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Abstract—In deep face recognition, the commonly-used soft-
max loss and its newly proposed variations are not yet sufficiently
effective to handle the class imbalance and softmax saturation
issues during the training process, while extracting discriminative
features. In this brief paper, to address both issues, we propose
a class-variant margin (CVM) normalized softmax loss, by
introducing a true-class margin and a false-class margin into
the cosine space of the angle between the feature vector and
the class-weight vector. The true-class margin alleviates the class
imbalance problem and the false-class margin postpones the early
individual saturation of softmax. With negligible computational
complexity increment during training, the new loss function is
easy to implement in the common deep learning frameworks.
Comprehensive experiments on the LFW, YTF and MegaFace
protocols demonstrate the effectiveness of the proposed CVM
loss function.

Index Terms—Class-variant margin, class imbalance, early
individual saturation, softmax loss.

I. INTRODUCTION

C
ONVOLUTIONAL neural networks (CNNs) have been

proved to be effective in numerous computer vision tasks,

such as image classification [1], [2], object detection [3],

[4], semantic segmentation [5], [6], and particularly face

recognition [7], [8]. As show in Fig.1, face images need to

be pre-processed firstly, i.e. by face detection, cropping and

alignment, then processed images will be inputted into a CNN

to extract features for recognition. For both testing settings,

i.e., face verification [9] and face identification [10], the key

for recognition is the discriminative feature. To construct

such a powerful feature extractor, it is critical to design an

appropriate loss function, which will supervise the learning

of the network parameters. Hence, many studies have been

focused on designing loss functions.

The existing loss functions can be largely divided into two

categories: metric-based and margin-based. Metric-based loss

functions are often based on metric learning to simultaneously

make intra-class features compact and inter-class features

remote from each other. Popular metric-based losses include

contrastive loss [11], triplet loss [12] and center loss [13].
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Fig. 1. A face recognition framework.

However, these losses either need a complicated sampling

strategy or demand a time-consuming training [11], [12].

Margin-based loss functions generally add a margin to the

classical softmax loss to make the separation more strict. Typ-

ical margin-based losses are L-softmax [8], A-softmax [14],

CosFace [15] and ArcFace [16], which add margins to the

angular space or cosine space, respectively.

However, there are two hard issues negatively affecting

the training of CNNs for face recognition: class imbalance

and softmax saturation. Class imbalance is severe in face

recognition, as the number of face images per person varies

greatly in most training datasets. This issue may cause the

trained network to favor those categories that have more

images in the training data, and bias the deep feature learning.

Hence it is necessary to treat different categories differently,

and some successful efforts have recently been made by the

range loss [17] and the focal loss [18] to alleviate class

imbalance problems. The focal loss can focus on the sparse set

of hard examples through down-weighting the cross-entropy

loss of well-classified examples, while the range loss aims to

reduce the intra-class difference and enlarge the inter-class dif-

ference simultaneously within a mini-batch. The early softmax

saturation refers to the short-lived gradients propagation that

the softmax produces, which will impedes the exploration of

stochastic gradient descends [19]. To mitigate this early sat-

uration problem, noisy-softmax was proposed in [19], which

injects noise into the softmax loss. Besides improvements on

loss functions, there have been other work to enhance face

recognition, such as separability and compactness network

(SCNet) [20], semi-supervised sparse representation based
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classification (S3RC) [21] and specific face datasets [22].

In this brief paper, we aim to propose a simple yet effec-

tive loss function called class-variant margin (CVM) softmax

loss, to address the class imbalance and softmax saturation

problems for deep facial feature learning. More specifically,

we introduce two margin functions into the cosine space

of the softmax loss to address the two problems. For the

class imbalance problem, we first introduce a reduced margin

function to the cosine of the angle between the feature vector

and true class weight vector, which we call a true-class margin,

such that the misclassified examples can obtain a larger true-

class margin to contribute more to the network optimization.

For the softmax saturation problem, we introduce an additive

margin function to the cosine of the angle between the feature

vector and the false class weight vector, which we call a false-

class margin, such that the examples near saturation can obtain

a larger false-class margin to postpone the softmax saturation.

Our major contributions can be summarized as follows:

1) We propose a novel loss termed CVM loss that can simul-

taneously alleviate the class imbalance and softmax saturation

problems in the training of CNNs.

2) The proposed CVM loss can be easily implemented under

common CNN architectures and be directly optimized by the

standard SGD method.

3) We train our model on the public available Casia-

Webface dataset and verify its effectiveness on three popular

benchmarks, LFW, YTF and MegaFace.

The rest of this paper is organized as follows. In Section II,

we shall present the proposed CVM loss in details, from its

motivation, intuition, formulation to discussion. In Section III,

we shall empirically investigate the effectiveness of the CVM

loss including the effect of its parameters and the superiority

of its performance compared with other popular loss functions

in face recognition. Section IV will summarize this brief paper.

II. PROPOSED LOSS FUNCTION: CVM SOFTMAX LOSS

In this section, we will first analyze two existing problems

in deep face recognition, then propose the class-variant margin

(CVM) softmax loss function to address these problems, and

finally present some discussions about our proposal.

A. Two existing problems in face recognition

1) Class imbalance: Class imbalance is severe in most

training datasets for face recognition: e.g., for the popular

Casia-Webface dataset, the curve for the number of images per

person is plotted in Fig.2, where a clear long-tail distribution

can be observed. In fact, it has been shown from empirical

experiments and analysis that the classes with more samples

will have a greater impact on the feature learning [17]. Hence,

it is a critical issue to effectively handle the imbalanced data

for improving feature discrimination in face recognition.

2) Softmax saturation: The softmax loss is commonly

applied in classification applications. However, as rightly

pointed out by [19], the softmax function suffers from an

early individual saturation. For illustration, here we consider

its use in a two-class classification scenario of sample xi with

the output score of class yi = 1 being P (yi = 1 | xi) =

Fig. 2. The number of images per person in the Casia-Webface dataset.

1
1+e−(f1(xi)−f2(xi))

, in which fj(xi) is the j-th element of the

softmax input vector for sample xi. As implied by the curve in

Fig.3, the early saturated individuals (with their output scores

already close to 1) actually contribute little to the gradient

updating in the back-propagation process afterward. Hence, to

fully exploit the information of these individuals, it is better

to postpone the early individual saturation.

Fig. 3. A softmax function for binary classification, with the posterior
probability P (yi = 1 | xi) =

1

1+e
−(f1(xi)−f2(xi))

.

B. Class-variant margin (CVM) softmax loss

In this paper, we propose a new, simple yet effective loss

function termed class-variant margin (CVM) softmax loss,

to address both the class imbalance and softmax saturation

problems.

The original normalized softmax loss is

Lns =−
1

N

N
∑

i=1

logP (yi|xi) = −
1

N

N
∑

i=1

log
efyi

efyi +
∑

j 6=yi
efj

=−
1

N

N
∑

i=1

log
es·(cos θyi )

es·(cos θyi ) +
∑

j 6=yi
es·(cos θj)

.

(1)

Two intuitions underlying our CVM loss function are:

1) Because the training was dominated by the majority

classes with a large number of minority classes (persons

on the long tails in Fig.2) unfortunately submerged, the

new loss function is expected to strengthen the influence

of the tail data during the training process.

For the training samples from the minority classes,

boundary features whose θyi
distributes around 90◦
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represent hard samples. Those features are key points to

ensure intra-class and inter-class variations. Therefore,

to enhance the impact of these points in the network

training, we apply a larger margin to the cosine of

the angle between the feature vector and the true class

weight vector, when θyi
is around 90◦. When the angle

of true class is larger than 90◦, a smaller margin should

be applied because these training samples are likely to

be outliers. Thus, we construct the true-class margin

function h(θ) (see Fig.4) applied to the cosine of the

angle between the feature vector and the true class

weight vector.

Fig. 4. true-class margin function h(θ) and false-class margin function g(θ).

2) Because the early individual saturation of the softmax

loss led to short-lived gradient propagation, which is

undesirable for the generalization and robust learning

of the network, the new loss function should be able to

postpone early saturation, for example, by enlarging the

softmax input fj when j 6= yi.

To address the softmax saturation problem, we construct

the false-class margin function g(θ) to postpone the

early individual saturation. When the confidence of the

feature vector belonging to class j is low, i.e. the angle

θj,j 6=yi
distributes near 180◦, the feature vector tends

to be classified correctly and approaches the softmax

saturation zone. Hence, we add a larger margin (see

Fig.4) to the cosine of such an angle θj,j 6=yi
to maintain

a valid gradient propagation.

Combining the true-class margin function and false-class mar-

gin function, we propose the CVM loss as

Lcvm =−
1

N

N
∑

i=1

log
es·(cos θyi−h(θyi ))

es·(cos θyi−h(θyi ))+
∑

j 6=yi
es·(cos θj+g(θj))

,

(2)

with h(θyi
) = m1(1− cos2 θyi

), (3)

g(θj) = m2 cos
2 θj , (4)

where subscripts j and yi index class j and class yi among C

classes; N is the number of mini-batch; s is a scale factor; fj
(short for fj(xi)) is the j-th element of the softmax input for

xi; θj (short for θj(xi)) is the angle between the i-th feature

vector xi and the weight vector of the j-th class; h(θyi
) is

the margin function applied to the cosine of angle between

the feature vector and the true class weight vector, named as

the true-class margin; g(θj) is the margin function added to

the cosine of angle between the feature vector and the false

class weight vector, named as the false-class margin; m1 and

m2 are two preset hyper-parameters; m1 represents the upper

bound of the true-class margin, and m2 represents the upper

bound of the false-class margin.

Plotted in Fig.4, the true-class margin h(θyi
) and the false-

class margin g(θj) are nonlinear mappings of the angles θyi

and θj , respectively. We design these two margin functions

to alleviate the class imbalance problem and postpone early

individual saturation, as elaborated below.

C. Discussion

1) Margins: Here we take the two-class classification as

example and list the decision boundary and margins of several

popular loss functions. As shown in Table I, there have been

some popular loss functions commonly used in face recogni-

tion. The softmax loss helps the convolution neural network

quickly converge, but it cannot ensure the extracted features

very discriminative. To improve the accuracy of face verifi-

cation and face identification, CosFace and ArcFace apply a

constant margin to cosine and angular spaces, respectively,

to make the feature more discriminative. Although with the

constant margin the inter-class distance can be enlarged, these

two methods apply the same margin to all class but do not take

the class discrepancy into consideration. Here, the proposed

CVM normalized softmax loss applies a class-variable margin

to the normalized softmax loss, through constructing true-class

margin function and false-class margin function.

We also illustrate some of them in the cosine space in Fig.5,

in which the blue areas represent class 1, while the red areas

belong to class 2. We can observe that the decision margin of

the normalized softmax loss (NLS, Fig.5(a)) is zero, making

the loss function not very robust for the features around the

decision boundary.

TABLE I
DECISION BOUNDARIES OF SOME POPULAR LOSS FUNCTIONS IN

TWO-CLASS CLASSIFICATION CASE.

Loss Functions Decision Boundaries

Softmax [14] (W1 −W2)x+ (b1 − b2) = 0
N-softmax [23] cos θ1 − cos θ2 = 0
CosFace [15] cos θ1 − cos θ2 −m = 0
ArcFace [16] cos(θ1 +m)− cos θ2 = 0

CVM-softmax cos θ1 − cos θ2 − CVM(θ1, θ2) = 0
CVM(θ1, θ2) = m1 sin

2 θ1 +m2 cos2 θ2

To illustrate the effectiveness of the two terms (true-class

margin and false-class margin), we first apply the true-class

margin to the cosine of the angle between the feature vector

and the true class weight vector. The samples of minority

class are often distributed near the class boundary, which

leads to small cosine values. Therefore, as larger margins are

introduced by applying the true-class margin when both cosine

values are small, we manage to make the features of those rare

samples more discriminative, as shown in Fig.5(b). Then, for
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(a) Normalized softmax loss (NLS) (b) NSL with true-class margin

(c) NSL with false-class margin (d) Class-variant margin softmax loss

Fig. 5. Decision margins for loss functions under binary classes case: the
class 1 (C1) area is in blue and the class 2 (C2) area is in red. In (a), the
C1 area is cos θ1 > cos θ2, while the C2 area is cos θ2 > cos θ1. In (b),
we apply the true-class margin to the normalized softmax loss; the C1 area is
cos θ1 −m1(1− cos2 θ1) > cos θ2, while the C2 area is cos θ2 −m1(1−
cos2 θ2) > cos θ1. In (c), we apply the false-class margin to the normalized
softmax loss; the C1 area is cos θ1 > cos θ2+m2 cos2 θ2, while the C2 area
is cos θ2 > cos θ1+m2 cos2 θ1. In (d), combining the true-class margin and
the false-class margin, we propose the class-variant margin softmax loss; the
C1 area is cos θ1 −m1(1− cos2 θ1) > cos θ2 +m2 cos2 θ2, while the C2
area is cos θ2 −m1(1− cos2 θ2) > cos θ1 +m2 cos2 θ1.

the early individual saturation problem, we introduce the false-

class margin to the cosine of the angle between feature vector

and the false class weight vector. This approach, as shown in

Fig.5(c), enables us to enlarge the margins for those samples

near the saturation status, and thus to postpone the saturation

process. Finally, we combine the true-class margin and the

false-class margin to attain the final decision margin of our

CVM loss, which addresses both the class imbalance problem

and the early saturation problem, as shown in Fig.5(d).

Fig. 6. Schematic diagram of adding class-variant margins to the hypersphere.

To understand the CVM loss even further in a geometric

view, we also draw an illustration of adding class-variant

margins in the hypersphere, as shown in Fig.6.

In the left panel of Fig.6, the original feature vectors x1 and

x2 both belong to class 1, and the angle between x1 and W1 is

larger than the angle between x2 and W1. That is, it is harder to

classify the sample x1. Therefore, we apply a larger true-class

margin to the cosine of the angle θx1,1 to strengthen the impact

of the sample x1 on the training. Geometrically, through two

different true-class margins, h(θx1,1) and h(θx2,1), the original

feature vectors x1 and x2 are transformed to the new feature

vectors x′
1 and x′

2, respectively; and with h(θx1,1) > h(θx2,1),
we enhance the impact of x1 and extract more discriminative

feature.

In the right panel of Fig.6, the original feature vector x1

belongs to class 1, and the angle θ2 between x1 and W2 is

larger than the angle θ3 between x1 and W3, which means

that x1 to class 2 is closer to saturation than x1 to class 3.

Thus, we introduce a larger false-class margin to the cosine

of the angle θj,j 6=yi
that is nearer to saturation, to obtain a

smaller angle (θ′2 < θ2). The original feature vector x1 is

respectively transformed to two feature vectors x1,2 and x1,3

through false-class margins g(θ2) and g(θ3), respectively. With

the combination of both false-class margins, a new feature

vector x′′
1 is actually generated to optimize the network.

2) Gradients: The CVM loss can be optimized by using

standard stochastic gradient descent algorithm. To this end,

we compute the back-propagation gradients for the CVM loss.

The difference between the softmax loss and the CVM loss

lies in fj . Thus, it is only need to calculate fj in forward

and backward propagation is only needed. Putting Eq.(3) and

Eq.(4) in Eq.(2), we can rewrite fyi
and fj(j 6=yi) as

fyi
= s ·

(

cos θyi
−m1 ·

(

1− cos2 θyi

))

,

fj(j 6=yi) = s ·
(

cos θj +m2 · cos
2 θj

)

.
(5)

For the back-propagation, we apply the chain rule to compute

the partial derivative,
∂fyi

∂(cos θyi )
and

∂fj(j 6=yi)

∂(cos θj(j 6=yi)
) as

∂fyi

∂(cos θyi
)
= s · (1 + 2m1 cos θyi

),

∂fj(j 6=yi)

∂(cos θj(j 6=yi))
= s · (1 + 2m2 cos θj(j 6=yi)).

(6)

III. EXPERIMENTAL STUDIES

In this section, we will introduce the experimental settings

in Section A, investigate the sensitivity of parameters m1 and

m2 in Section B, and conduct plenty of experiments in Section

C on widely-used face datasets, LFW, YTF and MegaFace, to

demonstrate the effectiveness of the proposed method.

A. Experimental settings

1) Training data: The Casia-Webface dataset [24] contains

0.49M images of 10,558 identities. We train the network on the

cleaned version, containing 0.45M images of 10,572 identities.

2) Network settings: The CNN architecture used in our

work is the SphereFace-20 network [14], which is based on

20 convolutional layers and residual units. We use PyTorch to

implement the modifications on the loss function.
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3) Data Pre-processing: In the data pre-processing proce-

dure, we use MTCNN [25] (Multi-task convolutional neural

network, a commonly used face detection and alignment

network) to operate face detection and landmark location.

First, all the training and testing images are pre-processed to

extract face landmarks. Then, based on these landmarks, we

make similarity transformation to align images. Finally, the

original images are cropped and resized to 112×96, and each

pixel is normalized by subtracting 127.5 then dividing by 128.

4) Test settings: First, we conduct experiments on the

MNIST dataset [26] to investigate the effect of these two

parameters m1 and m2. In the testing stage, features of the

original image and the flipped image are concatenated together

to compose the final face representation. As face features

have been normalized, here we use the cosine similarity of

features to measure the distance between query and gallery

images in face recognition tasks. Finally, face verification and

identification are conducted by thresholding and ranking the

scores. We test our models on several popular public face

datasets, including LFW [27], YTF [28] and MegaFace [29].

TABLE II
CNN ARCHITECTURE OF SPHEREFACE-20 NETWORK. [3X3, 64]X2, S2
MEANS 2 CASCADED CONVOLUTION LAYERS WITH 64 FILTERS OF 3X3

KERNEL SIZE, AND THE STRIDE IS 2. BESIDES, THE RESIDUAL UNIT ARE

SHOWN IN DOUBLE-COLUMN BRACKETS.

Layer SphereFace-20 params FLOPs

Conv1.x

[3× 3, 64]× 1, S2
[

3× 3, 64
3× 3, 64

]

× 1
0.07M 202M

Conv2.x

[3× 3, 128]× 1, S2
[

3× 3, 128
3× 3, 128

]

× 2
0.6M 445M

Conv3.x

[3× 3, 256]× 1, S2
[

3× 3, 256
3× 3, 256

]

× 4
5.0M 842M

Conv4.x

[3× 3, 512]× 1, S2
[

3× 3, 512
3× 3, 512

]

× 1
5.9M 247M

FC1 512 11M 11M

B. Effects of parameters m1 and m2

As shown in Eq.(3) and (4), the true-class margin function

h(θ), which is aimed to address the class imbalance problem,

involves a parameter m1, while the false-class margin function

h(θ), which is designed to postpone the early individual satu-

ration, involves a parameter m2. To investigate the sensitivity

of these two parameters on the performance of the CVM loss,

we conduct a series of experiments on the MNIST dataset [26].

For illustrative purposes, at different values of these two

parameters from 0.1 to 0.9 in a step of 0.1, we plot in Fig.7

the average intra-class distance and inter-class distance over

five runs on the MNIST dataset. From Fig.7, we can observe

the followings: (i) For every m2, a bigger m1 decreases the

intra-class distance and increases the inter-class distance. (ii)

When m1 is sufficiently small, a small m2 will help increase

the inter-class distance. When m1 is bigger, it is also advised

to have a bigger m2 to obtain a larger inter-class distance.

C. Experiments on the LFW and YTF datasets

In this section, we evaluate the proposed CVM loss func-

tion on two face-recognition benchmark datasets: LFW and

YTF [28] under the open-set protocol. The LFW dataset

[27] is composed of 13,233 web-collected images from 5,749

identities, with large variations in pose, expression and illumi-

nation. The YTF dataset includes 3,425 videos of 1,595 people

downloaded from Youtube, with an average of 2.15 videos per

person. The duration of each video ranges from 48 to 6,070

frames, with an average of 181.3 frames per video. We follow

the standard protocol of unrestricted with labeled outside data

and test on 6,000 face pairs from the LFW dataset and 5,000

video pairs from the YTF dataset.

TABLE III
COMPARISON OF LOSS FUNCTIONS IN TERMS OF FACE VERIFICATION

ACCURACY ON THE LFW AND YTF DATASETS.

Loss function LFW(%) YTF(%)

Softmax loss 96.55 89.86
Normalized softmax loss 98.35 90.90

Angular softmax loss 99.15 93.56
Large margin cosine loss 99.10 92.94

Addictive angular margin Loss 99.02 92.74

CVM-softmax loss 99.33 93.64

First, we compare different loss functions (the softmax loss,

the normalized softmax loss, the angular softmax loss, the

large margin cosine loss, the addictive angular margin loss

and our CVM softmax loss), under the same network settings

and training data: we use the Casia-Webface dataset without

any bells and whistles to train the SphereFace20 network.

As shown in Table III, the proposed CVM loss achieves the

best performance on both LFW and YTF, in particularly it

outperforms the softmax loss by a significant margin, from

96.55% to 99.33% on LFW and from 89.86% to 93.64% on

YTF. These results indicate that the proposed CVM loss are

able to further enhance the discriminative power of the deeply

learned face features.

TABLE IV
COMPARISON OF DIFFERENT FACE RECOGNITION FRAMEWORKS.

Methods models params images LFW(%) YTF(%)

DeepID [10] 200 41.8M - 99.47 93.20
VGG Face [30] 1 133M 2.6M 98.95 97.30

Deep Face [31] 3 120M 4M 98.37 91.40
Fusion [32] 5 - 500M 98.37 -

FaceNet [33] 1 140M 200M 99.62 95.10
Baidu [34] 1 - 1.3M 99.13 -

Range loss [17] 1 138M 1.5M 99.52 93.70
Multibatch [35] 1 1.3M 2.6M 98.80 -

Aug [36] 1 143M 0.5M 98.06 -
Center loss [13] 1 - 0.7M 99.28 94.90

Marginal loss [37] 1 - 4M 99.48 95.98

SphereFace20+CVM 1 22.5M 0.45M 99.33 93.64

Then we compare the proposed CVM loss with the state-

of-the-art face recognition approaches. As can be seen in

Table IV, with fewer parameters (only a single 20-layer

network with 22.5M parameter size) and a smaller amount

of training data (0.45M images), the CVM loss achieves

competitive results to other state-of-the-art methods.
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(a) intra-class with m1 (b) intra-class with m2

(c) inter-class with m1 (d) inter-class with m2

Fig. 7. Curves of intra-class distance and inter-class distance with varying m1 and m2.

D. Experiments on the MegaFace datasets

MegaFace is a very challenging test benchmark released for

large-scale face identification and face verification. The gallery

set in MegaFace consists of more than 1 million face images.

The probe set contains two existing datasets: FaceScrub and

FGNET. In this study, we use the FaceScrub dataset as the

probe set to evaluate the performance of our proposed CVM

loss. The FaceScrub dataset includes 206,863 face images from

530 celebrities. A subset composed of 3,530 images from 80

celebrities is tested for face identification and face verification.

In the pre-processing procedure, we use MTCNN for face

detection and alignment in the probe set and the gallery set.

As faces in some images cannot be detected successfully, there

are finally 961,312 face images left in the gallery set, but for

the probe set, we manually crop and align those images which

have failed in MTCNN.

TABLE V
MEGAFACE EXPERIMENTAL RESULTS COMPARISON.

Loss Function
MegaFace

Rank1 Acc.
MegaFace

Ver.

Softmax loss 43.02% 47.18%
Normalized softmax loss 48.05% 56.65%

Angular softmax loss 66.74% 73.87%
Large margin cosine loss 69.78% 75.11%

Addictive angular margin loss 64.36% 72.04%

CVM-softmax loss 72.32% 79.05%

As shown in Table V, our CVM loss not only surpasses the

large margin cosine loss, which applies a fixed margin to the

normalized softmax loss, but also significantly outperforms the

other popular loss functions.

E. Time Complexity

The time complexity of the original softmax loss is O(n)

given n samples, which is linear to the number of training

samples. In fact, all the loss functions listed in Table III,

including our CVM loss, are the modified versions based on

the softmax loss and they all have O(n) time complexity. More

specifically, compared with the normalized softmax loss, our

proposed loss additionally applies dynamic margins, which

only brings small burden on the training process. Moreover,

the comparative experiment results listed in Table III prove

the effectiveness of the proposed loss function with the same

time complexity to the compared state-of-the-art methods.

IV. CONCLUSION

In this brief paper, we propose a new loss function called the

class-variant margin (CVM) normalized softmax loss for deep

face recognition. The proposed CVM loss introduces the true-

class margin and the false-class margin to the cosine space,

which can alleviate the class imbalance and softmax saturation

problems in the network training. Comprehensive experiments

show that the CVM loss performs better than state-of-the-art

loss functions on the LFW, YTF and MegaFace datasets.
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