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CLASS NUMBERS OF IMAGINARY QUADRATIC FIELDS

MARK WATKINS

Abstract. The classical class number problem of Gauss asks for a classifica-
tion of all imaginary quadratic fields with a given class number N . The first
complete results were for N = 1 by Heegner, Baker, and Stark. After the
work of Goldfeld and Gross-Zagier, the task was a finite decision problem for
any N . Indeed, after Oesterlé handled N = 3, in 1985 Serre wrote, “No doubt
the same method will work for other small class numbers, up to 100, say.”
However, more than ten years later, after doing N = 5, 6, 7, Wagner remarked
that the N = 8 case seemed impregnable. We complete the classification for
all N ≤ 100, an improvement of four powers of 2 (arguably the most difficult
case) over the previous best results. The main theoretical technique is a modi-
fication of the Goldfeld-Oesterlé work, which used an elliptic curve L-function
with an order 3 zero at the central critical point, to instead consider Dirich-
let L-functions with low-height zeros near the real line (though the former is
still required in our proof). This is numerically much superior to the previous
method, which relied on work of Montgomery-Weinberger. Our method is still
quite computer-intensive, but we are able to keep the time needed for the com-
putation down to about seven months. In all cases, we find that there is no
abnormally large “exceptional modulus” of small class number, which agrees
with the prediction of the Generalised Riemann Hypothesis.

1. Introduction

The classical class number problem of Gauss asks for a classification of all imag-
inary quadratic fields with a given class number N . We do not review the complete
history here, but mention that important advances were made by Heilbronn and
Linfoot [15], Siegel [37] following Landau [17], Tatuzawa [43], and Heegner [14], [41]
before Baker [4], [5] and Stark [39], [42] independently and jointly [6] completed
the classification for N = 1 and N = 2. See [12], [31], or [35] for a more com-
plete history, including the vagaries regarding Heegner’s work. Tatuzawa’s work
had shown that the classifications were complete with at most one possible excep-
tion, and the works of Heegner, Baker, and Stark eliminated this possibility when
N was 1 or 2. For any given N , the problem was reduced to a finite computa-
tion by the work of Gross and Zagier [13], using a theorem due to Goldfeld [11].
The work of Oesterlé [30] greatly streamlined Goldfeld’s argument, allowing him to
handle N = 3. The latest results are Arno’s thesis [2] and subsequent work with
Robinson and Wheeler [3] and the work of Wagner [44], which together complete
the classification for all N ≤ 7 and odd N ≤ 23. In this work, we handle all
N ≤ 100. The advance is mainly theoretical, though a long computation (seven
months on desktop computers) is still necessary. Our argument is a modification of
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908 MARK WATKINS

the work of Oesterlé-Goldfeld, working with Dirichlet L-functions with a low-height
zero instead of elliptic curve L-functions with a high-order zero at the critical point.
Through this method, we reduce the amount of computational sieving needed by a
factor of 1000 or more when compared to the bound obtained from previous work
due to Montgomery and Weinberger [29].

Other work in a related direction has been undertaken by Setzer [36] who de-
termined all imaginary quartic abelian number fields with class number one. Ya-
mamura [48] first extended Setzer’s work to all imaginary abelian number fields
and later classified [49] all imaginary non-CM normal octic fields of class number
one. Louboutin and Okazaki [24] have found all non-Galois quartic fields of class
number one and all nonabelian Galois octic fields of type CM with class number
one, and also have classified all quarternion CM-fields with ideal class group an
exponent of two [25]. These last two authors have various other results, the most
recent being a joint work with Lemmermeyer [20] on class number one for some
nonabelian normal CM-fields of degree 24. Louboutin [23] has considered dihe-
dral and dicyclic CM-fields (and extended this later with Park [26]), nonquadratic
imaginary 2-power cyclic fields with class number equal to genus class number [22]
(extending work of Miyada [28]), amongst many other various results. All of these
results head in a different direction than our work, enlarging the degree of the field
instead of the class number. We should also note that the Generalised Riemann
Hypothesis implies that the class number of Q

(√
−d
)

is at least

(
1 + o(1)

)
(π/12eγ)

√
d/ log log d

(see Littlewood [21]), and Paley [32] has shown that this is best possible except for
a factor of two.

Let us outline this paper. In Section 2 we review the background material for
binary quadratic forms, Dedekind zeta functions, etc. In Section 3 we describe how
the method of Arno et al. and Wagner works and indicate how our argument shall
differ. In Section 4 we prove various technical lemmata in preparation for the proof
of a key inequality in Section 5. In Section 5 we prove our key inequality, which
is similar in form to that of Montgomery and Weinberger [29], but is numerically
superior due to the fact that we save a logarithm. In Sections 6 and 7 we use the
key inequality of Section 5 to reduce our class number problems to a reasonable
sieving problem. These sections, especially the latter, unfortunately become quite
numeric at times, but we try to make the main ideas clear without getting lost in a
slew of numbers. In Section 8 we describe our sieving process and comment on the
possibilities for extending our method of analysis to handle higher class numbers.
One can see the division of work between the last three sections as a splitting into
large, mid-sized, and small discriminants. The large region is by far the easiest
and is not novel in any respect besides the generation of sufficently many useful
auxiliary moduli. The mid-sized region uses the same method as the large region,
but pays much more attention to the tightness of bounds in order to reduce the
amount of sieving needed in the small region.

This work had its beginnings in the dissertation of the author, in which he han-
dled class numbers up to 16. The author would like to thank his dissertation advisor
Carl Pomerance for support and helpful comments and also Andrew Granville and
Daniel Shiu.
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2. Background material

Here we review the background material for quadratic forms and lay the ground-
work for a resolution of the class number N problem. Although we are most in-
terested in N ≤ 100, the method is general enough to allow attacks on larger N .
We let −d be a fundamental discriminant, d > 4. Recall that this means that d
is congruent to one of 3, 7, 11, 15, 4, 8 modulo 16. Furthermore d is squarefree if
it is odd, and d/4 is squarefree if d is even. Given our specification of imaginary
quadratic fields, the class group of the ring of integers can be realised in the guise
of binary quadratic forms. A form ax2 + bxy + cy2 shall be abbreviated (a, b, c).
We consider the reduced forms of discriminant −d; these are given by

Qd = {(a, b, c) : b2 − 4ac = −d,−a < b ≤ a < c or 0 ≤ b ≤ a = c},

which could be rephrased by saying that (b + i
√
d)/2a (as a point in the upper

half-plane) is in the standard fundamental domain for the action of SL2(Z).
We have that |Qd| = h(−d), the class number of Q(

√
−d). We say that a form

(a, b, c) represents a number r 6= 0 if there exist integers m and n with am2 +
bmn + cn2 = r. We note that since |b| ≤ a ≤ c and b2 − 4ac = −d, it follows
that a ≤

√
d/3 for reduced forms. Mostly we will be concerned with reduced forms

which have a ≤
√
d/4, as the set of these has an additional multiplicative structure.

Note that am2 + bmn+ cn2 is a parabola in the m-coordinate. Its minimum occurs
at m = −bn/2a, and the minimum is dn2/4a, using b2− 4ac = −d. Hence if n 6= 0,
then we have am2 + bmn+ cn2 ≥ d/4a. Thus if a ≤

√
d/4, we see that only when

n = 0 can am2 + bmn+ cn2 represent an integer less than
√
d/4. But, in fact, the

same is true even in the range
√
d/4 ≤ a ≤

√
d/3. We see this as follows: if |n| ≥ 2,

then we are done since am2+bmn+cn2 ≥ d/a ≥
√

3d. On the other hand, if |n| = 1,
then the m-coordinate of the vertex of the parabola is between 0 and ±1, where the
sign is that of bn. At m = 0, it is obvious that am2 + bmn+ cn2 = c ≥ a ≥

√
d/4,

while at m = ±1, we have am2 + bmn+ cn2 = a−|b|+ c ≥ c ≥
√
d/4. In fact, since

c ≥ a, this shows that a is the smallest integer represented by the form. Hence we
have the following:

Lemma 1. Let am2 + bmn + cn2 be a reduced binary quadratic form of discrim-
inant −d = b2 − 4ac < 0. Then a is the smallest integer represented by the form.
Furthermore, no integer less than

√
d/4 has a representation with n 6= 0.

The number a is called the minimum of the form. It shall play an important role
in what follows. The principal form is the unique reduced form which represents 1.
When d is even, the principal form is x2 + d

4y
2, while if d is odd, it is given by

x2 + xy+ d+1
4 y2. We define Md to be the multi-set of minima of the reduced forms

for the fundamental discriminant −d. It follows directly from the definition of Qd
that if a 6= c, a 6= b, and b 6= 0, then there is an inequivalent “conjugate” form to
(a, b, c) given by (a,−b, c). In fact, this conjugate form (a,−b, c) is the inverse of
(a, b, c) in the class group. Thus, in this case, a appears in Md more than once. If
we have a = c, a = b, or b = 0, then the form (a, b, c) is its own inverse.

The Dedekind zeta function ζ−d(s) of Q(
√
−d) is the product of ζ(s) and

L(s, χ−d). Thus, it has a natural Euler product. However, if we write ζ−d(s)
as a Dirichlet series

∑
l cl/l

s, then from the work of Dedekind (inherent already in
Dirichlet) we know that cl is the number of times that l is represented by members
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of Qd. Thus we can write the Dedekind zeta function as a sum over the reduced
forms:

2ζ(s)L(s, χ−d) =
∑

(a,b,c)∈Qd

∑∑
(m,n) 6=(0,0)

(am2 + bmn+ cn2)−s.

Here the factor of two simply accounts for the fact that am2+bmn+cn2 is unchanged
if we negate both m and n, and we wish to avoid double-counting. The individual
double sums are known as Epstein zeta functions. We define

ZQ(s) =
1
2

∑∑
(m,n) 6=(0,0)

(am2 + bmn+ cn2)−s,

for a reduced form Q = (a, b, c). It follows from [7] or [34] that ZQ(s) extends to
a meromorphic function, having only a simple pole at s = 1, where the residue is
π/
√
d. Furthermore, we have that (

√
d/2π)sZQ(s)Γ(s) is invariant under the map

s 7→ 1− s. Also, if we divide ZQ(s) by ζ(2s), this simply serves to remove terms in
the double sum with gcd(m,n) > 1:

Lemma 2. Let Q = (a, b, c) be a binary quadratic form of discriminant −d =
b2 − 4ac < 0. Then we have

(1)
ZQ(s)
ζ(2s)

=
1
2

∑∑
m∈Z n∈Z
gcd(m,n)=1

(am2 + bmn+ cn2)−s.

Proof. This is equivalent to showing that∑∑
(m,n) 6=(0,0)

(am2 + bmn+ cn2)−s = ζ(2s)
∑∑
m∈Z n∈Z
gcd(m,n)=1

(am2 + bmn+ cn2)−s.

We consider the contribution to the l−s term. On the left-hand side, this is the
number of (m,n) pairs with l = am2+bmn+cn2. Let y(k) be the number of coprime
(m,n) pairs with k = am2 + bmn+ cn2. Then the right-hand side contribution to
the l−s term is

∑
j2|l y(l/j2). Now each way of writing l/j2 as am2 + bmn + cn2

lifts to a unique way of writing l as a(jm)2 + b(jm)(jn) + c(jn)2, and vice versa
with gcd(m,n) = j. Hence the l−s terms on each side are equal. This shows the
lemma. �

Call a representation am2 + bmn + cn2 = r of r primitive if gcd(m,n) = 1,
and let 2R(r) be the number of primitive representations of r by reduced forms of
discriminant −d. Summing (1) over all the reduced forms, we get that

ζ(s)L(s, χ−d)
ζ(2s)

=
∞∑
r=1

R(r)
rs

.

The left-hand side of this is given by the Euler product
∏
p

1 + p−s

1− (−d|p)p−s , so by

expanding we see that R(r) =
∏
p|r
[
1 + (−d|p)]

∏
p2|r(−d|p). We define the arith-

metic function R̃(r) to be the number of times that r appears in the multi-set of
minima Md, and we write R?(r) = R(r) − R̃(r), so that R?(r) is the number of
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CLASS NUMBERS OF IMAGINARY QUADRATIC FIELDS 911

primitive nonminimum representations of r. We again sum (1) over the reduced
forms, and then break off the terms with n = 0:

2
ζ(s)L(s, χ−d)

ζ(2s)
=

∑
(a,b,c)∈Qd

∑∑
m∈Z n∈Z
gcd(m,n)=1

(am2 + bmn+ cn2)−s

=
∑

(a,b,c)

[
2
as

+
∑∑

gcd(m,n)=1
n6=0

(am2 + bmn+ cn2)−s
]

= 2
∑

(a,b,c)

[
1
as

+
∑∑
m∈Z n>0
gcd(m,n)=1

(am2 + bmn+ cn2)−s
]
.

By Lemma 1, each member of the last double sum has am2 + bmn+ cn2 ≥
√
d/4

(note that we are assuming that d > 4, so that
√
d/4 is nonintegral; thus we can

safely use either strict or nonstrict inequality in statements such as these). Thus
any representation of a number r ≤

√
d/4 must have n = 0, and hence r must be

the minimum of this form. Hence we see that for r ≤
√
d/4, we have

(2) R̃(r) = R(r) =
∏
p|r

[
1 + (−d|p)

]∏
p2|r

(−d|p).

This equation is very important in that it says the counting function for minima
is multiplicative if the product of the minima is less than

√
d/4; in other words

R?(r) = 0 for r ≤
√
d/4. For instance, if we have 2, 5, 5 ∈ Md and

√
d/4 > 10,

then we know that 10 appears twice in Md. We define three types of prime minima.
The Type I primes are those for which p|d, with p ≤

√
d/3 if d is odd, and with

p ≤
√
d/4 if d is even. In the odd d case, we have that

(
p, p, (p + d/p)/4

)
is a

reduced form, and if d is even, then (p, 0, d/4p) is a reduced form (except for p = 2,
when the reduced form is (2, 2, (d+ 4)/8)). Primes of this type appear once in the
multi-set of minima. The Type II primes are the primes p ≤

√
d/3 with χ(p) = +1

for which (p, b, c) is a reduced form of discriminant −d for some b and c; if p ≤
√
d/4

and χ(p) = +1, we know that such b and c exist. Such a p will appear twice in
the multi-set of minima in the general case, but only once if p = c, which we shall
distinguish by calling it a Type IIb prime; noting that these are at least

√
d/4, they

will cause only a minor concern. From the above display we have the following:

Lemma 3. Suppose that R appears r times in the multi-set Md and that S appears
s times. If gcd(R,S) = 1 and RS ≤

√
d/4, then RS appears rs times in Md.

Furthermore, if P is a Type II prime and P l ≤
√
d/4 for some l ≥ 1, then P l

appears twice in Md.

Note that the number of minima (i.e.,
∣∣Md

∣∣) is exactly equal to h(−d). This
follows since the number of reduced forms (i.e.,

∣∣Qd∣∣) is equal to h(−d), and minima
and forms are in an obvious one-to-one correspondence. From Gauss’s theory of
genera [10], [8], we know that 2ω(d)−1 divides h(−d) where ω(d) is the number of
distinct prime factors of d, or more accurately, G|h where G is the number of genera
(which is a power of 2). We can calculate that log2G = G1 +G2−1 where G1 is the
number of Type I primes, and G2 is equal to the number of primes for which p|d,
requiring p ≥

√
d/3 if d is odd, and p ≥

√
d/4 is d is even. It will also be useful to
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912 MARK WATKINS

know that any composite minimum can be written as the product of two minima
both of which are each less than

√
d/4.

3. Previous methods and how our method compares

We now describe the general outline of our attack on the class number N problem
for N ≤ 100. Using a result of Oesterlé [30] and the theory of genera due to Gauss
[10], it is easy to conclude that if h(−d) ≤ 100, then d ≤ e298368000. For the range
2162 ≤ d ≤ e298368000, we shall use a fairly mechanical method involving a variant
of the Goldfeld-Oesterlé method and low-height zeros of various L-functions (see
Table 1 at the end of this section). This dates back as far as Stark’s early work on
class number one [38]. We shall use a similar method for 252 ≤ d ≤ 2162, but here
it is not so mechanical. In fact, the lower part of this range is the most difficult
part. If we were not able to go down as far as 252, we would need to sieve more
numbers with our computational sieve. This is the main obstacle in doing the class
number N problem. (In reality, we sieve slightly further for some d’s of various
specific forms.) Due to our reduction of this sieving bound to 252, we are able to
handle the remaining range by a computational sieve in a reasonable amount of
time. Using previous methods, it had appeared that the counterpart to our bound
of 252 would be more like 262 or higher.

Our adaption of the Goldfeld-Oesterlé method gives a result that is similar in
form to a formula of Montgomery and Weinberger [29], which was used by previous
authors in attempts to reduce the sieving bound above. We now describe their result
and indicate how ours will differ. The details of the derivation of the equation below
can be found in [40], [29] or [34]; the main idea is to decompose the Dedekind zeta
function as a sum of Epstein zeta functions and then expand each into a Fourier
series and swap the order of summation. We state the result. Let χk(·) = (k|·) be
a real primitive Dirichlet character modulo |k| with gcd(k, d) = 1. Then we have(

|k|
√
d

2π

)s−1/2

Γ(s)L(s, χk)L(s, χ−kd) = T̃k,d(s) + T̃k,d(1 − s) + Ũk,d(s)

where

T̃k,d(s) =
(
|k|
√
d

2π

)s−1/2

Γ(s)ζ(2s)Pk(s)Ã(s),

Pl(s) =
∏
p|l

(1− 1/p2s),

and

Ã(s) =
∑

(a,b,c)∈Qd

χk(a)
as

,

while Ũk,d(s) is an error term given by

Ũk,d(s) =
4
√
π

|k|
∑

(a,b,c)∈Qd

1√
a

∞∑
n=1

Ks−1/2

(
πn
√
d

a|k|

)
ns−1/2

×
∑
y|n

Re

[ |k|∑
j=1

χk(aj2 + bjy + cy2) exp
(
i
nπ

|k|

(2j
y

+
b

a

))]
,
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where Kν(z) is the standard K-Bessel function given by the formula Kν(z) =∫∞
0 e−z cosh t cosh νt dt for any ν, z ∈ C with | arg z| < π/2 (see, e.g., [46]).

Some manageable upper bounds on
∣∣Ũk,d(s)∣∣ have been found. For Re s = 1/2,

we have

(3)
∣∣Ũk,d(s)∣∣ ≤ Vk ∑

(a,b,c)∈Qd

√
a

d

where Vk is a number depending only on k; it can be taken to be (see [44])

(4) Vk = 8

√
|k|
π

(
1 + log

(
1 +

2|k|
π
√

3

))∏
p|k

(
2 +

3
p3/2

)
.

Our result is of the form (here g = gcd(d, k); we require k to be odd to ease
problems with powers of 2)

(5)
(
|k|
√
d

2πg

)s−1/2

Γ(s)L(s, χk)L(s, χ−kd/g2) = Tk,d(s) + Tk,d(1− s) + Uk,d(s),

where Tk,d(s) = Γ(s)ζ(2s)Pk/g(s)A(s)
(
|k|
√
d/2πg

)s−1/2 and A(s) is an admissible
Dirichlet series. We define this term. Recall our definition of R?(n) as (half) the
number of primitive nonminimum representions of n, so that

∞∑
n=1

R?(n)
ns

=
ζ(s)L(s, χ−d)

ζ(2s)
−
∑
a∈Md

1
as
.

Define

(6) Gp(s) =
(

1 +
(−kd/g2|p)

ps

)
if p|kp|d

and

Gp(s) =
1 + χk(p)/ps

1− (−k2d|p)/ps otherwise,

and write G(s) =
∑
n g(n)/ns. Then A(s) =

∑
n a(n)/ns is admissible if

|g(n) − a(n)| ≤ R?(n) for all n. Indeed, it will be shown that the above Ã(s)
is admissible, as are modifications of various truncations of the G(s)-Euler-product
(see Lemma 8). These are the main types of admissible A(s) we use. Our error
term Uk,d(s) can be given explicitly, but it is more useful just to give bounds on it,
which we describe now.

For a given (a, b, c) ∈ Qd, we have two different bounds on its contribution
to Uk,d(s), a generic bound V Gk,d and a specific bound V Sk,d(a). As the notation
indicates, the former does not depend on a, while the latter does. From this, our
bound for |Uk,d(s)| when s is on the line Re s = 1/2 can be written in the form
UBk,d = Wk,d +

∑
a∈Qd min

(
V Gk,d, V

S
k,d(a)

)
(we actually only prove a result like this

when s is a zero of L(s, χk), but it can be extended to the entire half-line). The
generic bound V Gk,d is basically given by 2

√
2π|k|/d1/4. The specific bound V Sk,d(a)

is more complicated; suffice it to say that it plays the role of the
√
a/d in (3) above,

making the small minima have a lesser contribution. Finally, Wk,d is a contribution
to our error term which involves A(s) on a vertical line to the left of Re s = 1/2; it is
to control this error term in some difficult situations that we opt for the generality
induced by the notion of admissibility. The main advantage that our generic bound
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914 MARK WATKINS

has over (4) is the loss of a logarithm, which is magnified to the fourth power
when considered with the d1/4. Through the use of Kloosterman sums to effect
extra cancellation, one could improve the Montgomery-Weinberger method so that
it is asymptotically better than our result, but unfortunately this would likely be
unhelpful in our region of interest.

Our idea (following the lead of [29]) will be to choose a modulus k for which
we know a low-height zero 1/2 + iξ0 of L(s, χk) which is on the half-line. Then
we will evaluate both sides of the formula (5) at this point. The left-hand side is
obviously zero. By using the Schwarz Reflection Principle (see, e.g., [18]), we can
see that Tk,d(1/2+iξ0) = Tk,d(1/2− iξ0), and this gives us 2 ReTk,d(s) = −Uk,d(s).
From here, we derive a lower bound for |2 ReTk,d(s)| through consideration of the
argument of Tk,d(s). By showing that it is not close to a multiple of π, we find that
the real part of Tk,d(s) is not small. Under the assumption of h(−d) being small,
we can also show that |Uk,d(s)| is smaller than this lower bound on |2 ReTk,d(s)|,
and thus our assumption of small class number must be incorrect.

We keep the notation that L(1/2 + iξ0, χk) = 0. We rewrite 2 ReTk,d(1/2 + iξ0)
as

2 ReTk,d(1/2 + iξ0)(7)

= 2|Tk,d(1/2 + iξ0)| cos
(
argTk,d(1/2 + iξ0)

)
= 2
∣∣Γ(1/2 + iξ0)ζ(1 + 2iξ0)Pk/g(1/2 + iξ0)A(1/2 + iξ0)

∣∣
× sin

(
arg iTk,d(1/2 + iξ0)

)
= ξ3|A(1/2 + iξ0)| sin

[
ξ1 log d+ ξ2 + argA(1/2 + iξ0)

]
,

where ξ1 = ξ0/2, ξ3 = 2
∣∣Γ(1/2 + iξ0)ζ(1 + 2iξ0)Pk/g(1/2 + iξ0)

∣∣, and

(8) ξ2 = ξ0 log
(
|k|/g
2π

)
+ arg

[
iΓ(1/2 + iξ0)ζ(1 + 2iξ0)Pk/g(1/2 + iξ0)

]
.

In many instances we shall require d and k to be coprime, in which case ξ1, ξ2, and
ξ3 are independent of d, depending only on k. And even if (k, d) 6= 1, there are only
a few possibilities for this gcd. By combining the above equations, we have

(9)
∣∣sin[ξ1 log d+ ξ2 + argA(1/2 + iξ0)

]∣∣ ≤ UBk,d
ξ3|A(1/2 + iξ0)| ,

where UBk,d is an upper bound for
∣∣Uk,d(1/2 + iξ0)

∣∣. Our assumption of small class
number will imply a number of things about these formulae. Firstly, it will say
that argA(1/2 + iξ0) is rather small, and secondly that |A(1/2 + iξ0)| is sufficiently
bounded away from zero. Furthermore, this assumption will allow us to get an
efficacious number for UBk,d. Unless we are in a range of d for which the argument
of the sine function on the left-hand side of (9) is too close to a multiple of π,
this will lead to a contradiction. By using enough different moduli k, it becomes
unlikely that a given d would be problematic for all of them simultaneously. Also,
a requirement of gcd(d, k) = 1 is not a problem if we use sufficiently many mutually
coprime k, since any fundamental discriminant −d with h(−d) ≤ 100 has at most
7 prime factors by the theory of genera. In this way, we are able to exclude large
ranges of d from consideration.

Table 1 is a list of our various auxiliary fundamental discriminants k and their
relevant statistics; these shall be used in our argument later. The latter 17 moduli
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Table 1. Fundamental discriminants k used as auxiliary moduli

k ξ0 = 2ξ1 ξ2 ξ3 g factorisation

−163 0.2029013374988− 0.522143501 8.087 1 prime
−163 0.2029013374988− −0.516764364 8.064 163 prime
−17923 0.0309857994985− 0.221562908 57.0 1 prime
−17923 0.0309857994985− −0.081938880 57.0 17923 prime
−115147 0.0031576171546+ 0.028750244 555 1 113 · 1019
−1599847 0.0041700469535− 0.049107661 418 1 61 · 26227
−1832763 0.0028914317622− 0.037221504 408 1 3 · 610921
−8844707 0.0024525434632− 0.032821985 720 1 349 · 25343
−11023787 0.0035551527795+ 0.048238612 498 1 prime
−12461947 0.0024972078778+ 0.034189907 709 1 prime
−17773807 0.0045817782246− 0.064357208 386 1 prime
−19420619 0.0033117362832+ 0.047060003 531 1 131 · 148249
−21614147 0.0022439934195+ 0.032052511 786 1 271 · 79757
−23311771 0.0048024717046− 0.072181068 314 1 7 · 163 · 20431
−24088843 0.0030464971137+ 0.044586643 556 1 23 · 1047341
−24463627 0.0045379439922− 0.065191189 390 1 prime
−26012207 0.0013588216455− 0.020184789 1204 1 13 · 2000939
−28815295 0.0013731625949− 0.021056330 1032 1 5 · 5763059
−31129723 0.0020616533726− 0.030114015 859 1 prime
−32438927 0.0044118919674+ 0.065817481 387 1 31 · 317 · 3301
−175990483 0.0004752439954+ 0.007926667 3530 1 19 · 1427 · 6491

shall only be used with (k, d) = 1, and so we list the ξi values for only g = 1 in
these cases. In Table 1, ξ0 = 2ξ1 is an approximation to the imaginary part of
a small height zero of L(s, χk), the zeros being computed as per the method of
Weinberger [47]. This consists of taking a truncated approximation of the Dirichlet
series for L(s, χk), weighted by incomplete Γ-integrals. Evaluation at one data point
took around thirty minutes for the larger moduli using a program written in PARI-
GP [33]. The secant method was used to locate the zeros, and usually converged
to the indicated precision within five steps. The +/− in Table 1 indicates whether
the zero is larger/smaller than the 13-digit approximation. The 9-digit accuracy
for ξ2 is very much overkill. The values of ξ2 given in Table 1 are correct to within
one in the last digit given. The values given for ξ3 are lower bounds. The choice
of the larger moduli was motivated by a related computer experiment [45]. There
is no particular significance to them other than that L(s, χk) has a low height zero
and |k| is not overly large. No claim is made that they are the optimal moduli for
this purpose, or for that matter, even what optimal in this sense might mean.

4. Technical reductions

We now turn to some technical lemmata. The first gives an upper bound for
an Epstein zeta function on the 3/2-line, the second and third are a revisiting of
lemmata of Oesterlé [30] involving the comparison of two measures relating lattice-
point counting inside an ellipse to the area of the ellipse, the fourth is a simple
residue calculation for which there seemed no better place, and the fifth gives us a
nice collection of admissible choices for A(s).
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Lemma 4. Let Q = (a, b, c) be a (reduced) binary quadratic form with discriminant

b2 − 4ac = −d < 0. Let ZQ(s) =
1
2

∑∑
(m,n) 6=(0,0)

1
(am2 + bmn+ cn2)s

be the Epstein

zeta-function corresponding to Q. Then on the line Re s = 3/2, we have |ZQ(s)| ≤
13/a3/2.

Proof. Note first that the terms with n = 0 contribute ζ(3)/a3/2 ≤ 1.21/a3/2. For
the other terms, we need only consider n ≥ 1 by symmetry and doing so will remove
the coefficient of 1/2 in the ZQ(s) definition. Note that am2+bmn+cn2 is minimized
at m = −bn/2a, and the minimum is dn2/4a. Since we have |b| ≤ a ≤

√
d/3, we see

that 4ac = b2 + d ≤ 4d/3. Hence d/4a ≥ 3c/4, so that am2 + bmn+ cn2 ≥ 3cn2/4.
Thus for each n ≥ 1, we bound the contribution from each |m| < 2n by

1
(3cn2/4)3/2

≤ (4/3)3/2

a3/2n3
.

Hence the total contribution from these m and n is

(4/3)3/2

a3/2

∞∑
n=1

(4n− 1)
n3

≤ 8.28
a3/2

.

For |m| ≥ 2n, we note that am2 + bmn+ cn2 ≥ am2 + bmn ≥ am2

2
since a ≥ |b|.

Hence the total contribution over m and n here is bounded by
∞∑
n=1

2
∞∑

m=2n

23/2

(am2)3/2
≤ 23/2

a3/2

∞∑
n=1

1
(2n− 1)2

.

Now this last sum is just π2/8, so that this part is bounded by 3.49/a3/2. Adding
up the three parts, we get the result of the lemma. If a is small, we could likely do
better, but this is unnecessary for our purposes. �

The Dirichlet series ZQ(s) converges for Re(s) > 1 and can be analytically
continued to C \ {1}; furthermore, we have that (

√
d/2π)sZQ(s)Γ(s) is invariant

under the map s 7→ 1−s, and the residue at s = 1 is π/
√
d (see [7], [34]). We define

Dirichlet series coefficients b?l by

ZQ(s)− ζ(2s)
as

=
∞∑
l=1

b?l
ls
.

Note that Lemma 1 implies that if l ≤
√
d/4, then b?l = 0. Write δ(x) for the

point-mass measure at x. Let

(10) µ =
∑
l>0

b?l δ(l) and ν = πδ(
√
d/4) +

π√
d

Leb
(
[
√
d/4,∞)

)
,

where Leb
(
[x,∞)

)
is the standard Lebesgue measure restricted to the interval

[x,∞). We have the following lemma.

Lemma 5. With the above notation, for all X ≥ 0 we have∫ X

0

∫ t3

0

∫ t2

0

[∫ t1

0

µ

]
dt1 dt2 dt3 ≤

∫ X

0

∫ t3

0

∫ t2

0

[∫ t1

0

ν

]
dt1 dt2 dt3.
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Note. Oesterlé [30] claims a version of this with only double integrals. He also
has π

2 δ(
√
d/4) as the foremost term of ν. With more effort, the method below

should work for triple integrals and Oesterlé’s ν. Perhaps one could even get a
singly integrated result by using more sophisticated lattice point counting meth-
ods. Unfortunately, the implicit constants in these methods are typically not very
efficacious. The result here suffices for our purposes.

Proof. This is trivial for X ≤
√
d/4, as the left-hand side is 0. We can rewrite the

lemma statement as∫ X

0

∫ t3

0

∫ t2

0

∑
l≤t1

b?l dt1 dt2 dt3

≤
∫ X

√
d/4

∫ t3

√
d/4

∫ t2

√
d/4

[
π +

π√
d

(t1 −
√
d/4)

]
dt1 dt2 dt3.

(11)

We first work with the left-hand side. By a thrice-integrated form of Perron’s
formula (see [16]), we see that the left-hand side is equal to

1
2πi

∫
(2)

[
ZQ(s)− ζ(2s)

as

]
Xs+3 ds

s(s+ 1)(s+ 2)(s+ 3)
.

Here the
∫

(2) notation for the integral indicates the path 2− i∞ to 2 + i∞. Moving
the contour to Re s = −1/2, we get contributions from the poles at s = 1, s = 1/2
and s = 0. The sums of these residues is equal to

π√
d

X4

24
− X7/2

√
a

8
105

+
ZQ(0)

6
X3 − ζ(0)

6
X3.

By the functional equation, we have ZQ(0) = 1/2, while ζ(0) = −1/2. Thus the
last two terms sum to X3/6. We next bound the integral on Re s = −1/2. For the

1
2πi

∫
(−1/2)

ZQ(s)Xs+3 ds

s(s+ 1)(s+ 2)(s+ 3)

term, we use the functional equation to relate ZQ(−1/2 + it) with ZQ(3/2 − it).
We get that the absolute value is bounded by

d

4π2

2
2π

∫ ∞
0

∣∣∣∣ Γ(3/2 + it)
Γ(−1/2− it)

∣∣∣∣∣∣∣∣ X5/2ZBQ (3/2)
(−1/2 + it)(1/2 + it)(3/2 + it)(5/2 + it)

∣∣∣∣ dt,
where ZBQ (3/2) is a bound for ZQ(s) on the line Re s = 3/2. We have

|(−1/2 + it)(1/2 + it)Γ(−1/2− it)| = |(−1/2 + it)(1/2 + it)Γ(−1/2 + it)|
= |Γ(3/2 + it)|,

the first step following by the Schwarz Reflection Principle, while the second step
follows from applying the functional equation sΓ(s) = Γ(s + 1) twice. Hence the
above becomes

d

4π3
X5/2ZBQ (3/2)

∫ ∞
0

dt√
(9/4 + t2)

√
(25/4 + t2)

,

and the integral can be numerically bounded by 4/5 (in fact, the integral is 2
5K(4/5)

≈ .7981211 where K(k) =
∫ 1

0
dt√

1−t2
√

1−k2t2
is the complete elliptic integral of the

first kind; see [1]). Furthermore, from Lemma 2 we have ZBQ (3/2) ≤ 13/a3/2. Hence
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the contribution from this term is less than dX5/2/11a3/2. We move the contour
of the term

−1
2πi

∫
(−1/2)

ζ(2s)
as

Xs+3 ds

s(s+ 1)(s+ 2)(s+ 3)

to Re s = −3/4; then its absolute value is less than

2a3/4X9/4

2π

∫ ∞
0

∣∣∣∣ ζ(−3/2 + 2it)
(−3/4 + it)(1/4 + it)(5/4 + it)(9/4 + it)

∣∣∣∣ dt.
We recall that ζ(s)Γ(s/2)π−s/2 is invariant under the s 7→ 1 − s map, so that this
is equivalent to

2a3/4X9/4

2π

∫ ∞
0

1
π2

∣∣∣∣ Γ(5/4 + it)
Γ(−3/4 + it)

∣∣∣∣∣∣∣∣ ζ(5/2 + 2it)
(−3/4 + it)(1/4 + it)(5/4 + it)(9/4 + it)

∣∣∣∣ dt
≤ ζ(5/2)

π3
a3/4X9/4

∫ ∞
0

∣∣∣∣ 1
(5/4 + it)(9/4 + it)

∣∣∣∣ dt ≤ .04a3/4X9/4.

The last step is by numerical integration, the integral being 4
9K
(

2
√

14
9

)
≈ .916808.

Thus the left-hand side of (11) is less than

π√
d

X4

24
− X7/2

√
a

8
105

+
X3

6
+
dX5/2

11a3/2
+
a3/4X9/4

25
.

The right-hand side of (11) is trivially

π(X −
√
d/4)3

6
+

π√
d

(X −
√
d/4)4

24

=
πX4

24
√
d

+
πX3

12
− 3πX2

√
d

16
+

5πXd
48

− 7πd3/2

384
.

We put a =
√
d/κ and X = λd/a = κλ

√
d. Note that since a <

√
d/3, we need

only consider κ >
√

3. We see that the statement of the lemma holds if we can
show that

−8κ4λ7/2

105
+
κ3λ3

6
+
κ4λ5/2

11
+
κ3/2λ9/4

25
≤ πκ3λ3

12
− 3πκ2λ2

16
+

5πκλ
48
− 7π

384
.

Calculus implies that the above inequality holds for κ >
√

3 and λ ≥ 9/4. Hence
the lemma is shown for X ≥ 9d/4a.

We now consider
√
d/4 ≤ X = ρd/4a where ρ < 9. Here we shall show that

(12)
∑
l≤X

b?l ≤ π +
π√
d

(X −
√
d/4) =

π

2
+
πX√
d

holds, and thus the statement of the lemma immediately follows, as (12) is the
result if we integrate only once in the statement of the lemma instead of four times.
We shall deal with the left-hand side by lattice point counting. For a reduced form
Q = (a, b, c), we wish to count the points with am2 + bmn + cn2 ≤ X , but we
ignore the n = 0 terms since these do not contribute to b?l . Furthermore we only
count terms with positive n, as the formula for ZQ(s) has a factor of 1/2 to prevent
double-counting.
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Now for n ≥ 1, we wish to count the number of integers m for which we have
am2 + bmn+ cn2 ≤ X = ρd/4a. By completing the square, this inequality is the
same as

a

(
m2 +

bmn

a
+
b2n2

4a2

)
≤ ρd

4a
− cn2 +

b2n2

4a
or

a

(
m+

bn

2a

)2

≤ ρd

4a
− n2

4a
(4ac− b2) =

d

4a
(ρ− n2).

Thus we see that we need n ≤ √ρ for there to be any m-solutions. Further-
more, when n ≤ √ρ, the number of m-solutions for a given n is bounded by

1 +

√
d

a

√
ρ− n2. Thus the number of lattice points (and hence the left-hand side

of (12)) is bounded by
b√ρc∑
n=1

[
1 +

√
d

a

√
ρ− n2

]
.

We wish to show that this is less than π
2 + πρ

√
d/4a. This is trivial for ρ < 1. We

next claim that this is clear for 1 ≤ ρ < 4. In this range, we have one contributor
to the sum. Since 1 ≤ π/2, we need only show that

√
ρ− 1 ≤ πρ/4, which is easily

verified. Now for 4 ≤ ρ < 9, we see that we wish to establish

2 + (
√
ρ− 1 +

√
ρ− 4)x ≤ π

2
+
π

4
ρx

where x =
√
d/a ≥

√
3. Again this is routine via calculus, the relevant minimum

occuring when x =
√

3 and ρ = 4+φ2 ≈ 4.884 where φ ≈ .94038 satifies the quartic
equation π2φ4 − 4πφ3 + 3π2φ2 − 12πφ + 12 = 0. Hence we have established the
lemma for X < 9d/4a, and thus we have completed the proof. So Lemma 5 is
shown. �

We next prove a couple of lemmata in the spirit of Oesterlé [30]. Our starting
point is the inverse Mellin transform∫

(2)

x−sΓ(s)
ds

2πi
= e−x.

The idea shall be to get a factor of (s − 1/2) into the denominator of the integral
by integrating both sides of the above with respect to x. To this end we define (for
x > 0)

I(x) =
∫

(2)

x−s
Γ(s)

(s− 1/2)
ds

2πi
=

1√
x

∫
(2)

∫ ∞
x

y−s−1/2 dy
Γ(s) ds

2πi

=
1√
x

∫ ∞
x

∫
(2)

y−s−1/2 Γ(s)
ds

2πi
dy

=
1√
x

∫ ∞
x

e−y
√
y
dy,(13)

where the integral switch is justified by a theorem of Fubini (see [19]); the fact that
the integrand is in L1(ds, dy) follows from the exponential decay of the Γ-function
as the imaginary part heads to infinity. Note that I(x) is strictly positive, and in
fact for the kth derivative we have (−1)kI(k)(x) > 0 for all x. Also, as x → ∞
we have |I(k)(x)| �k e

−x/x and as x → 0 we have |I(k)(x)| �k 1/xk+1/2. These
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assertions are all easily established by induction. In the sequel, we shall only need
these facts for 0 ≤ k ≤ 4.

We next turn to an integral transform used by Oesterlé [30]. Let α be a nonneg-
ative measure on R+ = [0,∞), with

(14) α
(
[0, y]

)
� y as y →∞, and α

(
[0, y]

)
� e−1/y as y → 0.

These are not the optimal conditions on α, but they will suffice for our purposes.
We next define the function Ps : t 7→ t−s, and for Re s > 1 note that Ps is integrable
with respect to α. We let α̂(s) =

∫
R+

Psα and define the function Ĩy : t 7→ I(yt).
Finally we define

(15) Eα(y) =
∫

(2)

Γ(s)
(s− 1/2)

y−sα̂(s)
ds

2πi
=
∫

R+

Ĩyα,

where again the validity of the integral switch follows Fubini’s theorem and the
conditions (14). We have the following lemma:

Lemma 6. Suppose that µ and ν are nonnegative measures on [0,∞) satisfying
(14) with ∫ Y

0

∫ t3

0

∫ t2

0

[∫ t1

0

µ

]
dt1 dt2 dt3 ≤

∫ Y

0

∫ t3

0

∫ t2

0

[∫ t1

0

ν

]
dt1 dt2 dt3

for all Y ≥ 0. Then we have Eµ(y) ≤ Eν(y) for all y > 0.

Proof. We define µ1(u) =
∫ u

0 µ, and recursively µl+1(u) =
∫ u

0 µl(t) dt for l ≥ 1. We
then integrate Eµ(y) =

∫
R+

Ĩyµ by parts four times. This gives

Eµ(y) = I(yt)µ1(t)
∣∣∣∞
t=0
−I ′(yt)µ2(t)

∣∣∣∞
t=0

+ I ′′(yt)µ3(t)
∣∣∣∞
t=0
−I ′′′(yt)µ4(t)

∣∣∣∞
t=0

+
∫ ∞

0

I ′′′′(yt)µ4(t) dt.

Here the derivatives are with respect to t. A similar formula holds for Eν(y). The
conditions (14) on µ and ν and the behaviour of the derivatives of I(x) at 0 and
infinity imply that the first four terms are all zero. Hence we need only show that∫ ∞

0

I ′′′′(yt)µ4(t) dt ≤
∫ ∞

0

I ′′′′(yt)ν4(t) dt,

which is obvious since the assumption of the lemma implies that µ4(t) ≤ ν4(t) while
we recall that I ′′′′(yt) is nonnegative. This proves the lemma. �

Note that Lemma 5 verifies the hypothesis of Lemma 6 for the µ and ν we have
defined in (10), with the conditions (14) following from the easily verified fact (e.g.,
using Perron’s formula as in Lemma 5) that

∑
l≤Y b

?
l ∼ πY/

√
d as Y → ∞. Thus

we have

Eµ(y) =
∫

(2)

Γ(s)
(s− 1/2)

y−sµ̂(s)
ds

2πi
≤ Eν(y) =

∫
(2)

Γ(s)
(s− 1/2)

y−sν̂(s)
ds

2πi

where (for a given form Q)

µ̂(s) = ZQ(s)− ζ(2s)
as

and ν̂(s) =
π

2
2s− 1
s− 1

2s

ds/2
.
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Lemma 7. Let ξ ≥ 0 and x > 0. Then∫
(2)

xsΓ(s)
(s− 1/2)

(s− 1/2)2 + ξ2

ds

2πi
=
∫ ∞

1/x

e−t

t

√
xt cos(ξ log xt) dt.

Proof. This is probably just an exercise, but there is a delicacy, as blindly unraveling
the Γ-function in the left-hand-side followed by a switch of integrals seems not to
be valid. Call the left-hand side F (x, ξ), and take its derivative with respect to ξ.
Differentiating under the integral sign is justified as in [19]. This gives

F ′(x, ξ) =
∫

(2)

xsΓ(s)
(s− 1/2)(−2ξ)[
(s− 1/2)2 + ξ2]2

ds

2πi

=
∫ ∞

0

e−t

t

∫
(2)

(xt)s
(s− 1/2)(−2ξ)[
(s− 1/2)2 + ξ2]2

ds

2πi
dt,

as the second step is now justifiable. We now evaluate the inner integral by moving
the contour off to infinity either to the right or left. If xt ≤ 1, we move it to the
right and get 0 for the integral, while if xt ≥ 1, moving the contour all the way to
the left picks up the two poles on the half-line. Thus we have

F ′(x, ξ) = −
∫ ∞

1/x

e−t

t

√
xt log(xt)

(xt)iξ − (xt)−iξ

2i
dt

= −
∫ ∞

1/x

e−t

t

√
xt log(xt) sin(ξ log xt) dt.

Integrating with respect to ξ (again with the integral switch justified) gives the
result up to a constant of integration, which is seen to be zero as in (13). Hence
the lemma is proven. �

We now give a method of constructing admissible choices for A(s). Recall the
definition of an admissible Dirichlet series A(s) given with (6) and that

∞∑
n=1

R(n)
ns

=
ζ(s)L(s, χ−d)

ζ(2s)
,

∑
a∈Md

1
as

=
∞∑
n=1

R̃(n)
ns

,

and
R?(n) = R(n)− R̃(n).

Lemma 8. Let −d and k be fundamental discriminants with g = gcd(k, d) odd.
Let P be a set of primes, P? the positive integers which have all of their prime
factors in P, and Q the sub-multi-set of Md consisting of minima that have no
prime factor which is in P (note that 1 ∈ Q). Define

(16) A(s) =
∏
p∈P

Gp(s) ·
∑
a∈Q

χ?(a)
as

=
∞∑
n=1

a(n)
ns

where χ?(n) is the completely multiplicative function defined by χ?(q) = (−kd/g2|q)
for a prime q with q|g and χ?(q) = (k|q) otherwise. Under these conditions, A(s)
is an admissible Dirichlet series.

Proof. By comparison of Euler products (indeed, this was the reason to define
G(s) as we did) we have ζ(2s)Pk/g(s)G(s) = L(s, χk)L(s, χ−kd/g2). Thus (writing
G(s) =

∑
n g(n)/ns as before) it follows that g(n) = χ?(n)R(n) where R(n) is as
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above. For A(s) to be admissible, we need verify for each n that |g(n) − a(n)| ≤
R?(n). There is a natural division of n’s into two types. The first are the n which
cannot be written as uv with u ∈ P? and v ∈ Q. We have a(n) = 0 in this case
and also that n /∈ Md. The fact that n /∈ Md implies that R?(n) = R(n), whence
the admissibility condition holds for these n. We next consider the n which can
be written as uv in the manner indicated above. We have a(n) = g(u)χ?(v)R̃(v).
Note that g(v) and χ?(v)R̃(v) do not have differing signs, though one or both could
be zero. Thus a(n) and g(u)g(v) do not have differing signs, and the latter is g(n)
since gcd(u, v) = 1. So |g(n) − a(n)| ≤ |g(n)| ≤ R(n). When n ≥

√
d/3, this

gives us admissibility, since we then have R(n) = R?(n). Thus we are left with
the n ≤

√
d/3. When v ≤

√
d/4, we recall that (2) implies R(v) = R̃(v) and thus

χ?(v)R̃(v) = χ?(v)R(v) = g(v). So we have a(n) = g(u)χ?(v)R̃(v) = g(u)g(v) =
g(n), implying the admissibility condition in this subcase. Finally we have the
case where n ≤

√
d/3 and v ≥

√
d/4. Necessarily we must have u = 1 in this

instance. Thus a(n) = χ?(n)R̃(n) and so g(n) − a(n) = χ?(n)R?(n), again giving
the admissibility condition. This shows the lemma. �

Lemma 9. Suppose that A(s) is admissible in the sense of the above. Define
Dirichlet series coefficients from [G(s) −A(s)]ζ(2s)Pk/g(s) =

∑
l h(l)/ls and

ζ(s)L(s, χ−d)−
∑

(a,b,c)∈Qd

ζ(2s)
as

=
∑

(a,b,c)∈Qd

∑
m∈Z

∑
n>0

1
(am2 + bmn+ cn2)s

=
∞∑
l=1

H(l)
ls

.

Then |h(l)| ≤ H(l) for all l.

Proof. We multiply [G(s)−A(s)] by ζ(2s)Pk/g(s) and
∑

r R
?(r)/rs by ζ(2s) to get

h(l) =
∑
p2|l

?
[g(l/p2)− a(l/p2)] and H(l) =

∑
p2|l

R?(l/p2),

where the star in the first sum prohibits p which divide k/g, and the H(l)-equality
holds as in Lemma 2. Taking absolute values and using admissibility implies the
second claim of the lemma. �

5. Proof of the key inequality

We next do the proof of the key inequality (9). Using this inequality, we shall
then eliminate large ranges of d’s from consideration. This lemma is fairly general
and could be used for attacks on larger class numbers.

Lemma 10. Let −d be a fundamental discriminant. Let the ξi’s be defined as in (8)
and G(s) as in (6), and let A(s) be admissible in the sense above. Let χk be a real
primitive character modulo |k| with k odd. Let L(s, χk) have a zero at s = 1/2+ iξ0
(with 0 ≤ ξ0 < 0.21). Let g = gcd(d, k) and suppose that either g = |k| or |k| ≥ πg.
Writing ξ1 = ξ0/2, we then have

(17) ξ3|A(1/2 + iξ0)|
∣∣sin[ξ1 log d+ ξ2 + argA(1/2 + iξ0)]

∣∣ ≤ UBk,d
where

UBk,d = Wk,d +
∑
a∈Qd

min(V Gk,d, V
S
k,d(a)) where V Gk,d =

2
√

2π
d1/4

√
|k|
g
e−πg/|k|
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and

V Sk,d(a) =
2
√

2π
d1/4

√
g

|k|

( ∞∑
n=1

(
1 + 2βn

)
I?
(
πgβn2

|k|

)
+ 2

∞∑
n=1

⌊
n

β

⌋
I?
(
πgγn2

|k|

))

where I?(x) = min
(
e−x/x,

√
π/x

)
, β =

√
d/2a, γ = (1− 1/2β)2/β, and

Wk,d =
∣∣∣∣ 2
2πi

∫
(1/4)

(
|k|
√
d

2πg

)s−1/2 Γ(s)A(s)Pk/g(s)ζ(2s)(s− 1/2)
(s− 1/2 + iξ0)(s− 1/2− iξ0)

ds

∣∣∣∣.
Proof. Since d is fundamental and d < 0, we have (−d| − 1) = −1. This implies
that (k|−1) = −(−kd|−1), so that χk and χ−kd/g2 have different Γ-factors in their
functional equations. So from the functional equation for Dirichlet L-functions, we
have that (

|k|
π

)s/2
Γ
(
s+ 1

2

)
L(s, χk) ·

(
|k|d
πg2

)s/2
Γ
(
s

2

)
L(s, χ−kd/g2)

is invariant under the s 7→ 1 − s map. We recall Legendre’s duplication formula
for Γ(s), namely that 2

√
πΓ(s) = 2sΓ(s/2)Γ

(
(s + 1)/2)

)
. Using this, we see that(

|k|
√
d/2π

)sΓ(s)L(s, χk)L(s, χ−kd/g2) is also invariant under the s 7→ 1 − s map.
From this we can deduce that
(18)

2
2πi

∫
(2)

(
|k|
√
d

2πg

)s−1/2

L(s, χk)L(s, χ−kd/g2)
Γ(s)(s− 1/2) ds

(s− 1/2 + iξ0)(s− 1/2− iξ0)
= 0.

This follows from moving the contour to Re s = 1/2 and using symmetry. Here
the integrand is entire since L(1/2 ± iξ0, χk) = 0. As in Lemma 8, we have
L(s, χk)L(s, χ−kd/g2) = G(s)Pk/g(s)ζ(2s) by comparison of Euler products. We
insert this into (18). Our idea shall be to get a main term by replacing G(s)
by A(s) and then to bound the residual term induced by [G(s) −A(s)]. Hence we
replace G(s) by A(s) and evaluate

2
2πi

∫
(2)

(
|k|
√
d

2πg

)s−1/2

A(s)Pk/g(s)ζ(2s)
Γ(s)(s− 1/2) ds

(s − 1/2 + iξ0)(s− 1/2− iξ0)

via residue theory, moving the line of integration to Re s = 1/4. The residues from
the poles give a contribution(

|k|
√
d

2πg

)iξ0
Γ
(

1
2

+ iξ0

)
A

(
1
2

+ iξ0

)
Pk/g

(
1
2

+ iξ0

)
ζ(1 + 2iξ0)

+
(
|k|
√
d

2πg

)−iξ0
Γ
(

1
2
− iξ0

)
A

(
1
2
− iξ0

)
Pk/g

(
1
2
− iξ0

)
ζ(1 − 2iξ0),(19)

which in the notation of (5) is T (1/2+iξ0)+T (1/2−iξ0). From (7), we see that this
is the left-hand side of (17), while the resulting integral on the 1/4-line becomes
the Wk,d term of the lemma statement.

We now wish to bound the residual term (using R to denote its absolute value)

2
2πi

∫
(2)

(
|k|
√
d

2πg

)s−1/2

[G(s) −A(s)]Pk/g(s)ζ(2s)
Γ(s)(s− 1/2) ds

(s − 1/2 + iξ0)(s− 1/2− iξ0)
.
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If we write [G(s) −A(s)]Pk/g(s)ζ(2s) =
∑
l h(l)/ls, this becomes

2
2πi

∫
(2)

(
|k|
√
d

2πg

)s−1/2 ∞∑
l=1

h(l)
ls

Γ(s)(s− 1/2) ds
(s− 1/2)2 + ξ2

0

=
√

2πg√
|k|d1/4

∞∑
l=1

h(l) · 2
2πi

∫
(2)

(
|k|
√
d

2πgl

)sΓ(s)(s− 1/2) ds
(s− 1/2)2 + ξ2

0

.

The interchange of sum and integral is justified since
∑

l≤Y |c(l)| � Y as Y → ∞
as before. Putting x = |k|

√
d/2πgl and using Lemma 7, we get

R ≤
∣∣∣∣ 2
√

2πg√
|k|d1/4

∞∑
l=1

h(l)
∫ ∞

1/x

e−t

t

√
xt cos(ξ0 log xt) dt

∣∣∣∣
≤ 2

√
2πg√
|k|d1/4

∞∑
l=1

H(l)
∫ ∞

1/x

e−t

t

√
xt dt =

2
√

2πg√
|k|d1/4

∞∑
l=1

H(l)I
(

2πgl
|k|
√
d

)
.

where the H(l) (as in Lemma 9) bound the h(l) in absolute value and I(x) is as
in (13). We next split this sum over forms (a, b, c) ∈ Qd. From the definition of the
H(l) in Lemma 9 we have

R ≤ 2
√

2πg√
|k|d1/4

∑
(a,b,c)∈Qd

∑
m1∈Z

∑
m2>0

I

(
2πg(am2

1 + bm1m2 + cm2
2)

|k|
√
d

)

=
2
√

2πg√
|k|d1/4

∑
(a,b,c)∈Qd

T
(
(a, b, c)

)
.

(20)

We shall bound T
(
(a, b, c)

)
in two ways, obtaining the generic bound V Gk,d and the

specific bound V Sk,d(a).
The specific bound is derived by using lattice-point counting as in Lemma 5.

Writing β =
√
d/4/a, we see (similar to Lemma 4) that the quadratic form am2

1 +
bm1m2 + cm2

2 is given by√
d/4
[
βm2

2 +
1
β

(
m1 +

bm2

2a

)2]
.

For |m1| ≤ βm2, we lower-bound the above simply by βm2
2

√
d/4, and for |m1| ≥

βm2, we use the fact that |b| ≤ a to derive a lower-bound of m2
1

√
d/4 ·

(1− 1/2β)2/β = γm2
1

√
d/4. Hence (since I is decreasing)

T
(
(a, b, c)

)
≤

∞∑
m2=1

(
1 + 2βm2

)
I

(
πgβm2

2

|k|

)
+ 2

∞∑
m2=1

∞∑
m1≥βm2

I

(
πgγm2

1

|k|

)

≤
∞∑

m2=1

(
1 + 2βm2

)
I

(
πgβm2

2

|k|

)
+ 2

∞∑
m1=1

⌊
m1

β

⌋
I

(
πgγm2

1

|k|

)
.(21)

Noting that

I(x) =
1√
x

∫ ∞
x

e−t√
t
dt ≤ e−x

x
and I(x) ≤ 1√

x

∫ ∞
0

e−t√
t
dt =

√
π/x,

we multiply by 2
√

2πg/
√
|k|d1/4 and get the bound V Sk,d(a) in the statement of the

lemma as desired.
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For the generic bound we reinterpret T
(
(a, b, c)

)
in the spirit of (10) and (15) as

Eµ
(
2πg/|k|

√
d
)
, where

µ =
∞∑
l=1

b?l δ(l) where
∞∑
l=1

b?l
ls

= ZQ(s)− ζ(2s)
as

.

Now by Lemmata 5 and 6, we can upper-bound Eµ by Eν where

ν = πδ
(√

d/4
)

+
π√
d

Leb([
√
d/4,∞)).

Note that ν is independent of (a, b, c). We have T
(
(a, b, c)

)
= Eµ

(
2πg/|k|

√
d
)
≤

Eν
(
2πg/|k|

√
d
)
, and again we rewrite this as an integral using (15). Recalling that

ν̂(s) = π
2

2s−1
s−1

2s

ds/2 , we have

T
(
(a, b, c)

)
≤
∫

(2)

Γ(s)
s− 1/2

(
|k|
√
d

2πg

)s
π

2
2s− 1
s− 1

2s

ds/2
ds

2πi

= π

∫
(2)

Γ(s)
s− 1

(
|k|
πg

)s
ds

2πi
=
|k|
g
e−πg/|k|,

(22)

and multiplication by 2
√

2πg/
√
|k|d1/4 gives the V Gk,d term. By combining equations

(18), (19), (20), (21) and (22), we derive the statement of Lemma 9. �

6. Eliminating large discriminants

We shall first get bounds on the distribution of minima assuming the class num-
ber is small, recalling the definition of types of primes preceding Lemma 3.

Lemma 11. Let −d < 4 be a fundamental discriminant, and put D =
√
d/4. Let

m0 be the number of Type I primes less than D1/4 and m1 the number of Type I
primes greater than D1/4. For Type II primes, let n0 be the number of such primes
less than D1/4, n1 the number between D1/4 and D1/2, n2 the number greater
than

√
D (excluding the Type IIb primes), and let n3 be the number of Type IIb

primes. Then we have

h ≥ 1 +m0 +m1 + 2n0 + 2n1 + 2n2 + n3 + 2n0 + 2n1 + 2n0 + 2n0

+
(
m0

2

)
+ 2m0n0 + 2m0n1 + 4

(
n0

2

)
+ 4n0n1 + 4

(
n1

2

)
+ 2m0n0

+ 2 · 4
(
n0

2

)
+ 4n0n1 + 4

(
n0

2

)
+ 2m0n0 + 2 · 4

(
n0

2

)
+
(
m0

3

)
+ 2
(
m0

2

)
n0 + 2

(
m0

2

)
n1 + 4m0

(
n0

2

)
+ 4m0n0n1

+ 8
(
n0

3

)
+ 8
(
n0

2

)
n1 + 2

(
m0

2

)
n0 + 2 · 4m0

(
n0

2

)
+ 3 · 8

(
n0

3

)
+
(
m0

4

)
+ 2n0

(
m0

3

)
+ 4
(
n0

2

)(
m0

2

)
+ 8m0

(
n0

3

)
+ 16

(
n0

4

)
.

Proof. This comes from nothing but the multiplicativity of minima when their
product is less than D (see Lemma 3), the rest being straightforward bookkeeping.
The first line accounts for all possible products of zero or one powers of prime
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minima, while the second and third lines account for possible products of two
powers of minima, etc. This proves the lemma. �

Next we get large ranges of d where the class number cannot be small. We first
note that we can get an upper bound on the possible size of d with h(−d) ≤ 100
by using the result of Oesterlé [30]. By Gauss’s theory of genera, there are at most
7 primes dividing d. Thus Oesterlé’s result implies that if h(−d) ≤ 100, then

log d ≤ (7000)(100)
∏
p≤13

(
1−
b2√pc
p+ 1

)−1

≤ 268800000.

One can do better by using the traces of Frobenius from the elliptic curve used
in Oesterlé’s proof (or by considering the case where gcd(d, 5077) = 1 separately
with a different elliptic curve), but such a gain is not very important. The main
significance of this result is that it gives an upper bound on the size of d. We
shall handle the fundamental discriminants d with 2162 ≤ d ≤ e268800000 by using
Lemma 10. It is really no difficulty to go much higher on the upper range of d
here. The idea is that the condition of Lemma 10 eliminates large periodic ranges
of log d from consideration. Only if the sine term on the left-hand side of (17) is
nearly zero can h possibly be small. If we use many auxiliary moduli k, the sine is
unlikely to be near zero for all of them. Using seventeen moduli k with low height
zeros, we eliminate these possibilities:

Lemma 12. If 2162 ≤ d ≤ exp(268800000), then h(−d) > 100. By the work of
Oesterlé, we need not consider larger d, and thus if h(−d) ≤ 100, we have d ≤ 2162.

Proof. We shall take A(s) =
∏
pGp(s) where the product is over primes of Type I,

II, or IIb. This choice of A(s) is admissible by Lemma 8. We assume that
gcd(d, k) = g = 1 and simply bound the Wk,d term in Lemma 10 by

Wk,d ≤ 2
(

2π
|k|
√
d

)1/4

AUB
∏
p|k

(
1 +

1
p1/2

)

× 2
2π

∫ ∞
0

∣∣∣∣Γ(1/4 + it)ζ(1/2 + 2it)
t2 + 1/16

(ξ2
0 − t2 + 1/16)2 + t2/4

∣∣∣∣ dt
≤ 11

(
2π
|k|
√
d

)1/4

AUB
∏
p|k

(
1 +

1
p1/2

)
,(23)

where AUB is an upper bound for A(s) on the line Re s = 1/4. Here the integral
in the second line of (23) can be bounded in absolute value by 17 (maximized at
ξ0 = 0) using analytic estimates on Γ(s) and ζ(s) to bound the tails. We first turn
to a sublemma involving the size of minima.

Sublemma 12.1. Suppose d ≥ 2162 and h(−d) ≤ 100. Let Re s = 1/2. Then we
have

|A(s)| ≥ .016, AUB ≤ 62, and
∣∣∣∣A′A (s)

∣∣∣∣ ≤ 8.31.

Proof. We shall use the notation D =
√
d/4 throughout the remainder of the paper.

In this case, we have D ≥ 280. We first note that neither 2 nor 3 can be a Type II
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prime, since its powers would create more than 100 minima by multiplicativity by
Lemma 3 (since 350 ≤ D). We define

P (p) = 1− 1
√
p
, Q(p) =

1− 1/
√
p

1 + 1/
√
p
, L(p) =

log p
√
p− 1

,

R(p) = 1 +
1
p1/4

, and S(p) =
1 + 1/p1/4

1− 1/p1/4
.

Let m0, n0, etc., be as in Lemma 10. By the theory of genera there are no more
than seven Type I primes (see discussion after Lemma 3). And any purported
seventh must be at least d1/7/4, so that m0 ≤ 6. We recall from (6) that when
gcd(d, k) = 1, we have that

A(s) =
∏

p of Type
I, II or IIb

1 + χk(p)/ps

1− χ−kd(p)/ps
.

From this, we see that we have (for any real t)

|A(1/2 + it)| ≥
∏

first m0
primes

P (p) · P (D1/4)(7−m0)Q(5)n0Q(D1/4)n1Q(D1/2)50Q(D)50

∣∣∣∣A′A (1/2 + it)
∣∣∣∣ ≤ ∑

first m0
primes

L(p) + (7−m0)L(D1/4)

+ 2n0L(5) + 2n1L(D1/4) + 100L(D1/2) + 100L(D)

AUB ≤
∏

first m0
primes

R(p) · R(D1/4)(7−m0)S(5)n0S(D1/4)n1S(D1/2)50S(D)50.(24)

Here the stray Q(D)50 term (and others of that sort) comes from the possibility of
Type IIb primes; it will have little effect. We are now set to use Lemma 11. Under
the assumption that h(−d) ≤ 100, Lemma 11 gives us an upper bound on n1 for
a given (m0, n0) pair. We enumerate the various extermal (m0, n0, n1) triples, and
verify the conclusion of the lemma in each case.
Various gains can be made compared to above simplistic accounting, such as noting
that when m0 ≥ 3, we can gain a little since a small prime like 5 cannot be both
a Type I and Type II prime, but these minutiae are unneeded at the current time.
The sublemma is shown, as can be evinced from Table 2. �

Table 2.

m0 n0 n1 |A|L |A′/A|U AUB m0 n0 n1 |A|L |A′/A|U AUB m0 n0 n1 |A|L |A′/A|U AUB
0 0 6 .981 .261 2 1 2 0 .042 6.97 62 4 0 3 .042 5.79 13
0 1 4 .376 2.82 9 2 0 5 .121 3.39 6 4 1 0 .016 8.31 54
0 2 1 .144 5.34 37 2 1 2 .046 5.91 24 5 0 1 .029 6.76 17
1 0 6 .287 1.92 4 3 0 4 .067 4.65 9 6 0 0 .021 7.70 24
1 1 3 .110 4.45 15 3 1 1 .025 7.17 37
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We now prove Lemma 12. By Lemma 10, we have

(25)
∣∣sin[ξ1 log d+ ξ2 + argA(1/2 + iξ0)

]∣∣ ≤ UBk,d
ξ3|A(1/2 + iξ0)| ,

where UBk,d is as stated in the lemma. We assume d ≥ 2162, h(−d) ≤ 100, and
k is one of the last seventeen moduli in Table 1 with gcd(d, k) = 1. Using the
sublemma-bound for the A(s)-quantities along with the implied bounds on k and d,
we conclude from Lemma 10 and (23) (with Wk,d being the biggest term) that

UBk,d ≤ 11 ·
(

2π
115147 ·

√
2162

)1/4

· 62 ·
(

1 +
1√
3

)(
1 +

1√
610921

)
+

200
√

2π · 175990483
2162/4

≤ .00002.

Now ξ3 ≥ 314 for all of our k, and thus we see that∣∣sin[ξ1 log d+ ξ2 + argA(1/2 + iξ0)]
∣∣ ≤ .00002

(314)(.016)
≤ 0.000004.

Furthermore, since ξ0 ≤ .0049 for each of the moduli, we have (see e.g., [3] for the
first step)

| argA(1/2 + iξ0)| ≤ ξ0
∣∣∣∣A′A (1/2 + iξ0)

∣∣∣∣ ≤ (.0049)(8.41) ≤ .042.

Exploiting the near-linearity of the sine function near zero, it is easy to derive that
for (25) to be true, we must have

(26)
∣∣sin[ξ1 log d+ ξ2]

∣∣ ≤ .043.

Thus k eliminates periodic ranges of log d from consideration; only when (ξ1 log d+
ξ2) is close to a multiple of π could we possibly have h(−d) be small. If a funda-
mental discriminant satisfies (26) for a given k, we say that k misses d. We list
below the ranges of d which each k misses, noting also the factorisation of k.
Here the Miss Period column records the period of the exponents (to base 10)
that each k misses; the Miss Period is simply π/

(
ξ1 log 10

)
. The Shift column

records the relative difference from the multiples of the Miss Period. The listed
value for the Shift is in general a rather conservative bounding. Table 3 works
as follows: for k = −1832763 and p = 943.7375432, the table tells us that if
2162 ≤ d ≤ exp(268800000) and gcd(k, d) = 1, then we can conclude that the left-
hand side of (26) is greater than .043 for all d which are not in some interval of the
form 10mp−25 ≤ d ≤ 10mp+10 for some integer m. For these d we can hence assert
that h(−d) > 100. Thus for each k, we get periodic ranges of d which cannot have
small class number. It is in this step that we require the 13-digit precision on the
location of the zeros of the L-functions.

It is now a routine computer check (less than five hours) to ensure that each
modulus d appears in no more than nine of the miss ranges. We checked up to
10130000000 and found that in fact none were in more than eight. Now if a discrimi-
nant d is missed by no more than nine moduli k, we see that it must have nontrivial
gcd with the other eight if we are to have h(−d) ≤ 100. But then our count of
Type I primes is at least 8, making h(−d) ≥ 128 by the theory of genera. Thus we
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Table 3.

k Miss Period Shift Factors of k
−115147 864.1809865 [−25, 10] 113 · 1019
−1599847 654.3697800 [−25, 5] 61 · 26227
−1832763 943.7375432 [−30, 10] 3 · 610921
−8844707 1112.6215493 [−35, 10] 349 · 25343
−11023787 767.5486475 [−30, 5] prime
−12461947 1092.7214878 [−35, 10] prime
−17773807 595.5663007 [−25, 0] prime
−19420619 823.9643723 [−30, 5] 131 · 148249
−21614147 1216.0252718 [−40, 15] 271 · 79757
−23311771 568.1975607 [−25, 0] 7 · 163 · 20431
−24088843 895.7017210 [−30, 5] 23 · 1047341
−24463627 601.3191684 [−25, 0] prime
−26012207 2008.1757725 [−55, 30] 13 · 2000939
−28815295 1987.2029123 [−55, 25] 5 · 5763059
−31129723 1323.5749248 [−40, 15] prime
−32438927 618.4994392 [−25, 0] 31 · 317 · 3301
−175990483 5741.7931296 [−125, 100] 19 · 1427 · 6491

are left to conclude that there is no d in the range 2162 ≤ d ≤ exp(268800000) with
h(−d) ≤ 100, completing the proof of Lemma 12. �

7. Eliminating mid-sized discriminants

In this section, we reduce our possibilities for h(−d) ≤ 100 down to a number
of computational sieving problems. Largely the method shall be the same as for
the larger discriminants as in Section 6, but we shall make sharper bounds in
many instances. We shall exclusively use the auxiliary moduli k = −163 and
k = −17923, the latter for (typically) the range 262 ≤ d ≤ 2162, and the former
for the lesser d, down all the way to 252 in the best circumstances. We shall also
have another bifurcation due to the necessity of considering situations for which
g = gcd(k, d) 6= 1. We always assume that h(−d) ≤ 100, so that anything which
implies otherwise will not trouble us.

We first define a Legendre symbol specification. This is simply a 3-tuple
of mutually disjoint sets (X,Y, Z), with each set containing only primes. We say
that a negative fundamental discriminant −d is admissible for a Legendre symbol
specification if (−d|p) = +1, 0,−1 for all p ∈ X,Y, Z, respectively, so that the
three sets of primes specify Legendre-symbol behaviour. We next define a sieving
problem. This is a triple (L,m,B) where L is a Legendre symbol specification, m
is a multiplier, and B is a positive integer. We also have a notion of admissibility
for a sieving problem; this means that −d is admissible for the Legendre symbol
specification, m|d, and d ≤ B. One of our computational sieving problems will be
S0 =

(
(∅, ∅, ∅), 1, 252

)
, and so we can always take d ≥ 252 in the argument below.

We shall effect a division of labour using the notion of a Legendre symbol spec-
ification. Let P be the set of partitions of the smallest ten primes into three sets.
For such a partition Q ∈ P , let us identify Q with the induced Legendre symbol
specification. For every fundamental discriminant −d, there is exactly one partition
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Q ∈ P such that −d is admissible for Q. These break the problem into 310 pieces.
However, many of these can be eliminated from consideration rather quickly; for
instance, we see that if p = 2, 3 are specified as having (−d|p) = +1, then (since
we can assume d ≥ 252) we already have 173 minima from Lemma 3. So for each
Q ∈ P , we use Lemma 3 and our assumption d ≥ 252 to determine the number
of minima we already have; if this is greater than 100, we can ignore Q. We can
also do the same upon adding the additional specification that either 163 or 17923
divides d (i.e., is a Type I prime). If there are eight specified prime divisors of d,
the class number is divisible by 128 and we are done. The maximal product with
seven specified prime divisors of d is 17923 · 163 · 29 · 23 · 19 · 17 · 13 < 243 while
d ≥ 252; hence we know that log2G (where G is the number of genera) is always
at least as large as the number of Type I primes which have been specified. The
results of this process are that there are only 1741 different partitions Q ∈ P we
need consider; we call the set of remaining partitions P1. We shall eliminate many
of these through a crude process and then do a finer analysis for the more difficult
partitions.

We now go through an example of our next process in some detail with a specific
partition. We take

A(s) =
∏
p∈P

Gp(s)
∑
a∈Q

χ?(a)
as

,

where P is the set of prime minima which are less than a parameter T1 (which
shall be taken as 10000 in the case we describe here) and Q is the set of minima
with no prime divisor in P, with χ? as in Lemma 8. Note that (if T1 ≤ D)
all the Type IIb primes will appear in Q here, and so we can basically ignore
the differentation between Type II and Type IIb primes, the former simply being
double-counted in the sum over Q. This choice of A(s) (compared to the previous
one in Lemma 12) has a relatively small effect on A(1/2 + iξ0) while reducing the
bound AUB quite substantially in the case where there are a cluster of minima
slightly larger than

√
D. Let E ∈ P1 be a partition, with some given (k, g) pair.

Write A(s) = A1(s) · A2(s) · A3(s) where A1(s) is the Euler product of Gp(s) over
the first ten primes, A2(s) is the Euler product over the other primes up to

√
D, and

A3(s) is the sum over Q. We note that A1(s) is determined by (E, k, g). Letting T2

be a parameter (which we shall also take to be 10000 here), denote by m the number
of Type I primes between 30 and T2; this results in another division of the problem
based upon the various possibilities for m (which is no more than 7). We then
construct bounds as in (24), though we also use the extra information about E. We
use this in a number of ways; we can compute |A1(1/2 + iξ0)| and argA1(1/2 + iξ0)
directly and hence get much sharper bounds on these quantities. Secondly, in a
bound like (23) of Wk,d, we can put A1(1/4 + it) into the integral. Furthermore,
we can exploit the existence of small minima through the use of the specific bound
V Sk,d(a) in Lemma 10. Finally (and perhaps most importantly), we can use the
structure of E to determine lower bounds on the other minima. We describe how
this all works for a specific partition E, say ({29}, {2, 3}, {5, 7, 11, 13, 17, 19, 23}).
Here we have A1(s) = (1 − 1/2s)(1 − 1/3s)(1 + 1/29s)(1 − 1/29s)−1. We consider
the case where k = −17923 and d ∈ [260, 2162] with g = gcd(k, d) = 1, taking
T1 = 10000 and m = 0, so that T2 is irrelevant. There are 44 minima formed
by the various products of 2, 3, 29 that are no greater than 229 < D. In order
for the class number not to exceed 100, any additional Type II prime must be
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at least 7349; if 7333 were a Type II prime, there would be at least 104 minima
by Lemma 3. Similarly, the second smallest additional Type II prime must be at
least 319201, and the third at least 6170933, and so on, ending when the addition of
additional Type II primes would imply that h(−d) > 100. What about additional
Type I primes? Since we have taken m = 0, there are no Type I primes less
than 10000. And arguing as above, the third additional Type I prime must be at
least 212827, and the fourth at least 638437, etc., with there being a limit of five
additional Type I primes due to genera considerations. In general, we let pi be a
lower bound on the ith additional Type I prime, and we let qj be a lower bound
on the jth additional Type II prime, with Type II primes being double-counted in
contrast with Type IIb primes. Recalling the definitions of P,Q,R, S, and T from
Sublemma 12.1, this gives us

|A(1/2 + iξ0)| ≥ |A1(1/2 + iξ0)| ·
∏
pi<T

P (pi)
∏
qj<T

Q(qj)

·
(

1−
∑
pi≥T

1
√
pi
−
∑
qj≥T

? 1
√
qj

)
,

| argA2(1/2 + iξ0)| ≤ ξ0
∣∣∣∣A′2A2

(1/2 + it)
∣∣∣∣ ≤ ξ0(∑

pi<T

L(pi) + 2
∑
qj<T

L(qj)
)
,

| argA3(1/2 + iξ0)| ≤ arcsin
(∑
pi≥T

1
√
pi

+
∑
qj≥T

? 1
√
qj

)
,

and

|A2(1/4 + it)A3(1/4 + it)| ≤
∏
pi<T

R(pi)
∏
qj<T

S(qj) ·
(

1 +
∑
pi≥T

1
√
pi

+
∑
qj≥T

? 1
√
qj

)
,

where the starred sums recall the double-counting of Type II primes. For our
specific (X, k, g) triple we have

|A(1/2 + iξ0)| ≥ (.180)(.976)(.988) ≥ .173,

| argA2(1/2 + iξ0)| ≤ 0.22ξ0 ≤ 0.007,

| argA3(1/2 + iξ0)| ≤ 0.012,

and

|A2(1/4 + it)A3(1/4 + it)| ≤ (1.25)(1.93) ≤ 2.42.

We have argA1(1/2 + iξ0) ≈ 0.058155, and so argA(1/2 + iξ0) ∈ [0.039, 0.078].
Finally we compute UBk,d. We have that

Wk,d ≤
0.088 ·AU2 AU3

d1/8

∫ ∞
0

∣∣∣∣Γ(1/4 + it)ζ(1/2 + 2it)A1(1/4 + it)(t2 + 1/16)
(ξ2

0 − t2 + 1/16)2 + t2/4

∣∣∣∣ dt,
where AU2 and AU3 upper-bound |A2(s)| and |A3(s)| on the line Re s = 1/4. The
integral can be bounded numerically by 1.99, so that we have Wk,d ≤ 0.42/d1/8. For
the 44 minima we already have directly from the partition E, we can use the bound
V Sk,d(a) (computing a lower bound for β via d ≥ 260) if this results in something
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superior to the generic bound. For the other 56 possible minima, we simply use the
generic bound. This gives that

UBk,d = Wk,d +
∑
a∈Qd

min(V Gk,d, V
S
k,d(a)) ≤ 0.42

d1/8
+

49396
d1/4

≤ 1.51.

We can now show that the above estimates imply that (17) cannot hold for the d
under consideration; namely, we have

(27)
∣∣sin[ξ1 log d+ ξ2 + argA(1/2 + iξ0)]

∣∣ > UBk,d
ξ3|A(1/2 + iξ0)|

for all d ∈ [260, 2162], our conditions being that d is coprime to 17923 and admissible
for our partition X , with there being no Type I primes between 30 and 10000 (the
m = 0 condition). In particular, the left-hand side of (27) is at least 0.786 while
the right-hand side is no more than 1.51

(57.0)(.173) ≤ 0.154 (in general, we might not
have such a uniform statement for all d under consideration, but we can use the
fact that for d near 2162, we get a much better bound on UBk,d). Since (17) cannot
hold, our assumption that h(−d) ≤ 100 must be fallacious. We can then repeat
this argument for various m-values; in general (for a given partition E), the m = 0
case is the most difficult, in the sense that for it the inequality (17) comes closest
to being possible. Except for the case when E = (EX , EY , EZ) has EX = EY = ∅,
the above (always taking T1 = T2 = 10000) will suffice to show that h(−d) > 100
for all the d ∈ [260, 2162] with g = gcd(k, d) = 1. When EX = EY = ∅, we proceed
as in the paragraph below to get a better bound on the qj — the main difficulty
here is that the argument of A(s) is not sufficiently controlled. In a similar manner,
we can also try to show that h(−d) > 100 for all d ∈ [260, 2162] with g = 17923
(again separately considering the case EX = EY = ∅ using the methods of the next
paragraph) by a slight modification of the above; here if |EY | = 1 and EX = ∅,
we first need to split into more sub-cases (as in the m-division) by restricting the
number of small Type II primes. We let n be the number of Type II primes less than
a parameter T3 and then consider all possible (m,n) pairs separately; it suffices to
take T3 = 800 and T1 = T2 = 4300, the latter choice made to help lower the bound
for |A(s)| on the line Re s = 1/4 (of course, there is interplay with the bounds
for | argA(s)|; the most difficult case is EX = {29} and (m,n) = (4, 1)). We can
note that (prior to this n-division) for a fixed E, we actually usually get a better
bound for the right side of (27) in the g = 17923 case compared to the g = 1
case, but the fact that ξ2 is now −0.081 . . . instead of 0.221 . . . means that the
sine-value on the left side of (27) can be smaller, and hence we have these instances
which require the finer division. So at this point we have shown (subject to the
consideration of the EX = EY = ∅ case) that we cannot have h(−d) ≤ 100 for any
d ∈ [260, 2162]. Our next task will be to consider the range d ∈ [252, 260] by using
the modulus k = −163 in a manner similar to the above; however, we will not be
quite so successful in our end result. We first turn to the promised consideration
of the case where EX = EY = ∅ in the above.

The following lemma is included here rather than earlier as the lower bound it
gives for the 26th smallest Type II prime is only useful when EX = EY = ∅.
Lemma 13. The number of Type II primes less than D2/3 is not more than h/4.

Proof. Let l be the number of Type II primes less than D2/3. For each such prime p,
there is at least one power (call it q) of it which is in [D1/3, D2/3]. For each q, we
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take a form which has q as its minimum. Each such form is nonself-conjugate,
so we have 2l binary forms which we denote f1, f̄1, . . . , fl, f̄l; we also write fi =
(ai, bi, ci) in its reduced form. Next we form the products f1f1, f1f̄1, f1f2, f1f̄2, . . . ,
f1fl, f1f̄l. All of these are distinct, due to the existence of inverses under the group
law. We ignore the second form since it is the principal form. Now [8] tells us
(noting that gcd(a1, ai) = 1 for i 6= 1) that f1fi can be written as (a1ai, xi, yi)
for some xi and yi. Since a1 and ai are both in [D1/3, D2/3], this implies that
f1fi represents a number in [D2/3, D4/3]. This representation is primitive, and
primitivity persists under reduction of the form, since a reduction is a unimodular
change of variables. We next note that no form with a minimum less than D2/3 can
primitively represent any number less than D4/3 which is not the minimum. This
follows since am2 + bmn+ cn2 ≥ dn2/4a ≥ D/a when n 6= 0. So the intersection
of our list of products of forms with the list of forms themselves must be empty, as
the former represent something in [D2/3, D4/3], while the latter cannot. Adding in
the principal form, we have at least 1 + 2l+ (2l − 1) forms at this point, giving us
the desired bound in terms of the class number. This shows the lemma. �

In particular, this lemma tells us that the 26th smallest Type II prime must be at
least 660563 when h ≤ 100 and D ≥ 229. This now allows us to find a contradiction
with (27) when h ≤ 100. For the case where g = 1, we take T1 = T2 = 10000 and
again use the additional n-splitting with T3 = 800. Every (m,n) possibility has
UBk,d ≤ 3.6 and |A(s)| ≥ 0.181, making the right side of (27) no more than 0.35,
while we always have | argA(s)| ≤ 0.478, so that the left side is greater than 0.37.
Things are so ornery in the g = 17923 case that we decided to make the additional
restriction d ≥ 265; upon doing this and taking T1 = T2 = 4300 with T3 = 800, we
can show that having h(−d) ≤ 100 cannot happen. So we need to add the sieving
problem T =

(
(∅, ∅, P30), 17923, 265

)
(where P30 is the set of primes less than 30)

to our list of sieving problems; this is reasonable due to the great savings we achieve
from the condition that 17923|d.

We now turn to range d ∈ [252, 260]. Here we use k = −163. First we consider
the d with gcd(d, 163) = 1. Taking T1 = T2 = 2500 (with no n-division), we
eliminate all but 323 of our 1741 partitions E. Changing the lower limit to 254

eliminates 148 more, leaving 175, and a further increasing of the lower limit to 256

leaves only 108. A final heightening of the lower limit to 258 eliminates 45 more
partitions, but for the remaining 63, nothing is efficacious. So to our list of sieving
problems, we append 148 more (labeled S1 through S148) which have a bound
of 254, an additional 67 (labeled S149–S215) with a bound of 256, another 45 more
(S216–S260) with a bound of 258. There are 63 partitions left over for which nothing
can be done via this method, leaving us only the previous bound of 260. For these
partitions, we further sub-divide each into nine sub-paritions, using the primes 31
and 37. With this new group of 567 partitions, 168 of them already have more than
100 minima less than 225, and another 227 are eliminated through an argument as
above. Of the remaining 172 sub-partitions, 39 are eliminated upon increasing the
lower limit to 254 (sieving problems S261–S299), another 35 by increasing the lower
limit to 256 (labeled S300–S334), and another 31 with a lower limit of 258 (named
S335–S365), leaving 67 sub–partitions (S366–S432) which have a sieving limit of 260.
This concludes the discussion of the d ∈ [252, 260] with gcd(d, 163) = 1.

For the d with 163|d, we only consider d ∈ [256, 260] (adding U0 =
(
(∅, ∅, ∅),

163, 256
)

to the list of sieving problems) and take T1 = T2 = 1100. This eliminates
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all but 64 of the 1741 partitions. Of these 64 partitions, six have EX 6= ∅, namely
those with EY = ∅ and EX having a single element larger than 10. The other
58, all with EX = ∅, are given by the 56 partitions with |EY | ≤ 2, and also
EY = {17, 23, 29} and EY = {19, 23, 29}. We denote the corresponding sieving
problems (which have a multiplier of 163 and a bound of 260) as U1 through U64.

8. Sieving small discriminants

We are hence left with a number of sieving problems (L,m,B), where L is a
Legendre symbol specification, m a multiplier, and B a bound on the sieving level.
Recall that a fundamental discriminant −d is admissible for a sieving problem if it is
admissible for the Legendre symbol specification, has d a multiple of the multiplier,
and has d ≤ B. We give a full description of the situation for

S0 =
(
(∅, ∅, ∅), 1, 252),

the others being similar. Given a negative fundamental discriminant −d, the idea
shall be to take sets of (say) 35 small primes and find at least one prime p in each
set with (−d|p) = +1. These will then generate a lot of minima, hopefully more
than 100. Our sets of primes shall be 31–197, 199–409, 419–631, 641–863, 877–1103,
1109–1373, and 1381–1613, which we call the sieving sets. Suppose, to start, that
d ≥ 248 (if not, we have reduced the problem by a factor of 16, and it is hence
substantially easier) and at least one prime in each sieving set has (−d|p) = +1.
Then there are at least 98 minima from products of the primes (since 16132 ≤ 223),
and 14 minima from the primes themselves (plus one for the principal minimum),
making 112 already. If a discriminant has (−d|p) 6= +1 for all primes in the sieving
set, we say that this discriminant is missed by the sieving set. Note that the miss
rate for our sieving sets is about 1 in 235. Even if we sieve about 255 things, we can
still easily handle all the misses simply by directly computing the class numbers
(which takes less than a second) for the recalcitrant discriminants missed by a sieve.
This use of sieving sets shall be the main idea of our sieving process, though we
also use information about the smallest 10 primes to lighten the load. To this end,
we divide the d’s into congruence classes modulo

Q = 155272637520 = 24 · 32 · 5 · 7 · 11 · 13 · 17 · 19 · 23 · 29.

Sieving in a congruence class still possesses useful periodic conditions, and so is
not any more difficult. We could use a larger modulus than Q, but we are nearing
the point of diminishing returns; with our method we have about 252/Q ≈ 29000
discriminants under consideration in each congruence class, and reducing this much
further would start to make overhead costs the dominant factor. There are negative
fundamental discriminants in Q/3 of these congruence classes. For each congruence
class, we ask how many sieving sets (starting with the smallest) we need to use
before we can conclude that the resulting class number is more than 100. For
instance, if 2 is a Type I prime and 13 is a Type II prime (with the other small
primes having (−d|p) = −1), we need to sieve with the smallest two sieving sets
(again assuming that d ≥ 248; we have at least 74 minima after using the first sieving
set and 138 after including the second). An accounting of the congruence classes
gives the following data about how many sieving sets are needed: 50222242532
of the congruence classes need zero sieving sets, 955240658 need one sieving set,
361124966 need two, 128134380 need three, 39728376 need four, 38244528 need
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five, 855360 need six, and 11975040 need seven. Thus the number of fundamental
discriminants to be sieved here is about

252

Q

(
955240658 + 722249932 + 384403140

+ 158913504 + 191222640 + 5132160 + 83825280
)
≤ 73 · 1012.

Our raw sieving rate is about 226 discriminants per second, and so this will take
around two weeks (neglecting overhead). As mentioned above, this works for d ≥
248; for the smaller discriminants we use a similar method with slightly more sieving
sets. We do not dwell on the details here; suffice it to say that the highest range
of discriminants takes more than 85% of the sieving time. Note also that Buell
[9] has exhaustively handled the range d ≤ 231, so we need not consider those
discriminants.

The other sieving problems go similarly. For

T =
(
(∅, ∅,P30), 17923, 265

)
,

we have about
265

17923
· 6

16
·
∏

3≤p≤29

(
p− 1

2p

)
fundamental discriminants, and each shall need six sieving sets to be used. This
gives less than 3 · 1012 discriminants to be sieved. For U0, a computation as
with S0 tells us that we need sieve only about (256/163Q) · 1674504636 ≤ 5 · 1012

discriminants. An accounting of the other 64 Ui sieving problems implies that less
than 42 · 1012 discriminants need to be sieved here. The sieving problems S1–S260

involve about 160 · 1012 discriminants (the 160 could be reduced to 90 with a little
more effort), while S261–S365 involve only 23 · 1012. The lion’s share of sieving
comes from S366–S432, which involve sieving about 784 · 1012 discriminants. For
these latter sieving problems, we enhance the modulus Q to Q/3 · 31 · 37, which is
still sufficiently smaller than the sieving bound of 260 to allow periodic congruence
conditions to be exploited.

This gives a total of about 1.1·1015 discriminants overall, which, with our sieving
rate of 226 discriminants per second, takes only about six months, almost seven
when overhead is taken into account. As noted above, the number of discriminants
which fail to be sieved should be less than a million, and these can be handled
individually. Upon completing this computation, we conclude that the classical
lists of small class numbers are indeed complete.

How much further can one take this type of analysis? Our sieving rate of 226

per second is actually quite slow even though we use such tricks as using the 32-bit
computer architecture to consider 32 discriminants at a time. A special-purpose
machine in the spirit of the MSSU [27] might be able to run 1000 times as fast as
our sieve. However, we have the advantage of being able to distribute the load in
parallel across many machines, while building more than one super-siever would be
more difficult (in fact, the parallelism is already built into the design). Suppose
that we wanted to consider all class numbers up to 1000. The factor of 10 in class
number (compared to our h ≤ 100) corresponds to at least a jump of 104 in the
level of sieving needed, due to the h/d1/4 term in the equations. But also the lower
bounds on |A(s)| (and the other quantities) become worse as the class number
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Table 4.

N # large N # large N # large N # large N # large

1 9 163 21 85 61483 41 109 296587 61 132 606643 81 228 1030723
2 18 427 22 139 85507 42 339 280267 62 323 647707 82 402 1446547
3 16 907 23 68 90787 43 106 300787 63 216 991027 83 150 1074907
4 54 1555 24 511 111763 44 691 319867 64 1672 693067 84 1715 1225387
5 25 2683 25 95 93307 45 154 308323 65 164 703123 85 221 1285747
6 51 3763 26 190 103027 46 268 462883 66 530 958483 86 472 1534723
7 31 5923 27 93 103387 47 107 375523 67 120 652723 87 222 1261747
8 131 6307 28 457 126043 48 1365 335203 68 976 819163 88 1905 1265587
9 34 10627 29 83 166147 49 132 393187 69 209 888427 89 192 1429387
10 87 13843 30 255 134467 50 345 389467 70 560 811507 90 801 1548523
11 41 15667 31 73 133387 51 159 546067 71 150 909547 91 214 1391083
12 206 17803 32 708 164803 52 770 439147 72 1930 947923 92 1248 1452067
13 37 20563 33 101 222643 53 114 425107 73 119 886867 93 262 1475203
14 95 30067 34 219 189883 54 427 532123 74 407 951043 94 509 1587763
15 68 34483 35 103 210907 55 163 452083 75 237 916507 95 241 1659067
16 322 31243 36 668 217627 56 1205 494323 76 1075 1086187 96 3283 1684027
17 45 37123 37 85 158923 57 179 615883 77 216 1242763 97 185 1842523
18 150 48427 38 237 289963 58 291 586987 78 561 1004347 98 580 2383747
19 47 38707 39 115 253507 59 128 474307 79 175 1333963 99 289 1480627
20 350 58507 40 912 260947 60 1302 662803 80 2277 1165483 100 1736 1856563

grows. A more realistic guess would be that the difficulty of the sieving problem
would increase by 105 (or even 106). This seems unreasonable at present.

In Table 4 we give for N ≤ 100 the number of negative fundamental discriminants
with class number N and the largest such discriminant (in absolute value).
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