppose

f(x) = x2m + OiX2™-1 +-h amxn +-\-axx+\.

Dividing by xm and combining terms we get

f(x)jxm = (xm + \jxm) + ai(xm-1 + l/x'"-1)

+ ■ ■ ■ + am_i(x + \jx) + am.

Set z=x+\jx and for nonnegative integers s, Ws=xs+l/x$. It is easy to

verify that Ws+i = zWs—Ws_x. Substituting into (3) we get a polynomial

g(z) of degree m. Since z=x+\jx the roots off(x) can be obtained from

the roots of g(z) by solving quadratic polynomials. Since finite fields have

cyclic galois groups we have from elementary field theory that g(z) splits

in an extension of degree at most r(m). For a finite field there is a unique

quadratic extension, so a splitting field E for f(x) has degree dividing

2r(m).

Now let K be arbitrary and/(x) e K[x] with degree/=«. Then if ax,

• • • , a„ are the roots of/(x) in a splitting field the sums of the kth powers

of these roots are elements in K. In fact if we let Sk= 2"=i «i> then the

following relations hold [4, p. 81]:

Sk = Sk_xax - Sk_2a2 + ■ ■ ■ + (-\)k+1kak for k <: n,

Sk = Sk_iax - Sk_2a2 + ■■■ + (-iy+1Sk_n<rn   for k> n

where a¡ (i= !,•••,«) are the elementary symmetric functions of the roots.
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Lemma 2. Let Z denote the rational integers, f(x)eZ[x] a monk

polynomial. Let p be a rational prime andf*(x) eZP[x] the image of f(x)

under the canonical homomorphism of Z[x]-+Zv[x]. Let Sk (S*) denote the

sum of the kth powers of the roots off(x) (f*(x)). Then for all k we have

Sk=S* (p).

Proof. Let at (of), i= 1, • • • , deg/, denote the elementary symmetric

functions of the roots off(x) (f*(x)). Since the coefficients off(x) (f*(xy)

are, with appropriate sign, these elementary symmetric functions we have

o-¿=of (p) for all i by definition. The conclusion then follows from the

relations given in (4).

Corollary 2.1. Iff(x) e Z[x] is a monic polynomial of degree 2m and

p a prime in Z such that f*(x) eZv[x] is a reciprocal polynomial we have

Spmm)_x   = 2«2  (p).

Proof. By Lemma 1 if [E:ZP]=2r(m) then £ contains a splitting field

for/*(x). In £, every ß^O satisfies ßp2"m'~1=l. Therefore by Lemma 2,

5j!r[mLi   =   Spir(m)_x  =  2ffî (fi).

It is clear from (4) that the elementary symmetric functions of the roots

of a polynomial can be expressed in terms of the Sk. In fact [1, Vol. 2,

p. 39] iff(x)=xn+2rl=i<trxn~r then for r=l, • • • , n we have

(5) r\ar= (-l)rdetAr

where Ar is the r x r matrix given by

(  Sx       10

uo Ji a¿

(6) A =

\   Sr    Sr_x

o   ^

o

r- 1

In the work that follows we will need to compute the determinant of

matrices of the form (6) where the entries St have particular values. All of

these are of the general type described in the next result.
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Lemma 3.   Let x, a, k be nonnegative integers with k\x, say x=ky. Let A

be the rxr matrix

A =

xa 0

xa2      xa     2k

0

0

xar

xaT

xar~ (r - \)k

xaT xa

then det A=krar \~Y~X (y-j)

Proof. Simply use elementary column operations and cofactor ex-

pansions; i.e., begin by subtracting a times column 2 from column 1 and

then expand by cofactors of the resulting column 1.

2. Proof of Theorem 1(a). Let p be a prime and F/K a function field of

genus g. Since constant extensions are essentially unique, we first make the

constant extension of degree f=oxdq (p). Thus without loss of generality

we assume that F/K is a function field with \K\=q=l (p) and /jachar K.

Let L(u) be the polynomial numerator of the zeta function of F. Because of

our assumptions onp and q and the form (1) of L(u) we see that L*(u) e

Zj,[u] is a reciprocal polynomial of degree 2g. Hence from Corollary 2.1

we have, for Sn denoting the sums of the nth powers of the reciprocals of

the roots of L(u),

Ski9tru>_x) =. 2g (p),       k e Z+.

Let m=p2Hg)—1. The coefficients of Lm(u) can be computed from (5);

namely, r! bT=(-\)r det A{Tm\ where

(7)
Aim) =

"2ra

v. Srm S(r-l)m ' ' "     Smy

Using Skm=2g (p) and Lemma 3 with x=2g, a—k—l, we deduce

(8) br = (-iy^(p).
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Moreover

hE = Lm(l) = \+q™+ 'f (1 + <f«-'>)i,t. + V
¿=i

Substituting from (8) we get

(9) hE = 2 + 22 (-tff*) + (~l)a(2g) 00-

Observing that (-l)i(2f)=(-l)2i'-i(aaai.) we conclude

(10) hE sf (-1)'^) SOI».

3. Proof of Theorem 1(b). Suppose now £/yY is a function field of

genus g, and p a prime with /,=char K. Let £(w) as given by (1) denote the

polynomial numerator of the zeta function of £. Assume that £*(t/)^l in

Zp[u] and set i=max{y'|such that a.,^0 (p)}. Clearly l^t^g. Conse-

quently L*(u) is a polynomial of degree / and therefore splits in the

extension of ZP of degree r(t). As before denoting by 5* the sum of the

«th powers of the reciprocals of the roots of L*(u), we have, as in Corollary

2.1,

(11) Sk{prit)_x) = t (p),       keZ+.

If £is the constant extension of degree m=prit) — l, then to compute hE

we need the coefficients ¿>, (/= 1, • ■ • , g) of Lm(u) as given by (2).

From Lemma 3 with x=t, a=k=l we see

ai,     ¡>< «<-»■(;) «. j-i.■■■.'.
bi = 0(p), j = t+l,---,g.

Then

hE = Lm(l) = 1 + q™ + 'fb^l + q^-») + bg
¿=i

gives, after substitution from (12) and q=0 (p),

(13) hE = l+2(-l)i(t)(pX

i.e., «£ = 2i=o (-O'(<)=0 (/>)• Since ;,>-<.>_ i|^,r<.,>_i we have Theorem

1(b).
Note.   If £(w)^l (p) we can extend the argument to produce a value

«.' such that the constant extension £/£ of degree m' has hE divisible by
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ps, s2:l. From Leitzel [3, Theorem 2], we have if p\hM and T/M is the

constant extension of degree p then hT is divisible by at least p2, since the

/j-rank of hM is larger than one. Thus hE is divisible by ps, 55:1, if E/F is

the constant extension of degree m' = mps~1, where m is the value deter-

mined in the above Theorem 1.

I am indebted to the referee for indicating the following more direct

proof of this extended result: We have L(u)=\~[iix (1 — w¡ü) where the w{

are algebraic integers. Let L" be the splitting field of L(u) over Q. Let P be

a prime of L" dividing p. Then P^Wt for at least one ; (since otherwise

L(u)= 1 (mod P), and thus also (mod /?)). Let L' = Q(wi) and P' the prime

of L' divisible by P. Then e'f'^2g where e and/' are ramification index

and residue class degree ofP' over Q. Also, the order of the multiplicative

group of the residue class ring of the integers in L' modulo />'e'(»-D+i is

»!=(//-l)/>«y<s-». Thus n-r=l (mod />'«'<»-i>+i) and so /¡£ = Lm(l)=0

(mod />'«'<*-i>+i). But then, hK = 0 (modps). Arguments similar to those of

Theorem 1 can be applied to show that m can betakenas/(/?2''<s> —1)/?2"(*_1)

in case (a) (where p\q) and (pHo)— \y^s-1i in case (b) (where p\q).

4. An additional comment, in §3 we discussed the situation where FjK

is a function field of genus g, />=char K, and L*(«)^l in Zp[u]. In this

section we discuss the case L*(u)=\ in Zv[u].

Let F/./v be a function field of genus g and p a prime. Suppose L(u), the

polynomial numerator of the zeta function of Fas given by (1), satisfies

the condition

(14) aisO(p),       ,= 1, •••,£.

Then L*(u)=l+qgu2" in Zp[u] if />5¿char AT and £*(«) = 1 in Zp[u] if p=

char AT. For a function field satisfying the condition (14) we give an

explicit congruence relation for the class number hK of any constant

extension E/F. This is contained in

Theorem 2. Let F/K be a function field of genus g and p a prime.

Suppose L*(u)= 1 +qgu2g in Zp[u] and E/F is a constant extension of degree

m. Then ifd=gcd(m, 2g) we have

(15) hE = [l - (-i)»/y»/<«]«' (p).

Proof. Let S„ again denote the sum of the nth powers of the reciprocals

of the roots of L(u). From our assumption on L(u) and the relations of (4)

we deduce

Sn=0(p) if 2g\n,

S„=(-lf2gqk'(p)    ifn = 2gk.

To compute hK for EjF a constant extension of degree m it is necessary

to determine the coefficients of Lm(u). These all require the computation of
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the determinant of a matrix of the type (7). Because of the relations (16),

nonzero entries occur only wheny"«. = 0 (2g),j=l, • • •, r. If d=gcd(m, 2g)

and m~td, 2g=kd, then the values of j which yield nonzero entries are

precisely Ik for 1 </< [d¡2]. Thus using this observation we can express the

coefficients as

*><* =
(-D:

21*—i (Ik - 1)!

(lk)\    k2k ••■(/- l)/c

(17) x det

k

Skm   2k

S(l-l)J:n

0

0

(/ -  l)fc

(P).

J
Here we have used (16) and cofactor expansions along rows to get the

final form. Now apply Lemma 3 with x=2g=kdanda=(—q°)mld. We have

then
\2lk-l l^l

blk = ' '
l\K- i=0

(18) ld\^(-ir-i(-qTildQ(P)-

{—jf—kX-qTlldU(d-J)(p)

Substituting this information in

hE = Lm(l) = 1 + qm° + 2 bi(l + i"""0) + K

we find, for odd d,
[d/2]

hE=l+q™ + 2bkl(l+qm<s-kl))(p)

i=i

«A, = i + <?- + 2d + «^"-'»x-ir-^-iT"4^) (p)

qm<>-*ix-i)X-qT"d$ = (-irl(j3-/)(-«T(,i

and «i+(i=0 (2) this can be rewritten as

(19) hE m 2 (-l)l(-\((-l)mldqm°ldy (P).

or

Since

-Did
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If d is even a similar argument leads to the same formula. Hence

hE = [1 - (-\)m'Ya'df (pi

Corollary 1.   Ifgcd(m, 2g)=l, then hE=l +qm° (p).

Proof,    (m, 2g)=\ forces d=\ and m=\ (2).

Corollary 2. If 2g\m, then for m=2gt we have hv=

U-(-\yqgi}2g(p).

Corollary 3. 7//? = char K and L(u)=\ in Zp[u] then p\hE for any

constant extension EjF.

Proof.    Clearly hE=\ (p) in this case.
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