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ABSTRACT: 

In recent years, many studies on remote sensing image classification have shown that using multiple features from different data 

sources can effectively improve the classification accuracy. As a very powerful means of learning, multiple kernel learning (MKL) 

can conveniently be embedded in a variety of characteristics. The conventional combined kernel learned by MKL can be regarded as 

the compromise of all basic kernels for all classes in classification. It is the best of the whole, but not optimal for each specific class. 

For this problem, this paper proposes a class-pair-guided MKL method to integrate the heterogeneous features (HFs) from 

multispectral image (MSI) and light detection and ranging (LiDAR) data. In particular, the “one-against-one” strategy is adopted, 

which converts multiclass classification problem to a plurality of two-class classification problem. Then, we select the best kernel 

from pre-constructed basic kernels set for each class-pair by kernel alignment (KA) in the process of classification. The advantage of 

the proposed method is that only the best kernel for the classification of any two classes can be retained, which leads to greatly 

enhanced discriminability. Experiments are conducted on two real data sets, and the experimental results show that the proposed 

method achieves the best performance in terms of classification accuracies in integrating the HFs for classification when compared 

with several state-of-the-art algorithms. 

* Corresponding author

1. INTRODUCTION

Under the background of the rapid development of aviation and 

aerospace, the whole trend of technical development in the field 

of remote sensing is to achieve a better earth observation with 

higher spatial, spectral and temporal resolution so as to provide 

more exact and finer information. With the development of 

sensor hardware technology, it becomes easy realization of the 

multi-source data acquired from the same observation scene by 

using different sensors.  

Hyperspectral image (HSI) can provide a detailed description of 

the spectral signatures (X, Y, Spectrum) of ground covers. 

Therefore, it has been widely used in the application of land 

covers mapping (Melgani and L. Bruzzone, 2004). However, 

when just using such data, it appears to be inadequate to 

distinguish the objects composed of similar materials, e.g., 

between streets and roofs of buildings. Whereas, LiDAR data 

can provide the height information (X, Y, Z) of the same 

surveyed area (Filin, 2002), which is complementary to HSI. 

The fusion of both data sources, with the purpose of completing 

or enhancing a comprehensive object characterization in 

spectral, spatial and elevation domains (X, Y, Z, f(X, Y), 

Spectrum), is important and promising, particularly for 

heterogeneous environments and steep terrain. The features 

extracted from HSI and LiDAR data were categorized into three 

different attributes, i.e., spectral, spatial, and elevation attributes 

(Gu and Wang, 2015). Once considered together these 

complementarity can be helpful for characterizing land use. 

Different studies have already proven the potential of 

integrating HSI and LiDAR data for various areas of research. 

For data analysis and classification procedures, the elevation 

information serves as an additional dimension to enhance 

information content and classification results. Many techniques 

have been developed for fusion of these heterogeneous features 

in a classification task. Summing these fusion strategies up, they 

can be broadly divided into five categories: based on the feature 

stack structure (Puttonen et al., 2011), hierarchical scheme 

(Paris and Bruzzone, 2015), sparse representation (Zhang and 

Prasad, 2016), manifold learning or graphs (Gu and Wang, 

2017), and multiple kernel learning (MKL) (Gu and Wang, 

2015). 

Koetz et al. (2007) classified fuel composition from fused 

LiDAR and hyperspectral bands using support vector machines 

(SVMs) and showed that the classification accuracies after 

fusion were higher than those based on either sensor alone. 

Pedergnana et al. (2012) proposed a technique performing a 

classification of the features extracted with extended attribute 

profiles (EAPs) computed both on optical and LiDAR images 

for an urban area of the city of Trento, leading to a fusion of the 

spectral, spatial and elevation information in a stacked 

architecture. Strategies based on the feature stack structure were 

verified that the fusion strategies do not always perform better 

than only using a single feature source (Mura et al., 2011). 

Fusion strategies based on hierarchical scheme for HSI and 

LiDAR data firstly process one data source in a classifier and 

then integrate its output with another data source to obtain the 
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final results. A 3-D model-based approach was proposed to the 

estimation of the tree top height based on the fusion between 

low-density LiDAR data and high-resolution optical images 

(Paris and Bruzzone, 2015). In their proposed approach, the 

integration of the two remote sensing data sources was first 

exploited to accurately detect and delineate the single tree 

crowns. Then, the LiDAR vertical measures were associated to 

those crowns hit by at least one LiDAR point and used together 

with the radius of the crown and the tree apex location derived 

from the optical image for reconstructing the tree top height by 

a properly defined parametric model. Fusion strategies based on 

sparse representation and multi-task learning fuse the 

heterogeneous features by dictionary construction and sparse 

coefficient solution (Jia et al., 2016). Fusion strategies based on 

manifold learning fuse the heterogeneous features by mining the 

manifold structure of these features. A generalized graph-based 

fusion method was proposed to couple dimension reduction and 

feature fusion of the original HSI and MPs (built on both HSI 

and LiDAR data) (Liao et al., 2015). In their proposed method, 

the edges of the fusion graph were weighted by the distance 

between the stacked feature points. A novel discriminative 

graph-based fusion (DGF) method was proposed for urban area 

classification to fuse heterogeneous features from HSI and 

LiDAR data (Gu and Wang, 2017). The edges of the graphs are 

measured by kernel. Furthermore, the multi-scale DGF (MS-

DGF) was introduced to utilize the capability of similarity 

measure of different scales of kernel and avoid finding the 

optimal scale simultaneously. Fusion strategies based on MKL 

are an effective kernel-based framework for integrating multi-

source data (Camps-Valls et al., 2008). Camps-Valls et al. 

(2008) first proposed a kernel-based fusion framework to 

integrate heterogeneous information from multi-temporal and 

multi-source remote sensing data for classification and change 

detection. Four ways to form composite kernel were given in 

their work, including stack, direct summation, weighted 

summation, and cross-information. The results of their study 

indicate that direct summation composite kernel yielded better 

results and achieved a higher efficiency in the particular 

application domain of urban monitoring, outperforming the 

traditional stacked-vector approach in real-scenario cases. A 

novel MKL model of integrating MSI and LiDAR data by 

fusing those heterogeneous features for urban arear 

classification has been proposed (Gu and Wang, 2015). In their 

work, First, Gaussian kernels with different bandwidths were 

used to measure the similarity of samples on each feature at 

different scales. Then, these multiscale kernels with different 

features were integrated using a linear combination. In the 

combination, the weights of the kernels with different features 

were determined by finding a projection based on the maximum 

variance. Finally, the optimization of the conventional support 

vector machine with this combined kernel was performed to 

construct a more effective classifier. 

MKL provides a flexible framework for us to fuse different 

sources of information in a very natural way. The 

complementary and relevant information contained in HSI and 

LiDAR data can be fused and utilized by taking into account the 

basic kernels construction and its optimizing configuration in 

MKL. The existing MKL methods mainly include two steps. 

Basic kernels are constructed in first step. Then the basic 

kernels are combined in a linear or nonlinear way. The 

combined kernel learned by MKL can be regarded as the 

compromise of all basic kernels for all classes in classification. 

It is the best of the whole, but not optimal for each specific class. 

For this problem, in this paper, the “one-against-one” strategy is  

Figure 1. Multiscale kernel matrices for training samples of 

Bayview Park data set. 

adopted, which converts multiclass classification problem to a 

plurality of two-class classification problem. Then, we select the 

best kernel from pre-constructed basic kernels set for each 

class-pair by kernel alignment (KA) in the process of 

classification. 

The remainder of this paper is organized as follows. The 

proposed method is introduced in detail in Section 2. Section 3 

describes the data set and the experimental setup, and presents 

the experimental results on two real data sets and compares the 

proposed method with other fusion methods. Finally, 

conclusions are drawn in Section 4. 

2. PROPOSED METHOD

The literature (Gönen and Alpaydin, 2011) points out that 

combining kernels in a nonlinear or data-dependent way seems 

more promising than linear combination when fusing simple 

linear kernels, whereas linear methods are more reasonable 

when combining complex Gaussian kernels. In this paper, we 

consider the latter choice and employ the popular Gaussian 

kernel with different bandwidths. Here, Gaussian kernel is given 

as follows: 
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where   is a radius parameter called bandwidth. The 

bandwidth of Gaussian kernel controls smoothness of kernel 

measure. With large value of bandwidth, the kernelized distance 

measure is smooth. As a result, kernel value is insensitive to 

small variation of similarities. And with small value of 

bandwidth, it is opposite that the kernel is sensitive to variation 

of similarities, but may result in a highly diagonal kernel matrix 

which loses generalization capability. Therefore, bandwidth can 

be regarded as a scale under which kernel compares samples, 

and this scale controls the kernel resolution which means the 

discriminative ability of kernel.  We take the Bayview Park data 

set for an instance to demonstrate the multiscale property of 

kernel similarity measure. Scales of basic kernels are uniformly 

selected in the interval of [0.2, 2] with a step size of o.2, and the 

multiscale kernel matrices are shown in Figure 1. According to 

the visualization of kernel matrices in Figure 1, the similarity 

measure presents good multiscale property. 

It is well known that the kernel method transforms the linearly 

inseparable problem in the original data space into a linear 

separable problems in reproducing kernel Hilbert space by 

using a nonlinear mapping function. If a mapping function 
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(a) Bayview park (b) Recology

Figure 2.   with highest KA scores of different class pairs. 

exists between samples and the corresponding labels, the 

mapped spaces will be constituted by class labels. Apparently, 

the samples are linear separable in this resulting space because 

of distinct labels for different classes. The corresponding kernel 

is called ideal kernel that can be computed by inner product of 

labels for binary classifier. The Gram matrix of ideal kernel is 

notated as
IK , and the values of 

IK  are computed by 
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where 
iy is the class label of sample 

ix . 

KA is a measure of the similarity between two kernel matrices. 

And the alignment score between two kernel matrixes 
1K  and 

2K is defined as follows:
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where 
F

 ，  is the Frobenius norm between two matrices and 

defined as    1 2 1 21 1
, = , ,
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  K K x x x x . 

We utilize “one-against-one” strategy to solve multiclass 

classification problem. When classifying C classes, we divide 

the training samples of each two classes into a group, and we 

can get a total of   1 / 2C C   groups. We compute the KA

scores of each basic kernel constructed by using each two 

classes (
2c : class i and class j) and ideal kernel, and reserve the 

basic kernel with highest score for the class pair of class i and 

class j. 
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For example, the range of bandwidth of Gaussian kernel was set 

to [0.05, 2], and uniform sampling that selects scales from the 

interval with a fixed step size of 0.05 was used to select 40 

scales within the given range. The bandwidths   with highest 

KA score of different class pairs are shown in Figure 2. 

Bayview park data set has 7 classes. Thus there is 

  7 7-1 / 2 21  class pairs in this data set. As the same 

principle, Recology data set has 55 class pairs. We can find that 

the different class pairs correspond to different bandwidths   

with highest KA score. 

Taking the reserved kernel 
2cK into support vector machine 

(SVM) classifier can form our optimization problem (a convex 

quadratic programming problem) for each two-class 

classification problems as follows: 
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where 
i  and j are Lagrange multipliers, and if

i is nonzero, 

the corresponding 
ix is called a support vector, which 

determines the decision hyperplane. 

After solving the above optimization problem, we can get the 

classification decision function. For a test sample x, the label is 

determined by following classification decision function. 
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where i
 is a support vector, and n is number of support

vectors. The final class label of the sample x is determined by 

counting the majority of classification results of the separating 

two-class classification problems.  

The procedure of the proposed method 

i) Initialize the range of kernel scale values [
min max,  ]. 

ii) Sample M scales within the range above, i.e.,

min 1 2 maxM      
 . 

iii) Select the optimal kernel scale for each class pair by

utilizing a principle of the highest KA scores.

iv) Under the “one-against-one” classification strategy, take the

optimal kernels determined in iii) into (5) for each two-class

classification problems.

v) Determine the class label of test samples by counting the

majority of classification results of the separating two-class

classification problems.

3. RESULTS AND VALIDATION

In order to verify the effectiveness of the proposed method, two 

data sets are used, and two experiments are designed. In this 

section, we test the performance of the proposed method and 

comparison methods for joint classification of MSI and LiDAR 

data. 

3.1 Data description 

The two data sets are from two subregions of a whole scene 

around downtown area of San Francisco, USA. One is located 

at a factory named “Recology” and the other is located at a park 

named “Bayview Park”. The data come from 2012 IEEE GRSS 

Data Fusion Contest and contain multispectral images (8 bands 

in the wavelength range of 400 to 1040 nm)  and the 

corresponding LiDAR data. The multispectral images were 
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Figure 3. Bayview Park data set. (a) RGB composite image of 

bands. (c) Ground truth map. 
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Figure 4. Recology data set. (a) RGB composite image of bands. 

(b) Ground truth map.

acquired by WorldView2 on 9th Oct, 2011 and the LiDAR data 

were acquired in June 2010. The two data sets have a spatial 

resolution of 1.8m. Figures 3 and 4 show the false RGB 

composition and information of the labelled classes for the two 

selected study areas, respectively. We identified the land cover 

classes in the two data sets by visual inspection with the help of 

Google Earth. 

The land cover classes in the Bayview Park data set are 

“Building1”, “Building2”, “Building3”, “Road”, “Trees”, 

“Soil” and “Seawater”.  

The reference land cover classes of Recology data set are 

“Building1”, “Building2”, “Building3”, “Building4”, 

“Building5”, “Building6”, “Building7”, “Trees”, “Parking lot”, 

“Soil” and “Grass”. 

The two data sets are both the combination of multispectral 

images and LiDAR data. It is noteworthy that the two data sets 

are classified as different classes according to heights and 

materials of land-covers. The main characteristics of the data 

sets are summarized in Table 1. 

3.2 Experimental setup 

To validate the proposed method (C2MKL for short), we 

compare it with several state-of-the-art methods. They are single 

kernel SVM (SK for short), RKML (Gu et al., 2012), Mean 

MKL (Gönen and Alpaydin, 2011), Simple MKL 

(Rakotomamonjy et al., 2008). For all the classifiers, the range  
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Figure 5. OA (a) and Kappa coefficient (b) of different methods 

on Bayview Park data set. 
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Figure 6. OA (a) and Kappa coefficient (b) of different methods 

on Recology data set. 

of bandwidth of Gaussian kernel was set to [0.05, 2], and 

uniform sampling that selects scales from the interval with a 

fixed step size of 0.05 was used to select 40 scales within the 

given range. For the model parameters of SVM which were 

used in all classifiers in our experiments, the penalization 

parameter   is selected by Cross-Validation (CV) in the range of 
1 7[10 , ,10 ] and the slack variable 710   also is selected by 

CV. 

Two experiments are designed to verify the fusion ability of the 

proposed method. The first experiment is a low-level fusion for 

spectral image and LiDAR data. In particular, joint 

classification with spectrum (8 spectral bands) and normalized 

digital surface model (nDSM) extracted from LiDAR data are 

considered. The second experiment is an extended fusion for 

spectral image and LiDAR data. The spectrum, spatial features 

and nDSM are fused in this experiment for classification. The 

spatial features are the morphological profiles (MPs), and MPs 

are computed on two windows of size 3x3 and 5x5 pixels. The 

dimension of the morphological features is 8 (with 2 opening 

and 2 closing for the first principal component of spectral bands 

and the same number for the LiDAR data). The heterogeneous 

features from MSI and LiDAR data were stacked into a feature 

vector. Then, the extended feature vector is input into Gaussian 

kernel with different bandwidths to generate the basic kernels. 

In each experiment, the labelled training samples were 

randomly selected. The number of training samples for each 

class was set to 10, 15, 20, 30, 40, 50 and 100. The rest of the 

samples were used as test samples. Each experiment was 

conducted with 10 trials to avoid biased conclusions and the 

average results and variance were reported. Overall accuracy 

(OA), Kappa statistic and classification maps were considered 

to evaluate all classifiers. 
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Figure 7. OA (a) and Kappa coefficient (b) of different methods 

on Bayview Park data set. 
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Figure 8. OA (a) and Kappa coefficient (b) of different methods 

on Recology data set. 

3.3 Experimental results 

3.3.1 Experiment 1: joint classification with spectrum and 

nDSM : Joint classification with spectrum and nDSM which is 

the simplest features setting to joint use of spectral image and 

LiDAR data was carried out. Numerical classification results of 

our proposed method (C2MKL) and four contrast methods (SK, 

SimpleMKL, Mean MKL and RMKL) are shown in Figures 5 

and 6. 

From the experimental results, we can see that our proposed 

method achieves the highest classification accuracy under 

different training samples. This proves that our proposed 

method can effectively fuse the heterogeneous features from 

MSI and LiDAR data to improve classification performance. 

3.3.2 Experiment 2: Joint classification with spectrum, MPs 

and nDSM: Joint classification with the spectrum (spectral 

attributes), MPs (spatial attributes) and nDSM (elevation 

attributes) was carried out and the numerical results of 

classification for two data sets are shown in Figures 7 and 8. 

Our proposed method achieves the highest classification 

accuracy once again. Complementary information between 

spectral, spatial, and elevation features can be further explored 

for classification task by our proposed method. Compared with 

experiment 1, experiment 2 achieves a higher classification 

accuracy. This shows that adding spatial features can provide 

useful information to improve classification performance. This 

also shows that there are complementary information between 

the features of different attributes. Combining features of 

different attributes can improve the classification performance. 

We show the classification maps in Figure 9 for Bayview Park 

data set and Figure 10 for Recology data set. From the 
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RMKL C2MKL 真实地物分布图
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(a) SK (b) Simple MKL    (c)  Mean MKL
SK Simple MKL Mean MKL
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SK Simple MKL Mean MKL

RMKL C2MKL 真实地物分布图
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(c) RMKL (d) C2MKL     (e)   Ground truth map

Figure 9. Classification maps of different methods on Bayview 

Park data set. 
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(a) SK  (b) Simple MKL SK Simple MKL

Mean MKL RMKL(c) Mean MKL (c) RMKL 

C2MKL 真实地物分布图(d) C2MKL (e) Ground truth map 

Figure 10. Classification maps of different methods on 

Recology data set. 

classification maps, we can visually see that our proposed 

C2MKL gets the best performance as compared to the other 

classifiers. Furthermore, we observe that the misclassification 

generally occurs at the edges of each class. The black rectangles 

in the classification maps are the places with significant 

improvement of C2MKL compared to other classifiers. 
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4. CONSLUSION

In this paper, we proposes a class-pair-guided MKL method to 

integrate the heterogeneous features from MSI and LiDAR data. 

The proposed method solves the problem that the combined 

kernel learned by conventional MKL methods is a compromise 

of all basic kernels for all classes in classification, and is the 

best of the whole, but not optimal for each specific class. For 

joint classification of MSI and LiDAR data, two different fusion 

experiments are carried out. The experimental results show that 

our method can improve the classification accuracy and validate 

the helpfulness of our method for classification task. The two 

experiments verify that there are complementary information 

between the features of different attributes. Combining features 

of different attributes can improve the classification 

performance. 
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