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Abstract

Improvement in acquisition systems, has resulted in the ability to capture more realis-

tic 3D models of real world objects, creating a need for better data processing techniques,

as in the case of text and images. In this paper, we address the issue of learning class-

specific, deformable, 3D part-based structure for object part localization in 3D mod-

els/scenes. We employ an inference framework upon fully connected part-based graphs

inspired by Pictorial Structures (PS), which combine the local appearance of parts and

the long-range structural properties. Using efficient tools for learning the model and per-

forming inference, we show good results on a variety of classes, outperforming PS [7]

and ISM [15]. Further, a similar inference framework is employed to find dense corre-

spondences between 3D models, seeded by the above object part localization. Our results

show promise for application in more complex 3D processing tasks such as part retrieval,

pose estimation, scene understanding and recognition.

1 Introduction

The evolution of huge 3D repositories e.g. google warehouse [1], and systems like Kinect [25],

has boosted the need for effective 3D scene understanding, pose-estimation, localization,

registration etc. The 3D shape localization task is related to various strands of literature:

2D recognition and localization, 3D shape representation and shape matching. Fischler

and Elschlager [9] proposed representing objects as a collection of parts joined by “virtual”

springs. The appearance of each object part is modelled locally, while the joint locations of

object part detections must satisfy the long-range characteristics of the model. Felzenswalb

and Huttenlocher [7] revived this idea, reducing the graph (of all possible connections be-

tween object parts) to a tree, on which inference could be performed exactly and efficiently.

In a parallel effort, Fergus et. al. [8], showed how the more complex, fully-connected graph

could be approximately inferred using EM-based techniques.

This paper describes a method for localizing 3D parts using a constellation-based ap-

proach and finding dense correspondences initialized from the result. While 2D methods

matured gradually to issues of handling orientation, scale and deformation, in 3D these must

be handled outright. 3D models are often either too smooth (handmade) or too noisy (from
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Figure 1: First look: Fully connected graphs of object part nodes are learnt and inferred for 2 models

each of classes “Victoria” and “Lion” from the TOSCA dataset. Subsequently, correspondences can

be estimated between the 3D models. Note: Correspondences are depicted on a subsampled resolution

of the hierarchical optimization, for ease of viewing. Note: the models are coloured arbitrarily for 3D

visualization.

range-scans). Most databases lack the colour information taken for granted in 2D. The prob-

lem of finding “good” features for 3D–global (SH [13], SD [20] etc.) and local (SI [11],

HKS [26], FPFH [24])–has been discussed at length. What’s more, even popular 2D features

such as SURF have been extended to 3D [15]. (While no one feature combines the advan-

tages of all, the reliability of these has allowed people to move to the next step of retrieval

(BOF based [21]), classification ([28]) and recognition([2])).

For pose estimation, the problems of orientation, noise, deformation and finding good

shape description, means that performing ICP-based 3D matching on huge databases, is

very expensive and prone to minima. Knopp et. al. [15] showed that local and global shape

properties could be combined with the Hough voting based scheme of implicit shape mod-

els (ISM [18]) for object localization. Kinect [25] has used state-of-the-art learning and

hardware to perform real-time pose-understanding for the case of humans.

For many applications involving 3D data, effective recognition, matching and retrieval

play an important role. In the presence of holes or noise, part-based matching can clearly

suffer from information loss. Differences in scale and cross-class information can also lead

to difficulties. Additionally, if the part that we are trying to match is in a low detail area, then

matching to relevant parts can be tricky. In this context, learning the structure of objects can

be useful. E.g. Having observed the head and three paws of a cat, we should be in a better

position to predict what is missing (say the fourth paw), and where it should be, despite

model noise/holes. Knowing this, should enable us to search more intelligently and initialize

matching from methods such as ICP better. In 2D, the principled and effective framework

of pictorial structures has made many researchers return to it. It is natural to explore its

relevance for 3D localization tasks.

Overview: We describe the Pictorial Structures (PS) method for 3D [7] in § 2. The setup

is described in § 2.1 extended the fully connected (FC) approach in § 2.2. We compare our

method to PS in § 3.2 and the Hough-voting based ISM method in § 3.3. The localization

results are used to find good, dense correspondences between deformed class instances § 3.4.

We finally summarize our findings in § 4.

2 Pictorial Structures
We are given a set of 3D shape instances {Sm|m ∈ {1 · · ·M}}, denoted as a set of vertices

{νmv
3×1

|v∈{1 . . .Vm}} and edges {εme
2×1

|e∈{1 . . .Em} ,εm jk ∈{1 . . .Vm}}. The appearance of the

shape at the vth vertex is described by a descriptor smv. In this work, we use orientation invari-

ant Heat Kernel Signature descriptors for this (HKS [21]). Given P parts located at Lmp for

each Sm, the aim is to learn a graphical model (governed by parameter set Θ), in an inference

framework. The object parts, governed by appearance parameters α =
{

αp| p ∈ {1 . . .P}
}

,
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(a) (b)

Figure 2: Class-specific part-based graph: (a) User-marked

salient black points plotted over face model. The colour encodes

distance of surface HKS features from salient point 1. (b) The same

face in the “hole” test dataset. The variation of features from salient

pt. 1 is similar. Despite the hole, the part locations inferred in (b)

are similar to the ground truth of (a).

define the nodes of a graph G ⊂ F , (F : fully connected graph over P parts/nodes), whose

edge parameters are γ =
{

γi j|Gi j ∈ G
}

. Θ = {G,α,γ} must be learnt from the training

shapes and configurations. The learnt model is then used to jointly estimate (or sample) the

optimal layout of object parts L∗ in a query shape S∗ (or scene) by maximizing the posterior

as shown.

L∗ = argmax
L

p(L|S∗,Θ) = argmax
L

p(S∗|L,Θ)p(L|Θ) ≈ argmax
L

p(S∗|L,α)p(L|γ,G) (1)

where, p(S∗|L,α) =
P

∏
p=1

p(sLp |αp) (2)

p(L|γ,G) ∝ ∏
{i, j}∈G

ψ(Li,L j;γi j) (3)

Ideally, Θ is learnt by Maximum-Likelihood estimation from the training data. Assuming

that the parameters α and (G,γ) independently influence the part-appearance likelihoods and

the pairwise-part configuration likelihoods respectively, the joint probability is approximated

across the M instances to learn Θ as:

Θ = argmax
Θ

M

∏
m=1

p(Sm,Lm|Θ) = argmax
Θ

M

∏
m=1

p(Sm|Lm,α)∏
m

p(Lm|γ,G) (4)

For a tree-structured G, the parameters can be separated and learnt efficiently using the fol-

lowing:

αp = argmax
αp

∏
m

p(smLmp |αp), (5)

G = argmax
G⊂F

∏
m,{i, j}∈G

ψ(Lmi,Lm j;γi j), (6)

γi j = argmax
γi j

∏
m

ψ(Lmi,Lm j;γi j) for {i, j} ∈ G. (7)

In [7], optimizing (5) and (7) is equivalent to fitting distributions (gaussians) on the training

data, which can be learnt independently for the nodes and edges of the graph. To make

inference simple and optimal, [7] simplifies graph G as the minimum spanning tree over edge

costs defined on F , implicitly helping us identify which edges are the most ‘informative’ (see

[7] for algorithmic and implementation details).

2.1 Application to 3D data

Having introduced PS, we now see how it is applied to 3D scenes. Given the information

in § 2, the parameters αp of a distribution can be learnt by optimizing (5). A normal distri-

bution N (αµp ,αΣp) is used here (in the absence of enough training samples, αΣp is often
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further restricted to be diagonal). Similarly, the likelihood of a pair of nodes occurring at

two locations on the 3D shape is a function of their mutual locations. For invariance to sim-

ilarity transforms (scale, rotation, translation), the relative distance between nodes i and j

is computed, normalized to the global object scale. Directed or absolute euclidean distance

is usually used in the 2D scenario. We compare euclidean and geodesic measures for dis-

tance in (9); the latter demonstrates greater invariance to object deformation, and stability

to intra-class variation and articulation. γ is learnt similarly as α , after extracting the min-

imum spanning tree G (see [7]). The unary and pairwise terms of (5, 7) can be defined as

energies/costs for a given shape Sm as:

p(smLp |αp) ∝ exp
(

−φ(smLp ;αp))
)

∝ exp
(

−0.5(smLp −αµp)
⊤α−1

Σp
(smLp −αµp)

)

,

(8)

ψ(Lmi,Lm j;γi j,{i j} ∈ G) ∝ exp
(

−0.5(dist(Lmi,Lm j)− γµi j
)⊤γ−1

Σi j
(dist(Lmi,Lm j)− γµi j

)
)

.

(9)

The pairwise energy (9) differs slightly from the standard energy used by [7, 8]. The lo-

cation of the pth object part: Lmp, spans the object surface, discretized to the set of la-

bels/possible vertices v = {1 . . .Vm} . The likelihood of a given surface location Lmp = v

being a specific object part p is computed using (8). The geodesic cost of assigning part

locations Li,L j to labels/vertices i, j in (9) is approximated by the cost of the shortest path

dist(i, j) = dijkstra(i, j) given S = {ν ,ε} between i, j.

Given the energies for the unary and pairwise terms, estimation of the part configuration

for a query shape can be computed by existing tools for inference (BP [23], TRW-S [16]).

Inference could be done to either yield a posterior distribution which can be sampled for

likely configurations, or to simply find the maximum a-posteriori (MAP) estimate (the “best”

configuration). We do the latter. For the tree-based graph G, inference is exact and fast.

2.2 Inference on a fully connected (FC) graph

Depending on the exact form of the tree based graph, some nodes (especially leaf nodes)

which are not directly connected, lack repulsion to each other. E.g. when trying to fit the

head and paws of a cat to the query model of a cat for a tree learnt as in fig. 3(b), nothing

prevents two model paws from converging on one in the test model. This problem is fairly

well discussed (e.g. [17]). Thus, the need for more complex graphs e.g. a fully-connected

(FC) graph (the original F in § 2, also see fig. 3(c)). This is similar to the constellation model

proposed by Fergus et. al. [8], but solved with better, recent inference tools instead of an EM-

based optimization, for the supervised case. In the choice between the optimal tree-based

and sub-optimal FC case, [7] chose the former, as global optimization is much easier in the

2D case. However, inference tools such as [16] enable an efficient attempt at approximate

inference while evaluating how close we are to the global optimum, for such loopy graphs

in 3D. Therefore, we upgrade to the FC graph G = F . The unaries and pairwise terms stay

as before (8,9). Exact training of the FC graph is intractable. Here, we approximate them

as in (5-7). The estimation is performed as before using TRW-S [16] on the loopy F . The

important result here, is that approximate inference over the more complicated FC model

yields better performance than exact optimization on the simpler PS one. The experimental

setup and findings are detailed now.
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3 Experiments

Part localization in objects and object localization in scenes is essential for tasks of recogni-

tion and retrieval in object datasets. We now show our evaluation of the basic PS set up in

§ 3.1 and show the improvement of our fully connected (FC) model over PS in § 3.2. We

then compare our method against another established method of object detection: Hough-

voting based ISM in § 3.3. We then show an extension of our method for the purpose of

dense correspondence establishment in § 3.4.

3.1 Dataset

The experiment was conducted on 10 object classes (cat, centaur, david, dog, face, gorilla,

horse, lioness, michael, victoria) from the TOSCA dataset [5] (each dataset has between

15-20 models, split in half for training and testing, each model with ∼ 7000 vertices and

∼ 3000 faces). The TOSCA 3D models have relatively little noise, but good surface detail,

mesh quality and realistic object deformations. Ideally, we would like the system to be totally

unsupervised. However, the task of finding salient points that occur consistently across all

models (through clustering and salient feature detection) was difficult. Therefore, for train-

ing, the user marks a few (5−8) salient points (e.g. eyes, mouth, paws, tail) across instances

of each class, which is a relatively simple job. These points define object parts/nodes in the

graph. Additionally, we construct an artificial "hole dataset", by creating holes in the above

TOSCA test set at the locations of each of the part positions (one part at a time) for each class

(see fig. 2). The hole, while removing the object part detail, only affects the object model by

5−10%. As described in § 2.1, HKS descriptors are calculated on all the models including

the hole dataset. We found HKS to be much more stable and proportional to changes on the

surface than other feature types. An example of the test dataset, hole dataset, annotation and

smooth feature variation is illustrated in fig. 2. For performance evaluation of algorithms,

accuracy is measured with respect to the user-marked ground-truth annotations on test data.

Interestingly, classes such as cats are symmetric around a plane passing through the middle

of their body. Therefore at test time, both allowable flips are taken into consideration while

evaluating error. Another dataset of interest is the SHREC correspondence dataset (see [4]).

This dataset has a variety of transformations, noise and holes added to it to aid in bench-

marking. It has three classes of objects: human, dog, horse. We will use our learnt object

part models to evaluate against it qualitatively.

3.2 PS vs. FC

As described in § 2.1-2.2, the training parameters are learnt. At test time, inference over

a query involves finding a configuration that maximizes the combination of unary (8) and

pairwise (9) terms. The inference problem involves finding the optimal configuration or the

optimal placement of nodes in the model/scene. This is equivalent to a labelling problem,

where each node of the graph (object part) can take one of the N possible labels (∼ 7000

vertex positions). In turn, each edge of the graph can have N ×N combinations of node

labels on its ends. Optimization involves enumerating the unaries and pairwise terms for

all such labellings. For unaries (8) this is easy. The distance between any two labels, or

any two positions on the model graph can be found (9) effectively using the Floyd-Warshall

algorithm. Inference is then performed for an MAP estimate. The current optimum can also

be compared to the global possible optimum to evaluate the quality of the optimization.

We run the tree-based PS model of [7] on test dataset described and the performance are

summarized in (see fig. 3(b), table 1 (col 4)). We then evaluate our fully connected FC model.
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Figure 3: 3D Shape localization: We compare the results of running PS of [7] (b) with our FC model

(c) and the ISM model (d) of Knopp et. al.[15] against the ground truth (a). Our results outperform the

others, considerably. The ground truth can be noted in (a). In (d), the valid contributing features to the

ISM hypothesis are marked in blobs (coloured uniquely by part). The best part locations are connected

to the estimated object centre (denoted by a +). While the detected parts are usually in the correct area,

many go missing when the object undergoes deformation.

The results are seen in figs. (3(c), 5) and table 1. The difficulty of encouraging repulsion

amongst the nodes is hardly exaggerated, as can be seen in the superior performance both in

the numbers and the quality of the output. Therefore, despite a much more complex model,

we find our inference mechanism is consistently superior to the tree-based PS approach.

Despite not reaching the best solution, the TRW-S solution tells us how far we are from the

lower bound, which is also informative.

3.3 ISM vs FC

We evaluate our findings by comparing our FC model with the popular hough-voting based

ISM framework of [18] used for 3D localization in Knopp et. al. [15], in a framework equiv-

alent to ours. In its original form, the voting based algorithm clusters visual words and uses

the elements of each cluster to vote for the object center location using memory from the

visual word occurrences stored from training. In our experiment, we use the user-clicked

salient points as the training visual word occurrences. Book-keeping from training data

helps to retrieve relative locations to the object centre which is used to cast votes for the

object centre. The rotation invariant voting methods of [14] were used for handling orienta-

tion ambiguity in the models. The voting space is searched for a maximum. This is used to

validate those features that voted correctly for it. The means of the validated features belong

to each visual word, then form the detection of that visual word. In [15], ISM voting is

done in a euclidean framework while our framework optimizes geodesic distances so errors

are compared in both measures. The ISM results for the complete and hole test datasets are



PRASAD, KNOPP, VAN GOOL: CLASS-SPECIFIC 3D LOCALIZATION 7

I. euclid II. geodist I.Euc,hole II.geodist,hole

FC ISM ISM (p) PS FC ISM ISM (p) % ISM FC ISM ISM(p) FC ISM ISM(p) % ISM

cat 0.13 0.50 3.61 1.23 0.15 0.57 4.15 5.75/8 0.17 0.63 3.05 0.25 1.42 3.84 5.26/8

centaur 0.43 0.57 1.25 1.25 1.01 1.09 1.57 3.33/8 0.41 0.72 1.21 0.89 2.92 2.34 4.21/8

david 0.75 0.95 1.36 2.33 1.39 1.47 1.87 2.75/5 0.78 1.03 1.37 1.60 2.39 2.34 2.78/5

dog 0.22 0.78 1.12 1.26 0.54 1.22 1.44 5.33/8 0.24 0.84 1.15 0.41 1.23 1.44 5.33/8

face 0.1 0.71 0.78 0.29 0.10 0.86 0.92 4.63/5 0.54 0.81 0.91 0.60 1.09 1.16 4.48/5

gorilla 0.65 1.27 1.33 3.08 1.11 2.42 2.47 4.91/6 0.69 1.35 1.41 1.14 2.93 2.82 4.74/6

horse 0.38 0.96 1.53 1.50 0.66 1.21 1.67 1.78/8 0.40 1.31 1.61 0.67 2.29 2.06 1.83/8

lioness 0.51 0.47 2.84 1.57 0.83 0.84 3.88 3.86/8 0.54 0.51 2.62 0.96 1.62 3.83 3.98/8

michael 0.62 0.75 1.09 2.42 1.18 0.97 1.43 4.2/6 0.61 0.83 1.11 1.28 2.24 2.07 4.37/6

victoria 0.65 0.92 3.03 2.97 1.51 1.37 5.01 2.3/6 0.67 0.92 3.00 1.35 1.43 4.99 2.5/6

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 1: Numerical Evaluation: Our FC model is compared with the best case ISM method. The full

and "hole" versions of the TOSCA class datasets are explored. Both euclidean and geodesic distance

based errors of prediction are evaluated on unit-scale models w.r.t. ground truth. Note, these measures

lie in two different spaces and cannot be directly compared. ISM often results in partial matches, there-

fore the naive ISM error is stated alongside the ISM error penalized for missing parts. For explanation

please see § 3.3.

summarized in fig. 3(d) and table 1.

In ISM, the mean of these feature locations belonging to a visual word doesn’t have to lie

on the model and is thus mostly incorrect with respect to the ground truth. At this level, our

FC method (table 1 cols 1,9) wins hands down with respect to ISM (cols 2,10). We give ISM

additional benefit; instead of choosing the mean of the visual word detections, we choose the

best possible surface features of this visual word as its object part location. Now the geodesic

error disparity of ISM (cols 6,13) understandably reduces w.r.t us (cols 5,12). Also, the

validation step of the ISM acts as a filter which removes those features that don’t vote for the

final object centre. This pruning is aggressive and often results in the removal of many parts

(fig. 3(d): some parts are detected correctly, but many are left out). The error of this model

is therefore measure with (cols 2,6,10,13) and without penalizing (cols 3,7,11,14) missing

parts. While the average un-penalized error is low (in the best cases of cols 6,13) implying

few false positive part detections, the localizations are clearly inadequate (see fig. 3). For the

penalized version, the penalty of each missing part is set at the average distance of model

vertices in euclidean and geodesic distance measures. This causes an increase the ISM error

(cols 3,7,11,14) as is expected when parts go undetected in accurate models. The percentage

of the nodes that are detected by ISM across the test classes are also shown in col. 15.

As can be seen, our approach generally outperforms the ISM results both in the penal-

ized and un-penalized versions. In the hole dataset, these differences are heightened. One

could argue that the user-annotated ground truth is “slightly faulty” in itself as there is really

no one location where “the foot” is in the space of foot-related vertices. In this context the

visual quality of our results speak for themselves (see fig. 3). The ISM based framework ap-

proximates a star-formation graphical model. However, unlike other methods inference here

is done approximately and alternately (in a 2 step iteration). The voting space is discretized

and many parameters affect the performance of this system. Therefore, while the error in

individual part localizations is not so high, relevant parts are left out of the hypothesis far too

easily. While in the presence of holes this may be a good thing, in most full, noiseless, com-

plete models this is definitely a mistake. The advantage of inference on the fully connected

model is that it performs a joint optimization on the objective, with very few parameters to

hand-tune.

3.4 Dense correspondence estimation

Correspondence estimation (sparse and dense) is an important problem for many applications

such a motion capture, morphing etc. The simplest way of solving such an assignment
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Figure 4: Correspondence finding: The results of the naive Hungarian algorithm (row 1) is compared

with our method at 300 vertices (row 2) and then at 1200 vertices (row 3).

problem is employing the Hungarian algorithm for bipartite graph matching (similar to [19]).

More exact/interesting algorithms have been applied in 2D e.g. [3],[6], [31],[4] and some in

3D ([10],[5],[27],[12],[30]).

The Hungarian algorithm uses the similarities of nodes in a graph for assignment, but

now we’re also interested in spatial consistency, i.e. every vertex i of a 3D shape Sm should be

matched to a vertex Li of Sn, such that similar parts are in correspondence, while preserving

spatial smoothness of assignments. We extend the idea of § 2; the graph G is replaced

with vertex nodes νm and edge connectivities εm (as in § 2.1) of shape Sm. Inference of

configuration Lm is now replaced with the task of assigning the appropriate vertex label

Li ∈ {1 . . .Vn} of Sn to each vertex i ∈ {1 . . .Vm} of Sm. Similar to (8), the unary potential

evaluates how well the shape Sn at vertex Li described by snLi
matches smi. The pairwise term

now encourages labels Li,Li′ in Sn to have a similar relative distance to that of neighbouring

nodes i, i′ in Sm. Finding and localizing object part structure as in § 2-2.2, gives us a sparse

correspondence of salient object parts, which can be encoded as hard constraints to seed the

dense correspondence optimization. Part p localized to i in Sm and to k in Sm, gives us a

vertex correspondence i,k between them. In summary, the unary and pairwise potentials can

be written as:

φ(Li;λ ) =

{

∞, (Li 6= k)&(i,k in corr.)

λ (snLi
− smi)

2
, otherwise

(10)

− log(ψ(Li,Li′ |λ )) =

{

∞, (Li 6= k)&(i,k in corr.)

(distn(Li,Li′)−distm(i, i′))2
, otherwise

(11)

Experiment: The above energy can be solved by applying TRW-S as in § 2.2. λ is em-

pirically set. In our problem, with meshes of ∼ 3000 nodes and label range of ∼ 3000, this

is a computationally daunting task. To get around this, we perform this correspondence es-

tablishment hierarchically, the mesh resolution is increased in steps of ∼ 300 vertices. The

shape descriptors from the highest resolution are retained and at any resolution the descrip-
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(a) (b) (c) (d)

Figure 5: Some results on TOSCA hole and SHREC test datasets. (a,b) Shapes from the TOSCA

dataset with holes (missing faces). (c,d) Examples from SHREC’10 dataset with provided deformations

such as artificial noise, micro-holes, local scale change or normal holes.

tors to the closest high-resolution vertex are employed. The result of the previous stage is

used as fixed correspondences in the subsequent stage. Labels that are highly unlikely may

even be pruned. Thus a relatively simple problem is solved at each step. Naturally, the results

of the first few stages are crucial in determining the outcome. The results of performing this

experiment can be seen in fig. 4 compared to a simple Hungarian matching baseline.

4 Summary

We have shown how graph based inference can be used to learn object part structure simi-

lar to the popular work of Pictorial Structures, by extending the algorithm to 3D, for object

part localization and dense correspondence finding. We further explore the power of fully

connected object part graphs with pairwise cliques to allow the model maximum power.

We considerably outperform Pictorial Structure and ISM based benchmarks, both quantita-

tively and qualitatively. The ability to learn object part structure affords us the opportunity

to perform more complex tasks in 3D such as semantic in-painting of missing parts, object

classification, morphing, correspondence establishment for motion capture etc. Going for-

ward, it would also be useful to study the sensitivity of the localization results to the object

parts chosen by the user. Future extensions of this work include removing supervision, other

methods of training [22] and inference [29] and examining the method’s robustness to factors

such as user annotation error, meshing quality etc.
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