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Abstract—In this paper, novel nonlinear subspace methods for
face verification are proposed. The problem of face verification
is considered as a two-class problem (genuine versus impostor
class). The typical Fisher’s linear discriminant analysis (FLDA)
gives only one or two projections in a two-class problem. This is
a very strict limitation to the search of discriminant dimensions.
As for the FLDA for class problems ( is greater than two),
the transformation is not person specific. In order to remedy these
limitations of FLDA, exploit the individuality of human faces
and take into consideration the fact that the distribution of facial
images, under different viewpoints, illumination variations, and
facial expression is highly complex and nonlinear, novel kernel-dis-
criminant algorithms are proposed. The new methods are tested in
the face verification problem using the XM2VTS, AR, ORL, Yale,
and UMIST databases where it is verified that they outperform
other commonly used kernel approaches such as kernel–PCA
(KPCA), kernel direct discriminant analysis (KDDA), complete
kernel Fisher’s discriminant analysis (CKFDA), the two-class
KDDA, CKFDA, and other two-class and multiclass variants of
kernel-discriminant analysis based on Fisher’s criterion.

Index Terms—Face verification, Fisher’s linear discriminant
analysis (FLDA), kernel techniques, two-class problems.

I. INTRODUCTION

F
ACE recognition/verification has attracted the attention of
the research community for more than two decades and is

among the most popular research areas in the field of computer
vision and pattern recognition. The two problems of face verifi-
cation and recognition are conceptually different. On one hand,
a recognition system assists a human expert in determining the
identity of a test face. On the other hand, person verification sys-
tems should decide whether an identity claim is valid or invalid.

The most popular among the techniques used for face recog-
nition/verification are the so-called subspace methods. The sub-
space algorithms represent the facial image by a feature vector
and their aim is to find projections (bases) that optimize some
criterion defined over the feature vectors that correspond to dif-
ferent classes. Then, the original high-dimensional image space
is projected into a low-dimensional one. The classification is
usually performed according to a simple similarity measure in
the final multidimensional space.
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Various criteria have been employed in order to find the bases
of the low-dimensional spaces. Some of them have been de-
fined in order to find projections that best express the popula-
tion without using the information about the way the data are
separated to different classes (e.g., principal component anal-
ysis (PCA) [1] and non-negative matrix factorization [2]). An-
other class of criteria is the one that deals directly with the dis-
crimination between classes (e.g., Fisher’s linear discriminant
analysis (FLDA) [3]–[5]). Finally, statistical independence in
the low-dimensional space can be also used as a criterion in
order to find the linear projections (e.g., independent compo-
nent analysis (ICA) [6], [7].

Face verification and recognition are usually treated differ-
ently when discriminant subspace methods are used for feature
selection. That is, face verification is treated as a two-class
problem while the face recognition is an class problem (
is the number of different facial classes). This yields a different
projection pursuit strategy. On one hand, the strategy for face
verification is to find class-specific projections that separate
the genuine class from the impostor class optimally (under
some criterion). The class-specific-discriminant projection is
intuitively motivated by the fact that each face is unique and
it should have its own discriminant parts. On the other hand
in face recognition systems, the discriminant projections are
found by trying to optimally separate all of the genuine classes.
This strategy gives a set of discriminant projections that is
common for all of the facial classes. For face recognition, the
interested reader may refer to [8]–[11] where face recognition
is treated as an class problem.

In this paper, face verification is modelled as a two-class
problem. The motivations of such modeling are supported by
various methods that take into account the individuality of facial
features [12], [13]–[19]. In [13] and [14], two-class problems
(genuine versus impostor claims) have been formed for discrim-
inant feature selection in the nodes of elastic graphs. In [12] and
[15], two-class problems have been formulated in order to find
the class-specific discriminant weights for the facial landmarks
that correspond to nodes of elastic graphs and use this infor-
mation when forming a similarity measure between faces. Re-
cently, it has been shown that the verification performance can
be highly improved by using class-specific discriminant func-
tions in every step of elastic graph matching [16]. Moreover, the
use of person-specific graphs with nodes placed at discriminant
facial landmarks greatly improves the performance of elastic
graph matching in frontal face verification [17]. In [18], it has
been shown that discriminant non-negative matrix factorization
methods with class-specific bases perform better than other ap-
proaches with common bases. Additional details about mod-
eling face verification as a two-class problem are given in [19]
introducing the class-specific Fisherfaces. The motivations of
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using class-specific transforms are supported by other works as

well, which employ class-specific fusion rules for person veri-

fication (such as voice, fingerprint, and hand features [20]).

The methods proposed in this paper exploit the individuality

of the human face in order to find a nonlinear subspace represen-

tation with enhanced discriminant power. In detail in this paper,

we propose a novel class-specific discriminant criterion which,

when optimized, leads to a discriminant low-dimensional rep-

resentation of faces. Furthermore, in order to represent the face

better in various poses, we combine the proposed criterion with

kernel techniques and we present two techniques for optimizing

the criterion in arbitrary dimensional Hilbert spaces leading to

a novel class-specific kernel-discriminant analysis (CSKDA).

However, the main contribution of the proposed CSKDA is that

it tries to remedy some of the limitations of the kernel methods

based on the Fisher’s discriminant criterion that provide a very

limited number of features in two-class problems (i.e., the

so-called kernel direct discriminant analysis (KDDA) provides

only one discriminant projection [9] and the so-called complete

kernel Fisher discriminant analysis (CKFDA) [11] has only

two discriminant dimensions in two-class problems). These

spaces of a very limited number of dimensions may prove to

be insufficient for correctly representing facial images. The

proposed approach discovers a low-dimensional space with

the number of dimensions to be proportional to the number of

images available for training. Experiments conducted in the

XM2VTS [21], AR [22], [23], the ORL [24], Yale [25], and

the UMIST [26] databases using facial images at various poses

demonstrate the potential of the proposed methods.

The rest of the paper is organized as follows. The problem of

face verification and how kernel subspace methods that can be

applied to this problem is discussed in Section II. In Section III,

the new criterion is described. In Sections III-B and C, two al-

gorithms for solving the optimization problem and finding the

discriminant subspace transform are proposed. A comparison

of the proposed method to other commonly used kernel ap-

proaches in terms of the number of extracted features and com-

putational complexity is given in Section IV. Experimental re-

sults with artificial data and comments on face verification are

presented in Section V. Face verification experiments with var-

ious databases are shown in Section VI. Finally, conclusions are

drawn in Section VII.

II. FACE VERIFICATION AND KERNEL SUBSPACE TECHNIQUES

In this section, we will briefly outline the problem of face

verification and the framework under which a kernel subspace

method can be used in order to solve this problem.

The facial image representation, which is the facial image or

augmented facial representations (i.e., Gabor features [5]), is

scanned row-wise to form a facial vector . Let be

a facial vector database (training set) that contains a total of

facial vectors. Every facial vector is supposed to belong to one

of the facial (person) classes with

, considered as the clients of the verification system.

For a face verification system that uses , a genuine (or client)

claim is performed when a person provides its facial vector ,

claiming that and . When a person provides

its facial vector and claims that , with , an

impostor claim occurs. The scope of a face verification system is

to properly handle these claims by accepting the genuine claims

and rejecting the impostor ones.

In order to make use of kernel techniques, the original input

space is projected to an arbitrary-dimensional space (the

space usually has the structure of a Hilbert space [27], [28]).

To do so, let be a nonlinear

mapping from the input space to the Hilbert space .

In the Hilbert space, we want to find linear projections to a

low-dimensional space with enhanced discriminant power. The

discriminant power of the new space is often defined in respect

to a discriminant optimization criterion. This discriminant

criterion defines an optimization problem which gives a set of

linear projections in (linear in is nonlinear in ).

A linear subspace transformation of onto a -dimen-

sional subspace, which is isomorphic to , is a matrix

with . The new vector of

the facial vector is given by

(1)

The dimensionality of the new space is usually much smaller

than the dimensionality of and the dimensionality of the input

space (i.e., ). The matrix multiplication in (1) is

computed indirectly using dot-products in the Hilbert space

[9], [11], [29] (the so-called kernel trick, see the next section

for details). The bases matrix can be the same for all facial

classes of the database or can be different for each facial class. In

the case of class-specific image bases, for the reference person

, the set that corresponds to impostor images is

used in order to construct the two-class problem (genuine versus

impostor class) and obtain the matrix [12], [30].

After the projection, given by (1), a similarity measure is

chosen in order to quantify the similarity of a test facial vector

to a certain class. This similarity measure can be the norm,

the norm, the normalized correlation, or the Mahalanobis

distance [31].

III. DISCRIMINANT CRITERION

Before we develop the new optimization problem, we will in-

troduce some notation that is used throughout this paper. Let

be the reference person that will be used for defining the

person-specific algorithms. Let and be the numbers of

genuine and impostor images in the training set for the person

, respectively. Usually, the number of genuine images is much

smaller than the number of impostor images for a reference

person . Thus, in the following analysis, we will work under

the assumption that . Let be the total

number of images in the training database. The genuine vec-

tors of the person will be denoted as

while the impostor images of the person will be denoted

as . Also let

and be the

mean vectors of the genuine class, the impostor class, and the

total mean of the facial vectors in the Hilbert space . Any func-

tion satisfying the Mercer’s condition can be used as a kernel.

The dot product of and in the Hilbert space can

be calculated without having to explicitly evaluate the mapping

as (this is also known as the
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kernel trick [27], [28]). The typical kernels that have been used

in our experiments have been polynomial and radial basis func-

tions (RBF) kernels

(2)

where is the degree of the polynomial and is the spread of

the Gaussian cluster. Kernels that do not satisfy the Mercer’s

condition [27] have also been successfully applied for face

recognition [31].

In the experiments described in this paper, we have used frac-

tional power polynomial models as well (i.e., polynomial func-

tions, such as the ones defined in (2)), with . A frac-

tional power polynomial, however, does not necessarily define

a kernel function, as it might not define a positive semidefinite

Gram matrix [31]. Note that the sigmoid kernels, which are one

of the three classes of widely used kernel functions (polynomial

kernels, Gaussian kernels, and sigmoid kernels), do not actu-

ally define a positive semidefinite Gram matrix either. Never-

theless, the sigmoid kernels have been successfully used in prac-

tice, such as in building support vector machines (SVMs) [32].

In the case such models are adopted in the presented methods,

additional comments are inserted throughout this paper in order

to treat these cases.

A. Class-Specific Criterion

The criterion that is used in this paper in order to build the

proposed feature extraction method is the generalization of the

criterion used in [13] for discriminant graph node weighting

and in [30] and [17] for discriminant feature extraction in graph

nodes. Here, we will generalize this criterion for nonlinear fea-

ture extraction, with the help of a simple similarity measure in

the Hilbert space . This measure quantifies the similarity of a

given feature vector to the reference facial class in the sub-

space spanned by the columns of the matrix ,

with . The norm in the reduced space spanned by the

columns of is used as a similarity measure

(3)

which is actually the Euclidean distance of a projected sample

to the projected mean of the reference class and is one of most

usually employed measures in pattern recognition applications

(i.e., the distance from the center of the class). This distance

should be low for the samples of the genuine class and should

be high for the samples of the impostor class.

Now, in order to find a discriminant linear transformation in

, we demand that the sum of the similarity measures for

all (impostor similarity measures) are to be maximized

while minimizing the sum of the similarity measures for

all (client similarity measures). Thus, the discriminant

projections are found in the training set as the ones that

maximize the ratio

(4)

where

and is the trace of matrix

. The direct optimization of in is an intractable

problem due to the fact that both and are matrices with

arbitrary dimensions. Before presenting the proposed methods,

we will briefly outline research that has been conducted con-

cerning the criterion in (4). A form of the above criterion that

produces linear-discriminant transforms has been used in [13]

and [33] for discriminant feature extraction in the nodes of

elastic graphs. A similar approach has been followed in [14],

[30], [34] for the same purpose. The solution of the criterion has

been further analyzed in [17], derived in a two-step optimiza-

tion procedure. Moreover, another form of the above criterion

has been considered in [18]. That is, in [18], discriminant costs

based on the discriminant criterion (4) have been added in the

NMF cost leading to the so-called class-specific discriminant

NMF (CSDNMF) algorithm [18], [35]. Independent studies

for the benefits of the above criterion have been started by

the image retrieval community, leading to the so-called biased

discriminant analysis [36] (BDA). Nevertheless, we should

note that research concerning BDA has been initiated by the

biometric community [13], [34], [30], [33], [14].

A kernelized version of the criterion has been proposed in

[36] and it has been solved using a regularization strategy (i.e.,

adding a scaled version of the identity matrix to the kernel ma-

trices). In the following, two different theoretical sound and nu-

merical stable methods are presented for solving the optimiza-

tion problem and are similar to the ones used in [9], [11], and

[29] for optimizing the PCA or the LDA criterion with kernels.

• In Section III-B, the direct optimization approach will be

presented. The direct optimization approach exploits the

discriminant information hidden in the null-space of the

matrix (i.e., the eigenvectors that correspond to null

eigenvalues of ) and has been motivated by the direct

discriminant analysis algorithms that have been proposed

in [8], [37], and [38]. The main idea behind the direct op-

timization algorithm is that the null space of the matrix

may contain significant discriminant information in the

case where the projection of the matrix is nonzero in

that direction. No significant information will be lost if the

null space of the matrix is discarded (the geometrical

interpretation of this statement is shown in the Appendix).
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• In Section III-C, an alternative way for finding projections

that maximize the ratio (4) will be presented. This method

will be called two-step dimensionality reduction due to the

fact that it uses two-dimensionality reduction steps prior to

optimization and is inspired from [11]. The main idea of

this optimization approach is to find nonlinear mapping of

the data that map the arbitrary dimensional Hilbert space to

a finite dimensional subspace without losing any informa-

tion with respect to the optimization problem. Afterwards,

the problem is redefined in the finite dimensional subspace

and solved there, using typical linear techniques. Finally,

two different criteria are defined in finite dimensional sub-

space in order to take into consideration both the null and

the non-null spaces of the matrices, producing two types of

discriminant information: the regular and the irregular dis-

criminant information. The two criteria that give the dis-

criminant features will be defined below in their general

form.

B. Direct Optimization of the Discriminant Criterion

1) Eigenanalysis of in the Hilbert Space : In order

to solve the optimization problem (4), we start by solving the

eigenvalue problem of , which can be rewritten here as

follows:

(5)

where is the number of impostor facial vectors in the training

set and . The first (with

) most significant eigenvectors of , which corre-

spond to its nonzero eigenvalues, can be indirectly derived from

the eigenvectors of the matrix . The compu-

tation of can be performed by only using dot products

in the Hilbert space

Using the kernel function, for the genuine and impostor class

the four dot product matrices can be defined as:

and

and

and (6)

Using the previously defined matrices, can be expressed

as

(7)

where is a matrix with terms all equal to one.

The detailed derivation of (7) can be found in the Appendix.

Let and be the th eigenvalue and the

corresponding eigenvector of , sorted in ascending order

of eigenvalues. It is true that .

Thus, are the eigenvectors of . In order to re-

move the null space of , the first eigenvectors

, where , whose cor-

responding eigenvalues are greater than 0 should be calculated.

Thus , with is a

diagonal matrix. In the case that strictly positive kernels

are employed, such as the polynomial kernel with and

and RBF kernels, the matrix is positive semidefinite.

In case that fractional power polynomial models are adopted

(i.e., ), it is possible that negative eigenvalues may

occur. In this case, there are two different alternatives:

• to remove the eigenvectors that correspond to negative

eigenvalues. This step is preferred when the negative

eigenvalues are few and their magnitude is very small

compared to the magnitude of the positive eigenvalues.

This method has been successfully used for face recogni-

tion when using KPCA with fractional polynomial models

[31].

• to use only the magnitude of the negative eigenvalues. This

step is preferred when the magnitude of the negative eigen-

values is not small, or when there are a lot of dimensions

that correspond to negative eigenvalues in the embedding

[39], [40].

We have used both alternatives approaches when using the frac-

tional polynomial models and both have lead to approximately

similar verification results.

2) Eigenanalysis of in the Hilbert Space: Let

. Using the matrix , it can be easily seen that

while can be expanded as

(8)

Using the kernel matrices and , a closed-form

expression of can be formed as

(9)

where and are defined in Appendix B along with the

detailed derivation of the expression (9).

The matrix has size . Thus, the eigenanalysis

of is computationally feasible. Let be the th-or-

dered eigenvector of matrix with size , with

sorted in descending order of the corresponding

eigenvalue . In the set of the ordered eigenvectors, those that

correspond to the smaller eigenvalues maximize the discrimi-

nant ratio in (4). Discarding the vectors with the highest eigen-

values, the remaining eigenvectors are represented in the

form of the matrix . Defining a matrix ,

we can obtain , with , a

diagonal matrix. When adopting fractional power poly-

nomial models, a similar approach to Section III-B1 should be

followed in order to take care of the negative eigenvalues that

may occur during the eigenanalysis of .
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Based on the previously presented analysis, a set of optimal

discriminant features can be derived from . The

features form a low-dimensional subspace in , where the dis-

criminant ratio in (4) is maximized. However, it is highly pos-

sible that eigenvalues exist with in . This may occur

in many real-world applications where the impostor claims are

more than the genuine claims in the training set. In order to

solidify the procedure and prevent the existence of zero eigen-

values in the final transform, a regularized alternative criterion

is used as [41] and [42]

(10)

where is a regularization parameter. The alternative

criterion (10) can be easily proven to be equivalent to (4) by

using an analysis similar to the one used for the conventional

LDA criterion in [8], [9], [41], and [42]. Thus, the matrix

is nonsingular.

3) Feature Extraction: The matrix is used

for discriminant dimensionality reduction in the Hilbert space

. Let a test facial image be scanned row-wise to form a facial

vector in order to extract the low-dimensional vector from

the facial vector using the proposed method. This procedure is

detailed in Appendix D. The number of dimensions of the vector

is . The measure that quantifies the similarity of a

facial vector to the reference facial class is given by

(11)

In order to accept the claim (i.e., verify that the facial vector

belongs to the reference person ), the measure should be

compared to a threshold (i.e., ).

C. Two-Step Optimization Method for the Discriminant

Criterion

In this section, an alternative way for finding projections that

maximize the ratio (4) will be presented.

In the Hilbert space , it is almost impossible to make

invertible (the matrix is invertible if the dimension of the

feature vectors is smaller than the number of client images).

Thus, vectors such that always exist. These

vectors are very effective for discrimination if they satisfy

at the same time since, for these vectors, it

is valid that . A geometrical interpretation

of the effect of the vectors that satisfy and

on the training genuine and impostor vectors is

given in Appendix A. In such a case, the criterion (4) degener-

ates into the following:

(12)

Using the criteria and , two kind of discriminant fea-

tures can be calculated. We will call the discriminant projections

of the criterion as regular while the ones of the criterion

will be called irregular.

1) Reducing : The first step is to reduce the Hilbert space

by using a linear mapping without discarding any discrim-

inant information. This mapping is comprised of the non-null

eigenvectors of . The non-null eigenvectors

of can be calculated using the kernel matrices defined in

Section III-B. First can be written as

(13)

where and . Only the first

(with ) positive eigenvalues of are of interest to

us. These eigenvectors can be indirectly derived from the eigen-

vectors of the matrix .

The can be expanded as

(14)

The detailed derivation of (14), along with the definition of the

matrices and , can be found in Appendix E. Let and

be the th eigenvalue and the corresponding

eigenvector of , sorted in ascending order of eigenvalues.

It is true that . Thus,

are the eigenvectors of . In order to remove the null space

of , the first eigenvectors (given in the matrix

, where ), whose cor-

responding eigenvalues are nonzero should be calculated. Thus,

, with , a diagonal

matrix. The orthonormal eigenvectors of are the columns of

the matrix

(15)

When adopting fractional power polynomial models, a similar

approach to Section III-B1 should be followed in order to take

care of the negative eigenvalues that may occur during the eige-

nanalysis of .

It can be easily proven that is compact and self-adjoint

and, thus, the columns of the matrix form an orthonormal

basis in . In [11], for the Fisher’s discriminant ratio, this space

has been the KPCA space spanned by the orthogonal eigen-

vectors that correspond to the non-null eigenvalues of the total

scatter matrix. We define the two orthogonal complementary

subspaces and of . is spanned by

the column vectors of . Its orthogonal is the one that cor-

responds to the null space of . We can now easily prove that

there is no discriminant information in in respect to the cri-

terions and , since for the vectors , it is valid

that and at the same time (please

refer to Appendix A). Thus, all of the discriminant information

lies inside .
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Now, based on the previous remarks, the two alternative dis-

criminant criteria can be defined as

(16)

and

and

(17)

where , and

with .

2) Feature Extraction: Let be all of

the eigenvectors of . The first eigenvectors

correspond to the nonzero eigenvalues (range space). The

two orthogonal complementary subspaces of are defined as

and .

Thus, . In the space , we seek for the regular

discriminant projections, while in the space , we seek the

irregular discriminant projections. It is easy to prove that for

any nonzero vector , the inequality

holds (i.e., the matrix is strictly positive definite). The

previous statement shows that discriminant projections exist

that maximize in . For testing a facial vector , two

discriminant vectors and can be derived. The above

procedure is summarized in Appendix F. Thus, two distinct

similarity measures can be defined. The first corresponds to the

regular discriminant information

(18)

where is the regular discriminant vector of . The second

similarity measure corresponds to the irregular discriminant in-

formation

(19)

where is the irregular discriminant vector of . The two simi-

larity measures can be used in an independent fashion or can be

fused using empirical or discriminant fusion rules [11], [18].

IV. COMPARISON WITH KDDA AND KPCA PLUS LDA

In this section, we compare the proposed techniques with

the multiclass and two-class KDDA and CKFDA in terms of

the number of extracted features and in terms of computational

complexity.

A. Direct CSKDA Versus Multiclass and Two-Class KDDA

Approach

In [9], kernel direct LDA (KDDA) has been proposed as the

nonlinear extension of direct LDA (DLDA). KDDA has been

proven to be effective for face recognition in [9]. For a multi-

class problem, (having classes), the method begins with the

eigenanalysis of the between-class scatter matrix in a Hilbert

space. The between-class scatter matrix has, at most,

eigenvectors that correspond to nonzero eigenvalues. Then, the

within-class scatter matrix is projected to the non-null space of

the between-class scatter matrix. Finally, eigenanalysis is per-

formed to the projected within-class scatter matrix in order to

produce the final discriminant transform that gives no more than

discriminant projections. For a two-class problem (i.e.,

), KDDA returns only one discriminant vector which is

given by the projection of the samples into the difference of the

two-class mean vectors.

When applying the direct optimization approach in order

to find the discriminant projections of the proposed CSKDA

method then, eigenanalysis is initially performed to the im-

postor matrix . The matrix has, at most,

eigenvectors that correspond to nonzero eigenvalues. Then, the

matrix is projected to the non-null space of . Finally,

eigenanalysis is performed on the projected matrix . This

method gives, at most, discriminant features which, in

practice, is much bigger than the features given by the

multiclass KDDA method and the one-dimensional space that

is given by the two-class KDDA variant.

The computational complexity for finding the discriminant

transform of the multiclass KDDA method is , where

is the number of training samples (the complexity of the eigen-

analysis of an matrix) [9], [11]. The class-specific KDDA

should be calculated for every client; thus, its complexity is

. It can be easily proven that the complexity of the di-

rect optimization of the proposed CSKDA is as well.

B. Two-Step CSKDA Versus Multiclass and Two-Class

CKFDA Approach

The most recent method for optimizing Fisher’s criterion with

kernels is a combination of KPCA with LDA, the so-called

CKFDA [11]. The CKFDA starts with the eigenanalysis of the

total scatter matrix that has, at most, eigenevectors that cor-

respond to non-null eigenvalues. The between-class and within-

class scatter matrices are projected into the non-null space of the

total scatter matrix. Two discriminant criteria are then formu-

lated, one that corresponds to the null and non-null space of the

within-class scatter matrix, respectively. When optimizing the

two criteria, the regular and irregular discriminant transforms

are produced. Both the regular and the irregular transforms give,

at most, features. Thus, a total of features can

be derived from the multiclass CKFDA approach. In two-class

problems, the CKFDA procedure results in only two discrimi-

nant projections.

The proposed two-step optimization procedure begins with

the eigenanalysis of the matrix which contains, at most,

eigenvectors that correspond to non-null eigenvalues. Then, the

impostor matrix and the client matrix are projected

to the non-null space of the matrix . Then, two optimization

criteria are formulated which give, at most, regular plus

irregular discriminant features.

The computational complexity for finding the discriminant

transform of the multiclass CKFDA is and for

the two-class approach [11]. is the computational com-

plexity of the CSKDA using the two-step optimization method.
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Fig. 1. (a) Multiclass face recognition modeling. (b) Two-class face verification modeling. (c) Distribution of the first two features projected to the first two
principal components. (d) A simulation distribution derived from two bivariate normal distributions for impostors and clients.

V. EXPERIMENTS WITH ARTIFICIAL DATA AND

FACE VERIFICATION MODELING

It is widely accepted that the distribution of facial images,

under different viewpoints, illumination variations, and facial

expression is highly complex and nonlinear [9], [11], [31],

[43]–[46], [10], [47]. Thus, a variety of nonlinear techniques

has been developed in order to successfully capture the un-

derlying nonlinearity of data and the most popular have been

the so-called kernel techniques [9], [11], [31], [45], [10], [47].

The success of kernel techniques is mostly attributed to the

fact that linear techniques can be easily modified to their non-

linear counterparts, such as FLDA to the various kernel Fisher

discriminant alternatives [9], [11], [10], [47], [48].

As has already been mentioned for discovering discriminant

features, there are modeling differences between face recog-

nition and face verification. On one hand, face recognition is

treated as a multiclass problem, where the space is separated

to various face classes. On the other hand, the strategy for face

verification is to find class-specific projections that separate the

genuine (client) class from the impostor class. In Fig. 1(a) and

(b), the two different modellings (i.e., face recognition and face

verification) can be seen. An example of the two-class face ver-

ification problem for 39 people from the XM2VTS database is

illustrated in Fig. 1(c). For every person, the first two features,

derived from the projection to the two dominant eigenvectors of

PCA, are depicted.

A simulation example can be found in Fig. 1(d) where two

classes have been created using bivariate normal distributions.

The first class represents the client class, having 50 samples,

while the second one models the impostor class, containing

2000 samples. It is obvious that nonlinear methods should be

applied in order to capture the distribution of the data.

In order to provide some first insights of the benefits of

CSKDA, we have applied nonlinear modeling using RBF

kernels in the artificial data of Fig. 1(d). The kernel Fisher

discriminant alternatives give a very limited subspace of one

dimension [9], [11], [49], [50]. On the other hand, KPCA [29]

provides a set of features, but has the disadvantage that does not

consider class distribution characteristics. For the simulation

example in Fig. 1(d), the KPCA resulted in a 100-D space. The

proposed approach has resulted in an 100-D space as well.

Let the similarity between a data sample in the new space and

the genuine class be measured by using the Euclidean distance

to the center of the genuine class. The distribution of the client

and impostor similarities, after applying KFDA and CSKDA,

with the client class, can be found in Fig. 2. The zoomed area

represents the distribution of the client distances. As can be seen

in Fig. 2(a), when using the 1-D space of KFDA, the data are

somewhat well separable. When more dimensions are kept by
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Fig. 2. Histograms of sample distances with: (a) kernel Fisher’s discriminant analysis; (b) kernel Fisher’s discriminant analysis with more than one dimensions
by adding the a small noisy diagonal matrix to the between class scatter matrix; (c) proposed kernel-discriminant analysis with only the first dimension; and
(d) proposed kernel-discriminant analysis with 100 dimensions.

adding an diagonal matrix with small noisy elements to the be-

tween-class scatter matrix, the two classes are heavily confused

[see Fig. 2(b)].

In many cases, in approximation and regularization theory

[48], [51], [10], a scaled version of the identity matrix is added

to a matrix in order to become invertible [48], [51], [10]. The

scaled version of the identity matrix is a simplified version

of the noisy diagonal matrix that we have used in the exper-

iments. Using this fact, we provide a theoretical indication

(Appendix D) concerning why the use of additional dimensions

of between-class scatter matrix deteriorates the performance.

On the other hand, the samples of the two classes are not well

separated using only the first dimension of the proposed method,

but they become fully separated when using 100 dimensions.

Let the maximum distance of the client samples be con-

sidered as a threshold for accepting or rejecting a claim (this

means that false rejection is equal to zero). Using this threshold

in Fig. 3, a comparison of false acceptances introduced from Fig. 3. Number of false acceptances versus dimensionality.
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Fig. 4. Data samples used for the experimental procedure. Each row represents images taken from one session to consist of one person’s class for (a) XM2VTS,
(b) ORL, (c) UMIST, (d) Yale, and (e) AR.

KFDA, KPCA, and the proposed techniques for various kept

dimensions is shown. As can be seen when more than one

dimension is kept for KFDA, by adding the identity matrix to

the between-class scatter matrix, the performance deteriorates

and more false acceptances are introduced. On the other hand,

the performance of KPCA and the proposed kernel technique

increases with the number of kept dimensions.

The above example indicates that:

• the one-dimensional space of class-specific kernel Fisher

discriminant analysis may be insufficient for correctly rep-

resenting data in two class cases;

• simple tricks, such as adding noisy diagonal matrices to the

between-class scatter matrix, in order to have larger KFDA

spaces, deteriorates the performance;

• the proposed criterion provides a multidimensional space

where the data can be well represented.

In the following section, we will show the superiority of the pro-

posed technique against many other kernel-based approaches in

face verification.

VI. EXPERIMENTS WITH REAL DATA

A. Measures

In many cases for evaluating the performance of a face recog-

nition system, only the percentage of correctly identified faces

within a number of matches is adequate (recognition rate) [52],

[31]. By varying the number of matches, the curve of the cu-

mulative match score versus the number of matches is obtained

[53], [54]. On the other hand, the performance of face verifi-

cation systems is measured in terms of the false rejection rate

(FRR) achieved at a fixed false acceptance rate (FAR) [12].

There is a tradeoff between FAR and FRR. That is, it is possible

to reduce either of them with the risk of increasing the other

one. This tradeoff between the FAR and FRR can create a curve

where FRR is plotted as a function of FAR. This curve is called

the receiver operating characteristic (ROC) curve [55], [12]. The

performance of a verification system is often quoted by a partic-

ular operating point of the ROC curve where . This

operating point is called the equal error rate (EER). The EER

will be used to quantify the performance of the tested methods

in the next section.

Fig. 5. Diagram showing the partitioning of the database used according to the
protocol.

B. Databases

There are a number of databases and protocols used for face

verification experiments in the literature. The most popular are

the M2VTS [56] and XM2VTS [21], FERET [57]. Our pur-

pose in this work is to test the proposed discriminant analysis to

nonfrontal images. However, the protocols of these data bases

are strict to frontal face. Thus, we used the video XM2VTS

database, from which we have extracted the required frames.

More specifically, we have extracted frames that represent the

frontal images of the people as well as right and left profiles

until approximately 60 divergence from the frontal pose and

random images between [Fig. 4(a)]. The specific database con-

tains four recordings of 295 subjects taken over a period of

four months. Each recording contains a speaking head shot and

a rotating head shot. In the specific procedure, only the rota-

tion shots have been used. In order to reinforce our experi-

mental results, we have also run experiments on the AR [22],

[23], the ORL [24], Yale [25], and the UMIST [26] databases.

Some of the faces in ORL, UMIST, Yale, and AR are shown in

Fig. 4(b)–(e), respectively.

In the ORL database, there are each ten different images of

40 distinct subjects. For some subjects, the images were taken

at different times, varying the lighting, facial expressions (open/

closed eyes, smiling/not smiling), and facial details (glasses/no
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Fig. 6. (a) ERR for multiclass KPCA, KDDA, and CKFDA methods (regular and irregular space) using polynomial kernels. (b) ERR for multiclass KPCA,
KDDA, and CKFDA methods (regular and irregular space) using RBF kernels. (c) EER for class-specific KDDA and CKFDA (regular and irregular space) using
polynomial kernels. (d) EER for class-specific KDDA and CKFDA (regular and irregular space) using polynomial kernels. (e) EER for the proposed CSKDA
method for polynomial kernels. (f) EER for the proposed CSKDA method for RBF kernels.

glasses). All of the images were taken against a dark homoge-

neous background with the subjects in an upright, frontal posi-

tion (with tolerance for some side movement).

The Yale face database contains 165 grayscale images

in GIF format of 15 individuals. There are 11 images per

subject, one per different facial expression or configuration:

center-light, with glasses, happy, left-light, without glasses,

normal, right-light, sad, sleepy, surprised, and wink.

The UMIST face database consists of 564 images of 20

people. Each covers a range of poses from profile to frontal

views. Subjects cover a range of race, sex, and appearance. The

files are all in PGM format, approximately 220 220 pixels in

256 shades of gray.

The AR face database contains more than 3 000 color images

corresponding to 130 of people’s faces (70 men and 60 women).

The images feature frontal view faces with different facial ex-
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pressions, illumination conditions, and occlusions (sun glasses

and scarf). Each person participated in two sessions, separated

by two weeks (14 days) time. The same pictures were taken in

both sessions.

C. Experiments in XM2VTS

In our framework, every video of the XM2VTS database is

processed frame by frame and is transformed to grayscale while

it gets resized to a smaller resolution to reduce the processing

time (from 720 576 to 97 68). Afterwards, the uniform

background is detected using thresholding. The pixel values that

correspond to the background obtain a zero value to reduce the

external noise. To achieve a better and more accurate verifica-

tion rate, the algorithm resizes each video, according to a factor

produced by a given standard distance between the right and

left eye, when the subject is in frontal position, as it keeps the

frame size stable. This way, the scaling problem occurring in

different sessions of the same person is resolved, while the head

is aligned for the frame representing the frontal pose and, con-

sequently, for the rest of the movement.

From the 295 people in the database, 120 randomly chosen

people, including all sessions, were processed and used for the

experiments. The protocol used to evaluate the method is an

XM2VTS-like protocol, which has been designed similar to the

protocol described in [21]. The protocol is defined for the task of

person verification where an individual claims an identity. The

verification system compares the features of that person with

stored features corresponding to the claim identity and com-

putes his or her similarity, which is referred to as score. De-

pending on the score, the system decides whether the identity

claim is true. This verification task corresponds to an open test

set scenario where people, unknown to the system, might claim

access.

The testing database is comprised of 120 subjects, four

recording sessions, and one shot of moving head per recording

session. We should note here that each session in the XM2VTS

as well as in the video XM2VTS database has been captured

with one-month time intervals between each other. The data-

base was randomly divided into 60 clients and 60 impostors.

Two sessions out of four of the clients’ class were used for

training the system, while one session was used for evaluation

and one for testing. For the impostors, two sessions were used

for evaluation and two for testing. The number of images taken

from each session for one person was 10. So for the training set,

1200 images (60 clients 10 images 2 sessions) were used.

The number of images that were used for the evaluation set has

been (60 clients 10 images 1 session 30 impostors 10

images 2 session 1200) and the test set (60 clients 10

images 1 session 30 impostors 10 images 2 session

1200), respectively. Thus, we have a total of

client claims and impostor claims

for both—the evaluation and the test sets. A scheme of the

experimental protocol is illustrated in Fig. 5.

The evaluation set is used in order to produce client and im-

postor access scores, which are used to find a person-specific

threshold that determines whether a person is accepted or re-

jected while it tunes the algorithm in order to find the proper

TABLE I
COMPARISON OF THE BEST EERS MEASURED AT THE TEST SET

kernel and the dimensionality of the new space. The threshold

can be set to satisfy certain performance levels on the evalua-

tion set. In the case of multimodal classifiers, the evaluation set

might also be used to optimally combine the outputs of several

classifiers. The test set is selected to simulate real authentication

tests using the thresholds and the operating points calculated in

the evaluation set.

A similarity measure between faces is found in all

of the tested methods. In the proposed approaches, the simi-

larity measure was the one defined in (3). For the other tested

methods, we have used various similarity measures such as

and the norm, the Mahalanobis distance, and the cosine sim-

ilarity measure, but we will report the best results that have

been achieved for all of the methods (actually the cosine simi-

larity measure was the one that had the best performance for the

other tested approaches). In order to reject or accept an identity

claim, a threshold should be used on this similarity measure.

For choosing the thresholds, the method proposed in [30] has

been used. In detail, the similarity measures for every person

are calculated in the training set and form the distance vector

. The elements of the vector are sorted in ascending

order and are used for the person-specific thresholds on the dis-

tance measure. Let denote the th order statistic of the

vector of distances . The threshold of the person is chosen

to be equal to . A claim of a person is considered valid

if . Obviously, by varying , different pairs of

FAR and FRR can be created to produce the ROC curve.

In the experimental procedure described in this paper, the

training set has been used to train the KPCA, KDDA, CKFDA,

two-class KDDA, two-class CKFDA, and the proposed

CSKDA. The maximum number of features for the KPCA has

been 1199; for multiclass KDDA, it has been 59 features; for

multiclass CKFDA, it has been 59 for the regular discriminant

information; and 59 for the irregular-discriminant information.

For the two-class (genuine versus impostors) modeling of face

verification, the KDDA gives only one feature and the CKFDA

only two features one that corresponds to the regular and one

that corresponds to the irregular-discriminant information. The

proposed CSKDA gives, at maximum, 1179 features using the

direct optimization approach (Section III-B). While using the

two-step optimization procedure, in Section III-C, we have 19

features for the regular-discriminant information and 1179 for

the irregular. For all of the methods, we have experimented
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Fig. 7. ERR for KPCA, multiclass KDDA, two-class KFDA, and CKFDA-direct methods using polynomial kernels in (a) AR database, (b) UMIST database, (c)
Yale database, and (d) ORL database.

using various feature dimensionality but due to space limi-

tations, we report only the best results for all of the tested

methods.

In Fig. 6(a), the EERs for the test set are plotted for var-

ious polynomial kernel parameters for the multiclass KPCA,

KDDA, and CKFDA approaches (regular and irregular informa-

tion). The kernels we have applied are fractional power polyno-

mial kernels with powers from 0.5 to 0.9 and polynomial kernels

with powers from 1 to 6. The EERs for RBF kernels are plotted

in Fig. 6(b). The RBF kernels had similar variances as in [9] and

take values from to . The best EER achieved for

these methods has been measured at about 14% for the KDDA

using polynomial kernels and 10% for the KDDA using RBF

kernels.

The EERs for the class-specific KDDA and CKFDA (regular

and irregular) using various polynomial kernel parameters are

plotted in Fig. 6(c). The corresponding best EER using RBF ker-

nels is plotted in Fig. 6(d). The best EER using RBF kernels have

been measured at about 28% for the regular CKFDA. The corre-

sponding best EER using polynomial kernels has been measured

at about 21% for the KDDA. As can be seen, the performance of

the two-class variants of KDDA and CKFDA is worse than the

multiclass KDDA and CKFDA. This is attributed to the very

limited feature space that is provided by the two-class KDDA

and CKFDA.

TABLE II
COMPARISON OF THE BEST EERS MEASURED USING

SVMS AT VARIOUS FEATURE EXTRACTION METHODS

The EERs for the proposed CSKDA methods using the di-

rect approach and the CSKDA irregular and regular information

are plotted in Fig. 6(e) for various polynomial kernel parame-

ters. The corresponding EERs for the RBF kernels are plotted

in Fig. 6(f). The best EER for the proposed methods has been

measured at about 5.6% for the polynomial kernels using the

direct optimization approach. The best EER using RBF kernels

has been measured at about 5.5% for the direct optimization ap-

proach as well.

A comparison of the best EERs for the tested methods can

be found in Table I. The best EER that has been achieved by

our method is measured at about 5.5%, which is a very good
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TABLE III
COMPARISON OF THE BEST EERS MEASURED USING GABOR FEATURE VECTORS AND

FRACTIONAL POLYNOMIAL MODELS AT VARIOUS FEATURE EXTRACTION METHODS

performance if we consider that the database contains faces at

various poses. We have also compared our method to the kernel

Fisher discriminant variant, proposed in [48], but it resulted in

an EER of no less than 20% (such as class-specific KDDA and

CSKDA). Thus, we do not include detailed experiments with

this variant.

In order to understand whether the proposed CSKDA ap-

proach is statistically significantly better than the other tested

approaches, the McNemar’s [58]–[61], [11] has been used.

McNemar’s test is a null hypothesis statistical test based on

a Bernoulli model. If the resulting -value is below a desired

significance level (for example, 0.02), the null hypothesis is re-

jected and the performance difference between two algorithms

is considered to be statistically significant. Using this test, it

has been verified that the proposed methods CSKDA-direct

and CSKDA-irregular outperform the other tested classifiers

in the demonstrated experiments at a significant level that is

less than . Moreover, we have measured that the

difference between multiclass KDDA and KPCA is statistically

significant (this also holds for multiclass CKFDA-regular

and irregular). The difference between multiclass KDDA and

two-class KDDA is also statistically significant (this also holds

for multiclass CKFDA-regular and irregular).

D. Experiments in AR

A similar experimental protocol to the one applied in the

XM2VTS database has been used for the AR database. That

is, we have used 120 people of the AR database and they have

been distributed to clients and impostors as described before.

The grayscale information at a resolution of 97 68 has been

considered in the experiments.

In Fig. 7(a), the EER is plotted versus the degree of the poly-

nomial kernel for the AR face database. The two-class KFDA is

an implementation of the algorithm in [48]. As can be seen, the

proposed method outperforms all other tested methods.

E. Experiments in UMIST–Yale–ORL

For the UMIST, Yale, and ORL database, in order to make

maximal use of the data, we have considered a circular protocol.

In order to implement this protocol, we have combined princi-

ples of the leave one out strategy and the rotation estimates (i.e.,

a variant of the jack-knife method [30], [14], [13], [12]). In each

circle of the protocol, one person becomes the impostor and the

images are used for impostor claims (not seen in the training

phase). Then, 80% of the data of the remaining people are used

for training and the remaining 20% serve for client claims.

In Fig. 7(b)–(d), the EER is plotted versus the degree of

the polynomial kernel for the UMIST, Yale, and ORL face

databases, respectively. The proposed method CSKDA-direct

outperforms all of the other tested methods.

F. Experiments With SVMs

Among the most popular methods used in pattern classifica-

tion applications are SVMs [62]. Motivated by the successful

application of SVMs with KPCA in the ORL database for

face recognition [63], we have combined SVMs with different

feature extract methods tested in this paper. That is, we have

combined SVMs with KPCA, multiclass–KDDA, the proposed

CSKDA–direct and, for completeness, we have applied SVMs

directly to the grayscale facial images. We have tested these

in XM2VTS and ORL databases. The best EERs achieved are

summarized in Table II.

G. Experiments With Gabor Features and Fractional

Polynomial Models

Gabor-based facial features, combined with kernel methods

(e.g., KPCA [31] and variants of multiclass kernel Fisher’s

discriminant analysis [10]) and with fractional polynomial

models, are among the state-of-the-art face verification and

recognition systems in the literature. In these methods, an

information pyramid is created by applying a Gabor filter bank

to the original facial image. Afterwards, an augmented feature

vector is created by concatenating the various output magnitude

images from the Gabor multiscale analysis. Finally, a subspace

is discovered by applying KPCA [31] or kernel Fisher dis-

criminant analysis variants with fractional polynomial models

[10]. We have conducted experiments using the augmented

Gabor features proposed in [10] and [31]. Moreover, we have

applied the proposed method using these Gabor features and

we have verified that it has superior performance and out-

performs Gabor–KPCA and multiclass Gabor–KFDA with

fractional polynomial models. The tests have been conducted

in the XM2VTS, ORL, and Yale database. The best EERs

in the various tested databases are summarized in Table III.

The proposed CSKDA-direct has the best performance when

combined with Gabor features.

VII. CONCLUSION

Face verification has been modelled as a nonlinear two-class

problem (clients versus impostors). The majority of discrimi-

nant feature extraction methods that are used for face recogni-

tion are based on Fisher’s discriminant analysis. The problem

with Fisher’s discriminant analysis is that in two class problems,
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it provides only one or two discriminant dimensions. This lim-

ited subspace may be proved insufficient for feature extraction

for face verification. We have demonstrated this by extensive

experiments using both artificial and real data. We have also

demonstrated that other kind of tricks, such as adding small

noisy diagonal matrices to the between-class scatter matrix in

order to extract additional features, have not led to performance

improvement. In order to extract additional features in two class

cases, novel kernel-based methods for discriminant feature ex-

tractions have been defined. The proposed method minimizes

the variance of the client class around the client class center,

while maximizing the distance of the impostor samples from the

client center. It has been proven that the proposed criterion pro-

duces a set of discriminant projections with their number being

proportional to the number of training samples. The proposed

approaches have been tested in face verification using various

face databases, where they show how to outperform many other

popular kernel methods.

APPENDIX A

PROOF OF PROPOSITION 1

Proposition 1: Let that for a vector , it is valid that

then if it satisfies at the same time,

all of the training client vectors are mapped on the same point

and not all of the training impostor vectors do not

fall on .

Proof: Let the matrix that has

the training client vectors in as columns, then the matrix

can be written as

(20)

where is a matrix with elements that are equal to .

Then, by letting be the identity matrix, we have

(21)

Thus, all of the training client vectors fall on the same point .

In the same manner, when the impostor vectors

do not fall on the same point, while if , then the

training impostors fall to as well. Thus, when for a vector ,

it is valid that and at the same time,

then no discrimination can be performed in a space spanned by

vectors such as since all of the vectors are mapped to a specific

point.

APPENDIX B

COMPUTATION OF

The is expanded as

(22)

where

(23)

Thus

(24)

APPENDIX C

COMPUTATION OF

When expanding , we have

(25)

where

(26)
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We expand the first term

of (26) as

(27)

Then, the second term of (26) can be ex-

panded as

(28)

Thus

(29)

APPENDIX D

FEATURE EXTRACTION FOR CSKDA

USING DIRECT APPROACH

(30)

The vector can be expanded as

(31)

where and

are and kernel vectors,

respectively. By combining (30) and (31), we obtain

(32)

APPENDIX E

COMPUTATION OF

The is expanded as

(33)

where
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(34)

where is the total kernel function defined as

(35)

and is defined as

(36)

APPENDIX F

FEATURE EXTRACTION FOR CSKDA

USING TWO-STEP APPROACH

Step 1) Calculate the eigenvalues and the eigenvectors of

and project each facial vector as

(37)

Step 2) In the new space, calculate and . Perform eigen-

analysis to and obtain a set of orthonormal eigen-

vectors. Create the two matrices

and , where

that correspond to nonzero and zero eigenvalues,

respectively.

Step 3) Calculate and find

the regular discriminant features using the matrix

whose columns are the eigenvectors

of in descending order of the eigenvalues.

Step 4) Calculate and find the irreg-

ular-discriminant projections using the matrix

whose columns are the orthonormal

eigenvectors of .

After following these steps, the regular-discriminant projec-

tion for a test facial vector is given by:

(38)

the number of dimensions of the regular discriminant vectors is

less than or equal to . The irregular discriminant projec-

tion for the facial vector is given by

(39)

the number of dimensions of the feature vector is less than

or equal to .

APPENDIX G

NULL SPACE OF THE BETWEEN-CLASS SCATTER MATRIX

As can be proven, the matrix (in the two-class case) [11]

has only one eigenvector that corresponds to the non-null eigen-

vector. Diminish the null eigenvalues of by adding the scaled

version of the identity matrix as

(40)

where . Thus, the eigenvectors of that correspond

to null eigenvalues are the same ones that correspond to eigen-

values that are equal to for the matrix . The property

of the projection to the null eigenvectors of that may indi-

cate poor classification performance is given in the following

proposition.

Proposition 2: If for some , then under

the projection , for the two training mean vectors (genuine and

impostor), , it is valid that . In other

words, under the projection , the two centers fall in

the same point, which means that this projection does not help

to separate the two classes (is not optimal in the sense of FLDA,

where this projection makes the criterion equal to zero).

Proof: The between-class scatter matrix can be written

as

(41)

Then, we have

(42)

and for the Fisher criterion ,

where is the within-class scatter matrix.
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